高中化学知识,急!!!
1。浓硫酸因为其中含的水比较少,因此我们认为它大部分都没被电离,是以分子形式存在的。因此,浓硫酸不能拆。
Cu + 2H2SO4(浓)=加热= Cu2+ + SO42- + SO2气体 + 2H2O
碳酸钡和浓硫酸反应是离子反应。但是化学方程式和离子方程式相同。
2。简单地说,如果生成碳酸根的话,所得到的产物还会继续反应,生成碳酸氢根。因此不可以生成碳酸根。
3。四羟基合铝酸钠的结构确实是以配位键相结合的。但是通常情况下不把这个物质看作典型的配合物。这个物质其实就是铝酸钠。
4。高锰酸根在酸性:二价锰离子
中性 :二氧化锰
碱性:锰酸根离子
其它不懂的Hi我
最强的酸
初中:硫酸、盐酸比碳酸强,其余不分。有些学校分强酸(硫酸、盐酸、硝酸)、中强酸(磷酸)、弱酸(碳酸)
高中:课本上是高氯酸(HClO4),竞赛可能会提到氟锑酸(HSbF6)
实际:不同理论下定义不同(常见的有:阿伦尼乌斯酸碱理论——酸碱电离理论、布朗斯特-劳里酸碱理论——酸碱质子理论、路易斯酸碱理论——酸碱电子理论、酸碱溶剂理论、软硬酸碱理论……)。
氢氧化钠与氯化铝反应产物
初中:氢氧化铝(Al(OH)3)和氯化钠。(课外练习题可能会出现生成偏铝酸钠(NaAlO2)和氯化钠)
高中:偏铝酸钠(NaAlO2)和氯化钠;不过最近的课本也有一部分革新为四羟基合铝酸钠Na[Al(OH)4]
实际:四羟基合铝酸钠Na[Al(OH)4](或称铝酸钠)脱水后就是偏铝酸钠,所以两种写法都可以,但是大学里面较多使用四羟基合铝酸钠(或称铝酸钠),以及氯化钠。
钾钠沉淀
初中:全溶。
高中:课本上全溶;竞赛可能会涉及到高氯酸钾微溶,在浓度高时为沉淀。还有碳酸氢钠在一定条件下也是沉淀,参考侯氏制碱法
实际:醋酸铀酰锌钠、四苯硼酸钾、铋酸钠、铋酸钾、六亚硝酸合钴(Ⅲ)酸钾钠,Na[Sb(OH)6)]六羟基合锑(Ⅴ)酸钠,Na2Ti3O7三钛酸钠,白色沉淀等。
氧的价态
初中:0价、-2价。(H2O2在制取氧气中提到,课外练习题可能会出现计算氧的化合价)
高中:0价、-1价、-2价。其中-1价的对应H2O2、Na2O2等。
实际:存在多种为正价的氧化物.比如OF2中为+2价,O3F2中为+2/3价,O2F2中为+1价,O2PtF6为+1/2价。
合金是不是纯净物
初中:合金是混合物。
高中:同初中。
实际:合金分为金属化合物,金属固溶体,金属间隙化合物,其中金属化合物中金属和金属之间用共价键(金属键)结合,为纯净物。
氧化铝与酸碱的反应
初中:氧化铝和酸发生复分解反应(非中和反应),和碱不反应。(课外练习题可能会提到是两性氧化物)
高中:氧化铝是两性氧化物,能溶于酸碱。
实际:氧化铝能否溶于酸碱视乎氧化铝晶型而定,α-Al2O3(也就是刚玉)不溶于水与酸碱,γ-Al2O3同样不溶于水,但γ-Al2O3能溶于酸碱。
金属价态
初中:正价和零价。
高中:正价和零价。
实际:存在负价(Na4Pb9、CsAu、HMn(CO)5、Mg2Pb等)和零价(Cr(CO)6、Mn2(CO)10、Fe(CO)5、Co2(CO)8、Ni(CO)4等)。
氧化镍与一氧化碳的反应
初中:不学。
高中:加热生成镍单质和二氧化碳。
实际:生成镍单质后会进一步与一氧化碳发生配位反应生成四羰基合镍Ni(CO)4,剧毒!
