化学工业发展史上值得骄傲的事
自有史以来,化学工业一直是同发展生产力、保障人类社会生活必需品和应付战争等过程密不可分的。为了满足这些方面的需要,它最初是对天然物质进行简单加工以生产化学品,后来是进行深度加工和仿制,以至创造出自然界根本没有的产品。它对于历史上的产业革命和当代的新技术革命等起着重要作用,足以显示出其在国民经济中的重要地位。
古代的化学加工化学加工在形成工业之前的历史,可以从18世纪中叶追溯到远古时期,从那时起人类就能运用化学加工方法制作一些生活必需品,如制陶、酿造、染色、冶炼、制漆、造纸以及制造医药、火药和肥皂。
在中国新石器时代的洞穴中就有了残陶片。公元前50世纪左右仰韶文化时,已有红陶、灰陶、黑陶、彩陶等出现(见彩图)。在中国浙江河姆渡出土文物中,有同一时期的木胎碗,外涂朱红色生漆。商代(公元前17~前11世纪)遗址中有漆器破片。战国时代(公元前475~前221)漆器工艺已十分精美。公元前20世纪,夏禹以酒为饮料并用于祭祀。公元前25世纪,埃及用染色物包裹干尸。在公元前21世纪,中国已进入青铜时代,公元前5世纪,进入铁器时代,用冶炼之铜、铁制作武器、耕具、炊具、餐具、乐器、货币等。盐,早供食用,在公元前11世纪,周朝已设有掌盐政之官。公元前7~前6世纪,腓尼基人用山羊脂和草木灰制成肥皂。公元1世纪中国东汉时,造纸工艺已相当完善。化学工业发展史
化学工业发展史
化学工业发展史
化学工业发展史
化学工业发展史
公元前后,中国和欧洲进入炼丹术、炼金术时期。中国由于炼制长生不老药,而对医药进行研究。于秦汉时期完成的最早的药物专著《神农本草经》,载录了动、植、矿物药品365种。16世纪,李时珍的《本草纲目》总结了以前药物之大成,具有很高的学术水平。此外,7~9世纪已有关于黑火药三种成分混炼法的记载,并且在宋初时火药已作为军用。欧洲自3世纪起迷信炼金术,直至15世纪才由炼金术渐转为制药,史称15~17世纪为制药时期。在制药研究中为了配制药物,在实验室制得了一些化学品如硫酸、硝酸、盐酸和有机酸。虽未形成工业,但它导致化学品制备方法的发展,为18世纪中叶化学工业的建立,准备了条件。
早期的化学工业从18世纪中叶至20世纪初是化学工业的初级阶段。在这一阶段无机化工已初具规模,有机化工正在形成,高分子化工处于萌芽时期。
无机化工第一个典型的化工厂是在18世纪40年代于英国建立的铅室法硫酸厂。先以硫磺为原料,后以黄铁矿为原料,产品主要用以制硝酸、盐酸及药物,当时产量不大。在产业革命时期,纺织工业发展迅速。它和玻璃、肥皂等工业都大量用碱,而植物碱和天然碱供不应求。1791年N.吕布兰在法国科学院悬赏之下,获取专利,以食盐为原料建厂,制得纯碱,并且带动硫酸(原料之一)工业的发展;生产中产生的氯化氢用以制盐酸、氯气、漂白粉等为产业界所急需的物质,纯碱又可苛化为烧碱,把原料和副产品都充分利用起来,这是当时化工企业的创举;用于吸收氯化氢的填充装置,煅烧原料和半成品的旋转炉,以及浓缩、结晶、过滤等用的设备,逐渐运用于其他化工企业,为化工单元操作打下了基础。吕布兰法于20世纪初逐步被索尔维法(见纯碱)取代。19世纪末叶出现电解食盐的氯碱工业。这样,整个化学工业的基础──酸、碱的生产已初具规模。
有机化工纺织工业发展起来以后,天然染料便不能满足需要;随着钢铁工业、炼焦工业的发展,副产的煤焦油需要利用。化学家们以有机化学的成就把煤焦油分离为苯、甲苯、二甲苯、萘、蒽、菲等芳烃。1856年,英国人W.H.珀金由苯胺合成苯胺紫染料,后经过剖析确定天然茜素的结构为二羟基蒽醌,便以煤焦油中的蒽为原料,经过氧化、取代、水解、重排等反应,仿制了与天然茜素完全相同的产物。同样,制药工业、香料工业也相继合成与天然产物相同的化学品,品种日益增多。1867年,瑞典人A.B.诺贝尔发明代那迈特炸药(见工业炸药),大量用于采掘和军工。
当时有机化学品生产还有另一支柱,即乙炔化工。于1895年建立以煤与石灰石为原料,用电热法生产电石(即碳化钙)的第一个工厂,电石再经水解发生乙炔,以此为起点生产乙醛、醋酸等一系列基本有机原料。20世纪中叶石油化工发展后,电石耗能太高,大部分原有乙炔系列产品,改由乙烯为原料进行生产。
高分子材料天然橡胶受热发粘,受冷变硬。1839年美国C.固特异用硫磺及橡胶助剂加热天然橡胶,使其交联成弹性体,应用于轮胎及其他橡胶制品,用途甚广,这是高分子化工的萌芽时期。1869年,美国J.W.海厄特用樟脑增塑硝酸纤维素制成赛璐珞塑料,很有使用价值。1891年H.B.夏尔多内在法国贝桑松建成第一个硝酸纤维素人造丝厂。1909年,美国L.H.贝克兰制成酚醛树脂,俗称电木粉,为第一个热固性树脂,广泛用于电器绝缘材料。
这些萌芽产品,在品种、产量、质量等方面都远不能满足社会的要求。所以,上述基础有机化学品的生产和高分子材料生产,在建立起石油化工以后,都获得很大发展。
化学工业的大发展时期从20世纪初至战后的60~70年代,这是化学工业真正成为大规模生产的主要阶段,一些主要领域都是在这一时期形成的。合成氨和石油化工得到了发展,高分子化工进行了开发,精细化工逐渐兴起。这个时期之初,英国G.E.戴维斯和美国的A.D.利特尔等人提出单元操作的概念,奠定了化学工程的基础。它推动了生产技术的发展,无论是装置规模,或产品产量都增长很快。
