苯酚酚羟基取代
不能。苯酚假如要氯代的话只能只能是苯的邻对位被取代。因为氯的取带是亲电加成。苯酚中的羟基是供电子基团,使与它相连的碳原子带负电。这样由于氯也带负电,无法进攻与羟基直接相连的碳原子。所以羟基不能被氯取代。(不懂可以再问)
苯酚上的羟基时供电子基团,能使苯酚的邻位和对位碳原子上的电子云密度,使其具有较强的亲核性,更容易与甲醛羰基上的碳发生反应(羰基上的碳在电负性更强的氧的作用下,电子云被吸到氧那边去了,使得自己的原子核容易裸露在外与亲核基团反应).生成的中间体苄基碳也在羟基的作用下裸露出较多的原子核,继续跟另外的一个苯酚发生同样的反应.这样多个苯酚就在甲醛的帮助下连在一起成了聚合物.
例如,苯酚和溴水的反应,若在酸性溶液中反应如醋酸,只生成一溴苯酚,但在碱性溶液中却生成三溴苯酚的沉淀,就是因为在碱性溶液中苯酚是以酚氧基负离子存在的,提高了亲电取代的能力。
但是夺电子效应比羧酸上羰基又弱很多,所以酸性不如羧酸。
你可以理解为苯环对直接相连含有孤对p电子的原子有夺电子效应。
而苯甲醇的羟基没有直接相连,并没有强共轭作用,反而苯甲基是供电子基团,使羟基酸性变弱。
希望对你有帮助O(∩_∩)O
你好,苯酚亲电取代反应主要发生在邻对位。用电子效应解释,即苯酚的酚羟基具有共轭给电子效应,其给电子效应对于邻对位更加有利(这一点可以用共振论解释,也可以用共轭体系正负交替解释,具体看图),因而苯酚亲电取代的定位在邻对位。
苯酚(Phenol,C6H5OH,相对分子质量94) 是一种具有特殊气味的无色针状晶体,有毒,是生产某些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料。也可用于消毒外科器械和排泄物的处理, 皮肤杀菌、止痒及中耳炎。熔点43℃,常温下微溶于水(溶解度是9.3g/100gH2O),易溶于乙醇、二乙醚有机溶剂;当温度高于65℃时,能跟水以任意比例互溶。苯酚有腐蚀性,接触后会使局部蛋白质变性,其溶液沾到皮肤上可用酒精洗涤。小部分苯酚暴露在空气中被氧气氧化为醌而呈粉红色。
苯酚分子由一个羟基直接连在苯环上构成。由于苯环的稳定性,这样的结构几乎不会转化为酮式结构。苯酚共振结构如右上图。酚羟基的氧原子采用sp杂化,提供1对孤电子与苯环的6个碳原子共同形成离域键。大π键加强了烯醇的酸性,羟基的推电子效应又加强了羟基中的单键的极性,因此苯酚中羟基的氢可以电离出来,电离出氢离子和苯酚根离子,所以,苯酚显示了一定程度的酸性,俗称石炭酸。如在一支试管中加入2-3毫升无水乙醚,取黄豆粒大小的一块金属钠,用滤纸吸干表面的煤油,放入乙醚中,可以看到钠不与乙醚发生反应。然后再向试管中加入少量苯酚,振荡,这时可观察到钠在试管中迅速反应,产生大量气体,生成了易溶于水的苯酚钠。
苯酚属于酚类物质,羟基受了苯环的影响,增大了活动性,羟基里的氢原子能电离出来,有弱酸性,能与碱反应,生成苯酚盐。但苯酚的酸性是很弱的(在水溶液中只能电离出极少量的氢离子和苯酚根离子),比碳酸还要弱,不能使石蕊试液变红,或者使BTB试液变黄。当把苯酚盐溶液通入二氧化碳时,溶液会变浑浊,生成碳酸的酸式盐和苯酚。
苯酚由于结构中有苯环,可以在环上发生类似苯的亲电取代反应,如硝化、卤代等:对比苯的相应反应可以发现,苯酚分子中苯环上的取代比苯容易得多。这是因为羟基有给电子效应,使苯环电子云密度增加。如在澄清的苯酚溶液中滴入过量的液态溴或溴水,很快就有白色沉淀三溴苯酚生成。这个反应不需要用催化剂,苯酚分子里苯环上被取代的氢原子一下子就是三个(苯与液态溴要在催化剂铁屑的作用下才能发生反应,反应中苯环上的一个氢原子被溴取代)。值得注意的是,苯酚的亲电取代总是发生在羟基的邻位和对位。这是羟基等给电子基团的共性。苯酚遇氯化铁、硫酸铁等铁盐的溶液显紫色,原因是苯酚根离子与铁离子形成了有颜色的配合物。
希望我能帮助你解疑释惑。
-C=C-X
Y为吸电子基团时,吸电子共轭效应(-C)
X为供电子基团时,供电子共轭效应(+C)
苯酚分子中氧原子上的孤对电子与苯环上的p电子形成p-p共轭,使羟基的邻、对位的碳原子带有部分的负电荷。
羧基时C=O是吸电子共轭效应,C-OH是供电子共轭效应吧,这个我也不太清楚。。。
定位效应是综合了诱导和共轭两方面的因素。-OH的诱导效应是吸电子,但共轭效应是给电子,并且给电子能力大於吸电子能力,所以是第一类定位基。单纯说吸电子给电子的话,都是在考虑诱导和共轭的综合效应,所以是给电子基。
在外加电场作用下阳极可以直接或间接产生具有强氧化活性的·OH。这种方法的特点基本无二次污染,符合环保的要求。长期以来,由于受到电极材料的限制,该法降解处理有机污染物的电流效率低,能耗大,因而较少直接应用于实际废水处理中,阳极材料的研究自然也成为主要的研究方向。
扩展资料
羟基国内外电化学法处理有机废水技术已有了很大的发展,其中不少已达到工业化应用的水平,但电化学作为一门能在净化环境中有所作为的学科,还在不断发展中。
电生·OH在有机废水处理中有其独特的特点,其应用的前景是很乐观的。但仍存在一些问题需要解决:电Fenton法的研究还不是很成熟,电流效率低,设计合理电解池的结构和寻找新型的电极材料将是研究的方向。
参考资料来源:百度百科-羟基