一氧化碳与碱的反应
初中:不讲
高中:一氧化碳是不成盐氧化物,不能与碱反应
实际:一定条件下(高温高压)CO可与粉末状NaOH反应生成甲酸钠。(因此可以将CO看作是甲酸的酸酐。)
铜与酸的反应
初中:活泼性在氢后面的铜不与盐酸和稀硫酸反应放出氢气,与浓硫酸反应(加热)生成硫酸铜、水和二氧化硫。
高中:铜只与氧化性酸反应例如热浓硫酸、硝酸等。
实际:铜与浓热盐酸、氢硫酸、氢溴酸反应也放出氢气,在硫脲存在下与众多非氧化性酸反应放出氢气。
纯硫酸是否导电
初中:不讲。
高中:纯酸不电离,不导电。
实际:纯酸存在自偶电离( 2H2SO4 = 可逆= HSO4-+H3SO4+),但电阻太高,和纯水一样视作不导电。
分子量最小的有机物
初中:甲烷(CH4)。
高中:大部分教科书中依旧写甲烷。奥赛课本中出现过亚甲基卡宾(:CH2),分为单线态和三线态。
实际:卡拜(CH),极不稳定。
镁与硫酸铜溶液的反应
初中:镁和硫酸铜反应生成硫酸镁和铜。
高中:生成铜,硫酸镁,氢气。
实际:可能生成铜,硫酸镁,氢气,氢氧化铜,氢氧化镁等(反应产物很复杂)
金属与硝酸的反应
初中:不学,初中一般都回避这个问题(学习酸的通性时不包括浓硫酸与硝酸),但应知道不生成氢气。
高中:浓硝酸与大部分金属反应生成NO2,稀硝酸与大部分金属生成NO。当然在方程式配平中可出现N2O、NH4NO3这两种产物。
实际:不管什么浓度的硝酸与金属反应,硝酸的还原产物都不止一种,其中包括NO2、NO、N2O、N2和NH4NO3,极稀的硝酸与金属反应甚至会生成H2。
钠在空气中燃烧
初中:不学,但应知道能燃烧。
高中:生成浅黄色过氧化钠(Na2O2)。
实际:生成物有一部分超氧化钠(NaO2)(10%左右),这才是黄色的真正来源,而纯净的过氧化钠应是白色的;若氧气不足也会生成氧化钠(Na2O)。
可以与二氧化硅反应的酸
初中:不学。
高中:氢氟酸(HF)。
实际:焦磷酸,以及许多含氟酸都可与二氧化硅反应。
HF雕刻玻璃
初中:不学。但有些题目会提到。
高中:这是正确的。
实际:只能雕刻二氧化硅玻璃,其他的不行。
氯苯的水解
初中:不学。
高中:多数材料上写不能反应。
实际:在高温高压,10%NaOH,Cu催化的条件下生成苯酚钠。
溶液颜色
初中:含Cu2+的盐显蓝色,含Fe3+的盐显黄色,含Fe2+的盐显浅绿色。
高中:含Cu2+的盐显蓝色,含Fe3+的盐浓时显棕黄色稀时显黄色。
实际:浓的CuCl2蓝显绿色,无水高氯酸溶液中Fe3+显紫色(在一些铁盐的晶体中存在未水解的水合铁离子,为紫色),生物配合物颜色复杂。
苯酚遇溴生成白色沉淀
初中:不学。
高中:生成的白色沉淀是2,4,6-三溴苯酚。
实际:溴水过量会生成2,4,4,6-四溴-2,5-环己二烯酮,加NaHSO3或苯酚过量时生成2,4,6-三溴苯酚。
氯化铝的分子式
初中:AlCl3
高中:AlCl3,其水合物为AlCl3·6H2O
实际:气态氯化铝主要呈二聚体Al2Cl6存在,固体氯化铝以聚合巨分子存在,化学式仍写为AlCl3。
硫酸铜与氯化钠溶液
初中:不反应。
高中:不学,但题目中可能提到Cu2++ 4Cl-=== [CuCl4]2-这个离子方程式。
实际:氯离子和铜离子络合,形成四氯合铜离子[CuCl4]2-
(棕黄色),又因为水中存在六水合铜离子(蓝色)的缘故,从而显绿色[黄+蓝=绿],如果氯离子过量,甚至可以显现明亮的黄色。
同样的,氯化铜显绿色,而硫酸铜显蓝色也是如此,氯化铜溶液中存在四氯合铜离子而显绿色。
较纯净的四氯合铜离子二氧化硫的结构式
初中:O=S=O
高中:O=S:→O,符合八隅体结构。
实际:含有π34大π键,具有共振式。
磷的同素异形体和化学式
初中:磷有红磷和白磷两种同素异形体,其化学式均为P。
高中:磷有红磷和白磷两种同素异形体,红磷的化学式为P,白磷的化学式为P4。
实际:磷存在红磷、白磷、黑磷、紫磷等同素异形体,而每类有若干变体,如红磷有红磷-Ⅰ到红磷-Ⅵ和褐磷等七中,黑磷有斜方黑磷、菱形黑磷、立方黑磷、无定形黑磷等4种。白磷的晶胞很大,每个晶胞含有56个P4分子;而红磷也并非原子构成,而是分子构成的单质,如红磷-V的晶胞中有84个磷原子,结构复杂。
氢氧化铁
初中:氢氧化铁的化学式为Fe(OH)3
高中:氢氧化铁的化学式为Fe(OH)3
实际:整配比的Fe(OH)3是不存在的,其存在形式为氧化铁的水合物或羟基氧化铁。
放射性元素
初中:学习核能时讲到铀、氚。
高中:氚,是最常见的H的一种放射性同位素。镭,由居里夫人发现的一种放射性元素。
实际:每一种元素其实都有放射性同位素,在日常生活中较容易接触到镅241(烟雾警报器),氚(作为夜光手表以及β灯),钍(使用硝酸钍,用于生产汽灯纱罩)。
成na[al(oh)4]四羟基合铝酸钠,而在以前则认为是
naalo2偏铝酸钠,这是怎么一回事呢
?