合成氨工业20世纪初期异军突起,F.哈伯用物理化学的反应平衡理论,提出氮气和氢气直接合成氨的催化方法,以及原料气与产品分离后,经补充再循环的设想,C.博施进一步解决了设备问题。因而使德国能在第一次世界大战时建立第一个由氨生产硝酸的工厂,以应战争之需。合成氨原用焦炭为原料,40年代以后改为石油或天然气,使化学工业与石油工业两大部门更密切地联系起来,合理地利用原料和能量。
石油化工1920年美国用丙烯生产异丙醇,这是大规模发展石油化工的开端。1939年美国标准油公司开发了临氢催化重整过程,这成为芳烃的重要来源。1941年美国建成第一套以炼厂气为原料用管式炉裂解制乙烯的装置。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料,同时由于化工生产技术的发展,逐步形成石油化工。甚至不产石油的地区,如西欧、日本等也以原油为原料,发展石油化工。同一原料或同一产品,各化工企业却有不同的工艺路线或不同催化剂。由于基本有机原料及高分子材料单体都以石油化工为原料,所以人们以乙烯的产量作为衡量有机化工的标志。80年代,90%以上的有机化工产品,来自石油化工。例如氯乙烯、丙烯腈等,过去以电石乙炔为原料,这时改用氧氯化法以乙烯生产氯乙烯,用丙烯氨氧化(见氨化氧化)法以丙烯生产丙烯腈。1951年,以天然气为原料,用蒸汽转化法得到一氧化碳及氢,使碳一化学得到重视,目前用于生产氨、甲醇,个别地区用费托合成生产汽油。
高分子化工高分子材料在战时用于军事,战后转为民用,获得极大的发展,成为新的材料工业。作为战略物质的天然橡胶产于热带,受阻于海运,各国皆研究合成橡胶。1937年德国法本公司开发丁苯橡胶获得成功。以后各国又陆续开发了顺丁、丁基、氯丁、丁腈、异戊、乙丙等多种合成橡胶,各有不同的特性和用途。合成纤维方面,1937年美国 W.H.卡罗瑟斯成功地合成尼龙 66(见聚酰胺),用熔融法纺丝,因其有较好的强度,用作降落伞及轮胎用帘子线。以后涤纶、维尼纶、腈纶等陆续投产,也因为有石油化工为其原料保证,逐渐占有天然纤维和人造纤维大部分市场。塑料方面,继酚醛树脂后,又生产了脲醛树脂、醇酸树脂等热固性树脂。30年代后,热塑性树脂品种不断出现,如聚氯乙烯迄今仍为塑料中的大品种,聚苯乙烯为当时优异的绝缘材料,1939年高压聚乙烯用于海底电缆及雷达,低压聚乙烯、等规聚丙烯的开发成功,为民用塑料开辟广泛的用途,这是齐格勒-纳塔催化剂为高分子化工所作出的一个极大贡献。这一时期还出现耐高温、抗腐蚀的材料,如有机硅树脂、氟树脂,其中聚四氟乙烯有塑料王之称。第二次世界大战后,一些工程塑料也陆续用于汽车工业,还作为建筑材料、包装材料等,并逐渐成为塑料的大品种。
精细化工在染料方面,发明了活性染料,使染料与纤维以化学键相结合。合成纤维及其混纺织物需要新型染料,如用于涤纶的分散染料,用于腈纶的阳离子染料,用于涤棉混纺的活性分散染料。此外,还有用于激光、液晶、显微技术等特殊染料。在农药方面,40年代瑞士P.H.米勒发明第一个有机氯农药滴滴涕之后,又开发一系列有机氯、有机磷杀虫剂,后者具有胃杀、触杀、内吸等特殊作用。嗣后则要求高效低毒或无残毒的农药,如仿生合成的拟除虫菊酯类。60年代,杀菌剂、除草剂发展极快,出现了一些性能很好的品种,如吡啶类除草剂、苯并咪唑杀菌剂等。此外,还有抗生素农药(见农用抗生素),如中国1976年研制成的井冈霉素用于抗水稻纹枯病。医药方面,在1910年法国P.埃尔利希制成606砷制剂(根治梅素的特效药)后,又在结构上改进制成914,30年代的磺胺药类化合物、甾族化合物等都是从结构上改进,发挥出特效作用。1928年,英国A.弗莱明发现青霉素,开辟了抗菌素药物的新领域。以后研究成功治疗生理上疾病的药物,如治心血管病、精神病等的药物,以及避孕药。此外,还有一些专用诊断药物问世。涂料工业摆脱天然油漆的传统,改用合成树脂,如醇酸树脂、环氧树脂、丙烯酸树脂等,以适应汽车工业等高级涂饰的需要。第二次世界大战后,丁苯胶乳制成水性涂料,成为建筑涂料的大品种。采用高压无空气喷涂、静电喷涂、电泳涂装、阴极电沉积涂装、光固化等新技术(见涂料施工),可节省劳力和材料,并从而发展了相应的涂料品种。
现代化学工业20世纪60~70年代以来,化学工业各企业间竞争激烈,一方面由于对反应过程的深入了解,可以使一些传统的基本化工产品的生产装置,日趋大型化,以降低成本。与此同时,由于新技术革命的兴起,对化学工业提出了新的要求,推动了化学工业的技术进步,发展了精细化工、超纯物质、新型结构材料和功能材料。
规模大型化1963年,美国凯洛格公司设计建设第一套日产540t(即600sh.t)合成氨单系列装置,是化工生产装置大型化的标志。从70年代起,合成氨单系列生产能力已发展到日产 900~1350t,80 年代出现了日产1800~2700t合成氨的设计,其吨氨总能量消耗大幅度下降。乙烯单系列生产规模,从50年代年产50kt发展到70年代年产100~300kt,80年代初新建的乙烯装置最大生产能力达年产 680kt。由于冶金工业提供了耐高温的管材,因之毫秒裂解炉得以实现,从而提高了烯烃收率,降低了能耗。其他化工生产装置如硫酸、烧碱、基本有机原料、合成材料等均向大型化发展。这样,减少了对环境的污染,提高了长期运行的可靠性,促进了安全、环保的预测和防护技术的迅速发展。
信息技术用化学品60年代以来,大规模集成电路和电子工业迅速发展,所需电子计算机的器件材料和信息记录材料得到发展。60年代以后,多晶硅和单晶硅的产量以每年20%的速度增长。80年代周期表中Ⅲ~V族的二元化合物已用于电子器件。随着半导体器件的发展,气态源如磷化氢 (PH3)等日趋重要。在大规模集成电路制备过程中,需用多种超纯气体,其杂质含量小于1ppm,对水分及尘埃含量也有严格要求。大规模集成电路的另一种基材为光刻胶,其质量和稳定性直接影响其集成度和成品率。此外,对基质材料、密封材料、焊剂等也有严格要求。1963年,荷兰菲利浦公司研制盒式录音磁带成功后,日益普及。它不仅用于音频记录、视频记录等,更重要的是用于计算器作为外存储器及内存储器,有磁带、磁盘、磁鼓、磁泡、磁卡等多种类型。光导纤维为重要的信息材料,不仅用于光纤通信,且在工业上、医疗上作为内窥镜材料。
高性能合成材料60年代已开始用聚酰胺(俗称尼龙)、聚缩醛类(如聚甲醛)、聚碳酸酯,以及丙烯腈-丁二烯-苯乙烯三元共聚物 (ABS树脂)等为结构材料。它们具有高强度、耐冲击、耐磨、抗化学腐蚀、耐热性好、电性能优良等特点,并且自重轻、易成型,广泛用于汽车、电器、建筑材料、包装等方面。60年代以后,又出现聚砜、聚酯、聚苯醚、聚苯硫醚等。尤其是聚酰亚胺为耐高温、耐高真空、自润滑材料,可用于航天器。其纤维可做航天服以抗辐射。聚苯并噻唑和聚苯并咪唑为耐高温树脂,耐热性高,可作烧蚀材料,用于火箭。共聚、共混和复合使结构材料改性,例如多元醇预聚物与己内酰胺经催化反应注射成型,为尼龙聚醚嵌段共聚物,具有高冲击强度和耐热性能,用于农业和建筑机械。另一种是以纤维增强树脂的高分子复合材料。所用树脂主要为环氧树脂、不饱和聚酯、聚酰胺、聚酰亚胺等。所用增强材料为玻璃纤维、芳香族聚酰胺纤维或碳纤维(常用丙烯腈基或沥青基)。这些复合材料比重轻、比强高、韧性好,特别适用于航天、航空及其他交通运输工具的结构件,以代替金属,节省能量。有机硅树脂和含氟材料也发展迅速,由于它们具有突出的耐高低温性能、优良电性能、耐老化、耐辐射,广泛用于电子与电器工业、原子能工业和航天工业。又由于它们具有生理相容性,可作人造器官和生物医疗器材。
能源材料和节能材料50年代原子能工业开始发展,要求化工企业生产重水、吸收中子材料和传热材料以满足需要。航天事业需要高能推进剂。固体推进剂由胶粘剂、增塑剂、氧化剂和添加剂所组成。液体高能燃料有液氢、煤油、偏二甲肼、无水肼等,氧化剂有液氧、发烟硝酸、四氧化二氮。这些产品都有严格的性能要求,已形成一个专门的生产行业。为了满足节能和环保的要求,1960年美国试制成可以实用的醋酸纤维素膜,以淡化海水、处理工业污水,以后又扩展用于医药、食品工业。但这种膜易于生物降解,也易水解,使用寿命短。1970年,开发了芳香族聚酰胺反渗透膜,它能够抗生物降解,但不能抗游离氯。1977年,改进后的反渗透复合膜用于海水淡化,每立方米淡水仅耗电23.7~28.4MJ。此外,还开发了电渗析和超过滤用膜等。聚砜中空纤维气体分离膜,用于合成氨尾气的氢氮分离及其他多种气体分离。这种膜分离技术比其他工业分离方法可以节能。精细陶瓷以其硬度见长,用作切削工具。1971年,美国福特汽车公司及威斯汀豪斯电气公司以β-氮化硅 (β-Si3N4)为燃汽透平的结构材料,运行温度曾高达1370℃,提高功效,节省燃料,减少污染,为良好的节能材料,但经10年试验,仍存在不少问题,尚须进一步改进。现主要用作陶瓷发动机、透平叶片、导电陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化铝(Al2O3)、氧化锆(ZrO2)等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si3N4)等。80年代,为改进陶瓷的脆性,又在开发硅碳纤维增强陶瓷。
专用化学品得到进一步发展,它以很少的用量增进或赋予另一产品以特定功能,获得很高的使用价值。例如食品和饲料添加剂,塑料和橡胶助剂,皮革、造纸、油田等专用化学品,以及胶粘剂、防氧化剂、表面活性剂、水处理剂、催化剂等。以催化剂而言,由于电子显微镜、电子能谱仪等现代化仪器的发展,有助于了解催化机理,因而制备成各种专用催化剂,标志催化剂进入了新阶段。
什么原因造成白细胞偏低
什么原因造成白细胞偏低。白细胞减少是由于多种原因造成的,通常指每微升少于4000个。主要可以分为原发性和继发性两种。原发性的原因尚不明确,一般考虑为遗传因素较多。下面看看什么原因造成白细胞偏低及相关资料。
什么原因造成白细胞偏低1白细胞偏低的主要原因有以下几种:
一、原发性因素:
原发性白细胞减低通常原因不明。
二:继发性因素:
如急性感染、物理化学因素、血液系统疾病、脾肿大疾病、结缔组织病、过敏性疾病和遗传性疾病,还有获得性或原因不明性的粒细胞减少等。
1、药物因素:引起白细胞减少药物较多,主要为抗癌药、氯霉素、磺胺、止痛药等。治疗甲亢的药物和治疗糖尿病的药物,也都可引起白细胞减少;
2、感染性因素:诸多感染性疾病都都引起白细胞减少,如病毒感染、支原体肺炎或粟粒性肺结核等;