后来科学研究证明是四羟基合铝酸纳,属于配位化合物
实际上,偏铝酸钠在水溶液中都是以na[al(oh)4]和形式存在,以前只不过是为了方便,把它简写成naalo2。但它的实际组成还是na[al(oh)4]。
naalo2偏铝酸钠是简写
就像氢离子(h+)实际上是水合氢离子一样
这个就相当于al(oh)3*naoh
中间那个*号相当于水合物中间的那个点
我打不出来。。。
溶液中实际存在的是na[al(oh)4]。
这是一种配位化合物,如果参加化学竞赛的话会涉及到,但在高中课本中把他3简写成了naalo2。与此相类似的还有[zn(oh)4]-,[fe(oh)4]-等等
实际上是两种化合物。具有不同的组成和结构。
naalo2是存在于固态晶体中的成分,本质上可以看作离子晶体,即由阴阳离子紧密堆积形成的化合物。将氧化铝溶于熔融的烧碱中即可得到该物质。
na[al(oh)4]是出现于水溶液中的成分,也就是我们将金属铝溶解于naoh中得到的产物的真实组成。
以前的老教材中进行了不适当的简化,将二者统一用naalo2表示,是不科学的。山东科技版(圈内也称王磊版)更正了很多老教材中的讹误,有兴趣的话不妨多讨论一下。
羟基--OH,在有机物中其一般主要为醇,也就是醇羟基,其化学性质主要为与金属钠反应,与酸的酯化反应,羟基之间的脱水成醚反应,还有就是氧化成酮,醛最后成酸反应。还有一种是酚羟基,比如说苯酚,由于其受苯环影响,酚羟基较醇羟基更活泼,酚羟基一般容易被氧化。
羧基--COOH,由于其为有机酸,首先要注意的就是他有酸性。
羟基络合剂典型的羟基亚乙基二膦酸盐(HEDP),焦磷酸等
结构式:C2H8O7P2
羟基亚乙基二膦酸盐(HEDP)经常作为镀铜添加剂:镀铜工艺使用的络合剂
HEDP的结构和焦磷酸极为相似,主要的差别是两个磷酸基间连接的原子不同。由于0的电负性比C大,P-O键的极性比P-C键的大得多,因此,在高温、高pH值条件下,焦磷酸很容易遭0H一的进攻而水解成正磷酸盐。与此相反,HEDP在高温、高pH值条件下却很稳定。
HEDP可解离成5个正、负离子,可与金属离子形成六元环螯合物,尤其是在与钙离子可以形成胶囊状大分子螯合物,阻垢效果佳。HEDP的螯合物作用不是按化学当量进行,而且本身还具有一般有机多元磷酸的缓蚀、阻垢剂的通性和溶限效应。HEDP对铜离子的络合作用如下。
(一)HEDP-Cu2+络合物的形态
Cu2+在不同的pH值时与HEDP(H5L)可以形成各种形态的络合物,如[Cu(HL)]2-、[Cu(H2L)]一、[Cu(H3L)]、[Cu(H2L)2]4-、[Cu2(HL)]、[Cu2(H2L)]+、[Cu2L]-、[CuL2]8一。
根据最近的研究,在未加入K2C03的条件下,当HEDP/Cu2+=2~4、pH=9~11时,镀液中主要形成HEDP/Cu2+=2的络合物。其组成和结构可能为:[Cu(H2L)2]4-,[Cu(HL)2]6-。在这两个络合物中,Cu2+垂直轴向的两个配位位置可能被0H一或H20所占据。在阳极区因为HEDP的分子体积大,扩散速度慢,往往Cu2+的浓度大于HEDP的浓度。所以金属离子以这两种形式溶解下来的可能性比较小。因而可以形成[Cu(HL)]2-、[Cu(H2L)]一、[Cu2(HL)]和[Cu2(H2L)]+等形式的络离子。在这些络离子中,Cu2+的配位数不能为HEDP所饱和,空的配位位置将为0H一所占据,很可能形成[Cu(OH)2(HL)]4-、[Cu(OH)2(H2L)]3一形式的混合络合体络合物。它们还可以通过OH一或02一的桥联作用而形成更加复杂的多核络合物。这些长链的多核络合物常以胶粒形式分散在溶液中。
羧基与金属离子络合剂像EDTA 柠檬酸 酒石酸很常见
以EDTA为例
EDTA与金属离子形成配合物的特点
1. EDTA与金属离子形成配合物相当稳定
2. EDTA与金属离子形成配合物的摩尔比为1:1
3. EDTA与金属离子形成的配合物多数可溶于水
4. 形成配合物的颜色主要决定于金属离子的颜色
一般来说,Cu2+一HEDP的电极电位来看,HEDP的络合作用仍然较弱。不足以抑制HEDP镀铜液中钢铁件和锌压铸件表面的置换铜的产生,这也说明羟基的金属络合物不如羧基络合的金属离子稳定