3、血液系统因素:急性白血病、恶性淋巴瘤、脾功能亢进以及再生障碍性贫血等;
4、放射线因素:比如接触X线、钴-60等,都可使白细胞减低;
5、其他因素:结缔组织病、系统性红斑狼疮和肝硬化,以及伴有脾大和脾功能亢进者,也可引起白细胞减低。
白细胞减少,是指周围血液中的白细胞数目低于40×10^9/L。
白细胞减少原因:
1、化学因素。应用氯霉素、磺胺类、非固醇类抗炎药及抗甲状腺药物,可引起白细胞减少,苯、二甲苯、化学油漆等物质,也可引起白细胞减少。
2、感染因素。比如某些细菌、病毒、立克次体、原虫感染。
3、物理因素。比如X线和同位素损伤等。
4、骨髓病变。比如再生障碍性贫血、MDS、恶组、白血病、淋巴瘤、骨髓转移瘤、骨髓纤维化等。
5、超过骨髓代偿能力。如脾亢、自身免疫性疾病、血液透析等。
6、还有一些不明原因的白细胞减少。这些均可以导致白细胞减少,如果白细胞的数量急剧减少,需要临床上应用相关药物,进行补充白细胞。
什么原因造成白细胞偏低2白细胞偏低的原因一般常见有以下几个方面:
1、疾病因素:最常见的就是感染,感染当中病毒感染可以引起白细胞降低,同时以淋巴和单核细胞增高为主,除了病毒感染以外,原虫感染例如疟疾或者是黑热病,这些感染也可以引起白细胞降低;
2、自身免疫性疾病:例如系统性红斑狼疮或者是干燥综合征,也可以引起白细胞减低,还有一部分可能是由于甲状腺疾病,导致白细胞减低;
3、血液系统疾病:例如血液系统疾病当中的再生障碍性贫血、急性白血病或者是巨幼红细胞性贫血、先天性的粒细胞缺乏等等;
4、其他因素:药物因素,比如抗肿瘤药物或者是经常接触放射性的`物质,也可以引起白细胞偏低。
白细胞偏低的原因有以下几种:
1、感染:特别是革兰阴性杆菌感染,如伤寒、副伤寒杆菌感染时,白细胞总数与中性粒细胞均减少。某些病毒感染,如流感、病毒性肝炎、水痘、风疹、巨细胞病毒感染等导致白细胞异常减低;
2、血液系统疾病:如再生障碍性贫血、恶性组织细胞病、巨幼细胞贫血、严重缺铁性贫血、骨髓转移癌等,白细胞减少同时常伴血小板及红细胞减少;
3、物理、化学因素损伤:X线、γ射线、放射性核素等物理因素,化学物质如苯、铅、汞,化学药物如氯霉素、磺胺类药、抗肿瘤药、抗糖尿病和抗甲状腺药物,均可引起白细胞及中性粒细胞减少;
4、单核-吞噬细胞系统功能亢进:各种原因引起的脾脏肿大及功能亢进,如门脉性肝硬化、淋巴瘤,常见白细胞及中性粒细胞减少;
5、自身免疫性疾病:如系统性红斑狼疮等,产生自身抗体,从而导致白细胞减少。
一、药物引起。如果正在服用一些解热镇痛类的药物,还有磺胺类药物等,白细胞会有明显减少。如果出现这种情况,需立即停止服用此类药物,或者换成其它药物;
二、病毒感染。人在患流感时就会容易白细胞减少,因为流感一般是由病毒引发。还有人体如果有一些其它的病毒感染,也会导致白细胞减少。所以在这个时候,积极地做抗病毒治疗是必不可少的,如果白细胞减少太多,则应根据不同情况服用一些能够使白细胞增加的药物;
三、患有免疫系统疾病。人体如果本身患有一些免疫系统疾病,也会引起白细胞减少,像类风湿性关节炎等。
什么原因造成白细胞偏低3第一、病毒感染
当我们身体患上流行性感冒或病毒性感染,以及病毒性肠炎等的时候,会导致身体白细胞减少,所以白细胞偏低这种情况比较容易出现,这也是最为常见的引发白细胞减少的一个因素。很多人在感冒的时候,抽血化验会发现白细胞有所减少,就是因为病毒感染所引发的。
第二、服用药物
有的人正在服用一些抗生素或对抗肿瘤的药物,体内的白细胞数量也会有所减少,因为一些药物会对人体的白细胞和血小板等造成一定的影响。因此,在服用某些药物的过程中,还应该注意定期检查白细胞和血小板的状况,如果白细胞明显偏低,应该立刻停用这种药物或更换其他的药物。
第三、患上免疫系统疾病
如果人体患上了免疫系统疾病,所以体内的白细胞也会出现不同数量的减少,比如类风湿性关节炎这种疾病就可能会导致白细胞减少。另外,还有系统性红斑狼疮、硬皮病等多种疾病,也都会对人体的白细胞数量造成不良的影响。
白细胞之所以会减少,主要和上面介绍的这三个方面原因,有非常密切的关系。白细胞减少的具体数量不一样,说明病情的轻重程度不同。还提醒大家应该注意采取相应的办法进行缓解改善,白细胞如果持续减少不进行治疗的话,人体可能会出现严重的伤害。
如果因为各种原因导致它离开了母亲,必须人为饲养的话,建议可以给它喝羊奶粉,配合幼犬的奶糕粮,一般就可以很好的养活一个月的小狗了。
一个月左右的小狗牙齿基本上也长出来了,可以自己开始吃狗粮了,吃的方面要特别注意,少食多餐,可以羊奶粉泡奶糕粮,基本就能满足小狗的营养需求了,注意羊奶粉不要开水泡,奶糕要现泡现喂,不要泡一次吃很久,其它零食尽量不给小狗吃。
(1)磺胺噻唑
抗菌力强,由于乙酰化物溶解度低,副作用较多,排泄快,但由于价廉,临床上仍旧广泛使用。
(2)磺胺嘧啶
抗菌力强,排泄慢,血中有效浓度高而维持时间长,易透入脑脊液,适用于脑膜炎等疾病,但因溶解度低,应注意对肾脏的损害作用。
(3)磺胺二甲基嘧啶
抗菌作用和疗效较磺胺嘧啶稍差,但对某些立克次氏体和原虫(如球虫)有抑制作用,对肾脏损害作用小,在家畜中维持有效血浓度达24小时。
(4)磺胺甲氧嗪
又名长效磺胺,一天用一次,抗菌作用和疗效比较好,但副作用大。
(5)磺胺脒
内服后约有30%~50%吸收,但达不到有效浓度,而肠道浓度高。
【注音】: bi ding
吡啶解释
【意思】:(bǐdìng)有机化合物,无色液体,有臭味。可做溶剂和化学试药。[英Pyridine]
吡啶造句
吡啶造句:
1、除ATP外,由这些自养生物进行的CO2固定,需要还原的吡啶核苷酸。
2、研究人员发现,服用雷公藤提取物的患者与服用硫氮磺胺吡啶的患者相比较,其疼痛、肿胀及其它症状有更明显的好转。
3、六个月后,服用雷公藤的患者中有65%的人症状至少有20%的好转,而服用硫氮磺胺吡啶的患者中只有33%的患者症状有所好转。
4、在最初的滴定溶液里,已知的是卡尔费休试剂,二氧化硫和碘溶解在吡啶和甲醇中。
5、在有机和药物化学中,吡啶系是非常重要的。
6、当一个有机分子如电子给予体吡啶吸附在表面上时,阳离子由于电子转移而还原。
7、本文用吡啶催化2,4-甲苯二异氰酸酯(TDI)和腰果酚甲醛树脂的共聚及交联反应,并对影响反应的因素进行了探讨。
8、介绍吡啶、吡啶衍生物的性质及以其为原料合成部分农药、医药、重要有机原料的方法。
9、醛氨缩合反应是制备烷基吡啶最具代表性的反应路线之一。
10、采用积分反应器,研究了吡啶氯化反应中催化剂失活动力学。
11、并用此膨胀仪测定了甲苯-吡啶体系的过量体积。
12、利用液-固相平衡装置,测定了蒽和咔唑分别在DMF、吡啶、苯和甲苯中的溶解度并作出溶解度曲线。
13、综述了烷基吡啶合成的进展,并对其在医药、农药、香料、工业生产方面的应用前景做了介绍。
14、研究了银膜表面由于吸附吡啶分子而引起的表面二次谐波信号变化。
15、给出了吡啶团簇的稳定结构和簇内的质子转移过程。
16、双亚胺吡啶配体的合成。
17、利用飞秒激光和飞行时间质谱结合从头计算对吡啶团簇的多光子电离和离解进行了研究。
18、研究了甲苯为溶剂,吡啶为催化剂,豆甾醇与琥珀酸酐的'酯化反应工艺和反应动力学。
19、吡啶碱广泛应用于合成医药、农药、香料、橡胶和染料。
20、由此研究了五聚体与吡啶的摩尔比与产物的结构的关系。
21、本工作定量测定了2-乙烯基吡啶-甲基丙烯酸甲酯-铑络合物的烯烃催化加氢性能与共聚物配体序列结构的关系。
22、考察了格氏试剂的溶剂、反应物盐酸吡啶和三溴化硼对脱甲氧基收率的影响。
23、吡咯、咪唑、呋喃为可降解有机物,吡啶为难降解有机物。
24、将银纳米粒子组装在用聚乙烯吡啶(PVP)修饰的玻璃表面,形成二维亚单层结构。
25、随着异喹啉等分子的吡啶环负净电荷的增大,缓蚀效率增高。
26、本文利用密度泛函方法计算了吡啶和水分子分别吸附于粗糙银电极表面的拉曼光谱强度。
27、以2-吡啶甲酸铬配合物饲喂猪的试验表明,它是一种很有效的饲料添加剂。
28、目的研究人白蛋白与3氨甲基吡啶(潜在的亲和配体)之间的相互作用规律。
29、用振动模式分析和电子布居分析研究了所有的反应通道以揭示其反应机理,表明该反应的主要产物为3,-4吡啶炔、HCN和丁二炔。
30、本论文主要研究了以四氢糠醇为原料合成吡啶的工艺。
主要症状为腹痛,还可伴有恶心呕吐等症状
儿童可能与肠道功能不成熟有关;成人则与腹部受凉、肠道炎症等有关
症状不严重者可通过休息或局部热敷缓解;严重者可采用药物治疗等治疗方法
一般治疗
休息:肠痉挛症状不严重时可先进行休息。
局部一般治疗:同时可使用热水袋热敷腹部,或局部涂抹清凉油等外用药物,可有效缓解腹痛的症状。
调节饮食
哺乳妇女不食用牛奶、奶制品、鱼和蛋等。
人工喂养给予豆奶或水解酪蛋白的奶粉,能明显改善婴儿肠痉挛。
药物治疗
解痉药
药物作用:解痉药可以阻断平滑肌的毒蕈碱型受体,并且可直接作用于平滑肌,解除肠道平滑肌痉挛。
常用药物:匹维溴铵等。
注意事项:对匹维溴铵过敏、儿童及妊娠期妇女需要禁用;食管、胃及十二指肠溃疡的患者,以及哺乳期妇女需要慎用。
促进肠道气体排出药
药物作用:通过改变气泡表面张力,使气泡融合或弥散,促进气体排出,减少疼痛症状。
常用药物:二甲基硅油、活性炭、α-半乳糖苷酶等。
注意事项:促进肠道气体排出药一般无不良反应。
治疗便秘药物
药物作用:润滑并刺激肠壁,软化大便,使大便易于排出,缓解便秘症状。
常用药物:开塞露等外用药物,以及乳果糖等。
注意事项:乳果糖使用前需要判断是否存在肠道梗阻,如有则不可使用。
驱虫药物
药物作用:驱虫药物可以有效杀死寄生虫。
常用药物:驱虫网(四咪唑),驱虫清液(左旋咪唑),乙酰磺胺(甲苯达唑)和肠溶衣清液(阿苯达唑)。
注意事项:2岁以下的婴幼儿不能吃驱虫药,因为此时肝功能发育还不完全,吃驱虫药会影响肝功能,对肝造成损害。
微生物的生理生化特点
超级机遇家
TA获得超过1207个赞
关注
成为第9位粉丝
微生物的特点与作用
三,微生物的生物学特点与作用
微生物除具有生物的共性外,也有其独特的特点,正因为其具有这些特点,才使得这样微不可见的生物类群引起人们的高度重视.
(一)种类繁多,分布广泛
(二)生长繁殖快,代谢能力强
(三)遗传稳定性差,容易发生变异
(一)种类繁多,分布广泛
种类极其繁多——已发现的微生物达10万种以上,新种不断发现.
分布非常广泛——可以说微生物无处不有,无处不在.
极端环境:冰川,温泉,火山口等极端环境
土 壤:土壤是微生物的大本营,一克沃土中含菌量高达几亿甚至几十亿
空 气:空气中也含有大量微生物,越是人员聚集的公共场所,微生物含量越高
水:水中以江,湖,河,海中含量高,井水次之
动植物体表及某些内部器官:如皮肤及消化道等.
微生物的多样性已在全球范围内对人类产生巨大影响.
土壤中微生物的种类繁多,几乎所有的微生物都能从土壤中分离筛选得到,要分离筛选某中微生物,多数情况都是从土壤采取样品.
首先微生物为人类创造了巨大的物质财富,目前所使用的抗生素药物,绝大多数是微生物发酵产生的,以微生物为劳动者的发酵工业,为工,农,医等领域提供各种产品.
另外微生物也为人类带来巨大危害,如疫病的传播,并且引起疫病传播的新微生物种类总不断出现.
(二)生长繁殖快,代谢能力强
大肠杆菌(Escherichia coli)在适宜的条件下,每20分钟即繁殖一代,24小时即可繁殖72代,由一个菌细胞可繁殖到47×1022个,如果将这些新生菌体排列起来,可绕地球一周有余
生理基础:因为微生物的代谢能力很强, 由于微生物个体微小,单位体积的表面积相对很大,有利于细胞内外的物质交换,细胞内的代谢反应较快.
极大的物质资源:正因为微生物具有生长快,代谢能力强的特点,才使得微生物能够成为发酵工业的产业大军,在工,农,医等战线上发挥巨大作用
在物质转化中的作用:如果没有微生物,自古以来的动,植物尸体不能分解腐烂,早已是动,植物尸体堆积如山,布满全球.
(三)遗传稳定性差,容易发生变异
微生物个体微小,对外界环境很敏感,抗逆性较差,很容易受到各种不良外界环境的影响另外,微生物的结构简单,缺乏免疫监控系统, 很容易变异.
微生物的遗传不稳定性,是相对高等生物而言的,实际上在自然条件下,微生物的自发突变频率为10-6左右.
微生物的遗传稳定性差,给微生物菌种保藏工作带来一定不便.
另一方面,正因为微生物的遗传稳定性差,其遗传的保守性低,使得微生物菌种培育相对容易得多.通过育种工作,可大幅度地提高菌种的生产性能,其产量性状提高幅度是高等动,植物所难以实现的.
微生物学及其分支学科
一,微生物学及其研究对象
二,微生物学的分支学科
一,微生物学及其研究对象
微生物学概念:概括地讲,微生物学(Microbiology)是研究微生物及其生命活动规律的学科.
研究对象:研究的主要内容涉及微生物的形态结构,营养特点,生理生化,生长繁殖,遗传变异,分类鉴定,生态分布以及微生物在工业,农业,医疗卫生,环境保护等各方面的应用.研究微生物及其生命活动规律之目的在于充分利用有益微生物,控制有害微生物,使这些微小生物更好地贡献于人类文明.
二,微生物学的分支学科
(一)根据基础理论研究内容不同,形成的分支学科
微生物生理学(Microbiol Physiology)
微生物遗传学(Microbiol Genetics)
微生物生物化学(Microbiol Biochemistry)
微生物分类学(Microbiol Taxonomy)
微生物生态学等(Microbiol Ecology).
(二)根据微生物类群不同,形成的分支学科
细菌学(Bacteriology)
病毒学(Virology)
真菌学(Fungi)
放线菌学(Actinomycetes)等.
(三)根据微生物的应用领域不同,形成的分支学科
工业微生物学(Intustrial Microbiology)
农业微生物学(Agricultural Microbiology)
医学微生物学(Medical Microbiology)
药用微生物学(Patherological Microbiology)
食品微生物学(Food Microbiology)
兽医微生物学(Viterinary Microbiology)等.
(四)根据微生物的生态环境不同,形成的分支学科
土壤微生物学(Soil Microbiology)
海洋微生物学(Marine Microbiology)等.
第三节 食品微生物学及其研究内容
食品微生物学:食品微生物学是专门研究与食品有关的微生物的种类,特点及其在一定条件下与食品工业关系的一门学科.
尽管人类对食品微生物研究的历史很长,但作为微生物学的一门独立的分支学科——食品微生物学,其仍属一门新兴学科.尤其在我国,人们对食品科学的重视仅是改革开放以来,人们解决了温饱问题之后的事情食品微生物学是随着食品科学的发展而产生的一个重要的学科.
食品微生物研究的主要内容包括三个方面:
一,在食品工业中有益的微生物及其应用
二,在食品保藏过程中引起食品变质的微生物及其控制
三,与食品卫生有关的微生物.
第四节 微生物学的发展简史
我们把这个过程分成以下四个阶段加以阐述.
一,微生物学的史前时期
二,微生物的发现与微生物学的启蒙时期
三,微生物学的形成时期
四,微生物学的发展时期
一,微生物学的史前时期
盲目应用时期.
人类已经在很多方面利用了微生物,世界各国人民在自己的生产实践中都积累了很多利用有益微生物和防治有害微生物的经验.北魏的贾思勰《齐民要术》一书中,就详细记载了制醋的方法.我国古代劳动人民就利用了盐腌,糖渍,烟熏,风干等.
二,微生物发现与微生物学启蒙时期
十七世纪,荷兰人吕文虎克(Antony van Leeuwenhock)发明了第一台简易显微镜(200~300倍).
于1669年出版了《安东.列文虎克所发现的自然界秘密》.
随后在近200年的时期,随着显微镜的不断改进,分辨率的提高,人们对微生物的认识由粗略的形态描述逐步发展到对微生物进行详细的观察和根据形态进行分类研究,形成了启蒙的微生物学.
三,微生物学的形成时期
由研究微生物形态的启蒙时期到对微生物的生理生化水平研究时期.
巴斯德(Louis Pasteur, 1822~1895)通过对酒曲的研究,证明了酒曲发酵是其中的酵母菌代谢作用,这一研究结果把对微生物的研究由形态转向生理生化研究水平,为微生物学的形成和发展奠定了基础.巴斯德还通过大量实验证明了食品的腐败变质是遭受微生物污染后,微生物生长繁殖而引起的,从根本上否定了"微生物自然发生说".
微生物学的另一位奠基人是一位德国医生柯赫(Robert Koch, 1843~1910),他为疾病的病原学说建立了基础.
首先从患病动物的病变脏器中分离纯化得到病原菌,通过将病原菌接种回到动物体内,能引起相同症状的疾病,证明了传染病是由某些特定的病原菌传播的.
由于巴斯德和柯赫对微生物学的形成作出了极大的贡献,普遍认为,他们两位是微生物学的奠基人.
四,微生物学的发展时期
本世纪是微生物学的全面发展时期:
细胞的结构与功能,细菌的代谢等
微生物在工农业生产上发挥巨大作用
微生物成为生物学研究的主要研究材料
50年代DNA双螺旋解密后,微生物又成了分子生物学的主要研究材料.微生物学,遗传学和生物化学的相互渗透与作用导致了现代分子遗传学的诞生与发展
进入70年代,在微生物的研究基础上,导致了DNA重组技术和基因工程的发展.
微生物常规鉴定技术
一、形态结构和培养特性观察
1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。
2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同一种的细菌在一定条件下,培养特征却有一定稳定性。,以此可以对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的一项重要内容。
1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性还是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。(图3-8)
图3-8 细菌的培养特征
1.点状 2.圆形 3.丝状 4.不规则形 5.假根状 6.纺锤状 7.扁平 8.隆起 9.凸起 10.垫状 11.脐状 12.边缘整齐 13.波状 14.裂片状 15.啮蚀状 16.丝状 17.卷发状 18.丝线状 19.刺毛状 20.串珠状 21.疏展状 22.树根状 23.假根状 24.丝状 25.串珠状 26.乳头状 27.绒毛状 28.树根状 29.量杯状 30.萝卜状 31.漏斗状 32.囊状 33.层状 34.絮状 35.环状 36.蹼状 37.膜状
2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。
二、生理生化试验
微生物生化反应是指用化学反应来测定微生物的代谢产物,生化反应常用来鉴别一些在形态和其它方面不易区别的微生物。因此微生物生化反应是微生物分类鉴定中的重要依据之一。
微生物检验中常用的生化反应有:
1、糖酵解试验
不同微生物分解利用糖类的能力有很大差异,或能利用或不能利用,能利用者,或产气或不产气。可用指示剂及发酵管检验。
试验方法:以无菌操作,用接种针或环移取纯培养物少许,接种于发酵液体培养基管,若为半固体培养基,则用接种针作穿刺接种。接种后,置36±1.0°C培养,每天观察结果,检视培养基颜色有无改变(产酸),小倒管中有无气泡,微小气泡亦为产气阳性,若为半固体培养基,则检视沿穿刺线和管壁及管底有无微小气泡,有时还可看出接种菌有无动力,若有动力、培养物可呈弥散生长。
本试验主要是检查细菌对各种糖、醇和糖苷等的发酵能力,从而进行各种细菌的鉴别,因而每次试验,常需同时接种多管。一般常用的指示剂为酚红、溴甲酚紫,溴百里蓝和An-drade指示剂。
2、淀粉水解试验
某些细菌可以产生分解淀粉的酶,把淀粉水解为麦芽糖或葡萄糖。淀粉水解后,遇碘不再变蓝色。
试验方法:以18~24h的纯培养物,涂布接种于淀粉琼脂斜面或平板(一个平板可分区接种,试验数种培养物)或直接移种于淀粉肉汤中,于36±1°C培养24~48h,或于20°培养5天。然后将碘试剂直接滴浸于培养表面,若为液体培养物,则加数滴碘试剂于试管中。立即检视结果,阳性反应(淀粉被分解)为琼脂培养基呈深蓝色、菌落或培养物周围出现无色透明环、或肉汤颜色无变化。阴性反应则无透明环或肉汤呈深蓝色。
淀粉水解系逐步进行的过程,因而试验结果与菌种产生淀粉酶的能力、培养时间,培养基含有淀粉量和pH等均有一定关系。培养基pH必须为中性或微酸性,以pH7.2最适。淀粉琼脂平板不宜保存于冰箱,因而以临用时制备为妥。
3、V-P试验
某些细菌在葡萄糖蛋白胨水培养基中能分解葡萄糖产生丙酮酸,丙酮酸缩合,脱羧成乙酰甲基甲醇,后者在强碱环境下,被空气中氧氧化为二乙酰,二乙酰与蛋白胨中的胍基生成红色化合物,称V-P(+)反应。
试验方法:
1)O’Meara氏法:将试验菌接种于通用培养基,于36±1°C培养48h,培养液1ml加O’Meara试剂(加有0.3%肌酸Creatine或肌酸酐Creatinine的40%氢氧化钠水溶液)1ml,摇动试管1~2min,静置于室温或36±1°C恒温箱,若4h内不呈现伊红、即判定为阴性。亦有主张在48~50°C水浴放置2h后判定结果者。
2)Barritt氏法:将试验菌接种于通用培养基,于36±1°C培养4天、培养液2.5ml先加入5°Cα萘酚(2-na-phthol)纯酒精溶液0.6ml,再加40%氢氧化钾水溶液0.2ml,摇动2~5min,阳性菌常立即呈现红色,若无红色出现,静置于室温或36±1°C恒温箱,如2h内仍不显现红色、可判定为阴性。
3)快速法:将0.5%肌酸溶液2滴放于小试管中、挑取产酸反应的三糖铁琼脂斜面培养物一接种环,乳化接种于其中,加入5%α-萘酚3滴,40%氢氧化钠水溶液2滴,振动后放置5min,判定结果。不产酸的培养物不能使用。
本试验一般用于肠杆菌科各菌属的鉴别。在用于芽胞杆菌和葡萄球菌等其它细菌时,通用培养基中的磷酸盐可阻碍乙酰甲基醇的产生,故应省去或以氯化钠代替。
4、甲基红(Methyl Red)试验
肠杆菌科各菌属都能发酵葡萄糖,在分解葡萄糖过程中产生丙酮酸,进一步分解中,由于糖代谢的途径不同,可产生乳酸,琥珀酸、醋酸和甲酸等大量酸性产物,可使培养基PH值下降至pH4.5以下,使甲基红指示剂变红。
试验方法:挑取新的待试纯培养物少许,接种于通用培养基,培养于36±1°C或30°C(以30°C较好)3~5天,从第二天起,每日取培养液1ml,加甲基红指示剂1~2滴,阳性呈鲜红色,弱阳性呈淡红色,阴性为黄色。迄至发现阳性或至第5天仍为阴性、即可判定结果。
甲基红为酸性指示剂,pH范围为4.4~6.0,其pK值为5.0。故在pH5.0以下,随酸度而增强黄色,在pH5.0以上,则随碱度而增强黄色,在pH5.0或上下接近时,可能变色不够明显,此时应延长培养时间,重复试验。
5、靛基质(Imdole)试验
某些细菌能分解蛋白胨中的色氨酸,生成吲哚。吲哚的存在可用显色反应表现出来。吲哚与对二甲基氨基苯醛结合,形成玫瑰吲哚,为红色化合物。
试验方法:将待试纯培养物小量接种于试验培养基管,于36±1C培养24h时后,取约2ml培养液,加入Kovacs氏试剂2~3滴,轻摇试管,呈红色为阳性,或先加少量乙醚或二甲苯,摇动试管以提取和浓缩靛基质,待其浮于培养液表面后,再沿试管壁徐缓加入Kovacs氏试剂数滴,在接触面呈红色,即为阳性。
实验证明靛基质试剂可与17种不的靛基质化合物作用而产生阳性反应,若先用二甲苯或乙醚等进行提取,再加试剂,则只有靛基质或5-甲基靛基质在溶剂中呈现红色,因而结果更为可靠。
6、硝酸盐(Nitrate)还原试验
有些细菌具有还原硝酸盐的能力,可将硝酸盐还原为亚硝酸盐、氨或氮气等。亚硝酸盐的存在可用硝酸试剂检验。
试验方法:临试前将试剂的A(磺胺酸冰醋酸溶液)和B(α-萘胺乙醇溶液)试液各0.2ml等量混合、取混合试剂约0.1ml、加于液体培养物或琼脂斜面培养物表面,立即或于10min内呈现红色即为试验阳性,若无红色出现则为阴性。
用α-萘胺进行试验时,阳性红色消退很快、故加入后应立即判定结果。进行试验时必须有未接种的培养基管作为阴性对照。α-萘胺具有致癌性、故使用时应加注意
甲苯磺酸索拉非尼片是一种治疗肿瘤的口服药物,能用于治疗无法手术或远处转移的肝细胞癌,也可以治疗不能手术的肾肿瘤细胞。它还能用于对放射性碘不再有效的局部复发或转移性、逐步分化型甲状腺患者。部分患者服用甲苯磺酸索拉非尼片可能会出现白细胞减少、中性粒细胞减少、贫血、血小板减少、畏食、抑郁、外周感觉神经病变、耳鸣、声嘶、便秘、口腔炎(包括口干和舌痛)、消化不良等副作用。
看完上面的内容大家应该对甲苯磺酸索拉非尼片有了一定的了解,那吃甲苯磺酸索拉非尼片会影响中性粒细胞绝对值吗?
我们先来看看中性粒细胞绝对值是什么。
中性粒细胞绝对值是指白细胞计数中中性粒细胞数的含量。细菌感染、病毒性感冒、急性出血、恶性肿瘤、白血病等因素都会影响到中性粒细胞绝对值。而且患者服用抗癌药、氯霉素、磺胺类消炎药止痛片等药物也有可能会影响到中性粒细胞绝对值。甲苯磺酸索拉非尼片是抗癌药物,它可能会引起中性粒细胞减少的副作用,所以吃它是有可能会影响到中性粒细胞绝对值的。不过每个人的病情和体质都不一样,也不一定就影响到,最好去医院检查一下咨询主治医生。
吃甲苯磺酸索拉非尼片会影响中性粒细胞绝对值吗的内容到这就讲完了。患者若是服用药品期间出现了不适的反应,可以去医院复诊,咨询主治医生,避免药物的不良反应对身体造成伤害。
1磺胺药分类
可分为三类:
1.全身感染用磺胺 本类药物口服后均可吸收,但其血药浓度持续时间不同。按其t1/2可分为短效磺胺(t1/2约6小时)、中效磺胺(t1/2接近12小时)和长效磺胺(t1/2超过24小时)三类。目前临床上应用的主要是中效磺胺,常用磺胺甲[font\98t_1.gif]■唑(SMZ)和磺胺嘧啶(SD)两种。其他均已少用。
2.肠道磺胺 本类磺胺口服后吸收甚少,主要在肠道中起制菌作用,有磺胺眯(SG)、琥磺噻唑(SST)、酞磺噻唑(PST)、酞磺醋胺(息拉米,PSA)等。
3.外用磺胺 主要有磺胺醋酰钠(SA:SC-Na)、甲磺灭脓(SML)、磺胺嘧啶银(SD-Ag)等。
2磺胺药结构
一类具有抑菌活性的化学合成药,为对氨基苯磺酰胺(简称磺胺)的衍生物:
磺胺药
式中R′一般为氢,个别产品为酞酰基或丁二酸单酰基R″通常为杂环基,如噻唑、嘧啶、吡嗪、哒嗪、?唑和异?唑等。磺胺药对细菌主要是抑制其繁殖,一般无杀菌作用。
3作用机理
磺胺药结构与对氨基苯甲酸相似,当前者浓度在体内远大于后者时,可在二氢叶酸合成中取代对氨基苯甲酸,阻断二氢叶酸的合成。这导致微生物的叶酸合成受阻,生命不能延续。
4历史沿革
磺胺(即通式中R′、R″皆为H)早在 1908年就作为偶氮染料(见染料)的中间体合成出来。1932年,德国科学家K.米奇合成了红色偶氮化合物百浪多息;1932~1935年,G.多马克发现它对实验动物的某些细菌性感染有良好的治疗作用。这一划时代的发现于1935年发表以后,轰动了全世界的医药界。不久,法国科学家的研究阐明了百浪多息的抑菌作用,乃是由于它在动物体内经过代谢而生成的磺胺所致。为了扩大磺胺抗菌谱和增强其抗菌活性,欧美各国的科学家对其结构进行了多方面的改造,合成了数以千计的磺胺化合物(据1945年统计,达5000多种),从中筛选出30多种疗效好而毒性较低的磺胺药,例如:百浪多息、磺胺吡啶(SP)、磺胺嘧啶(SD)、酞酰磺胺噻唑(PST)、磺胺噻唑 (ST)、磺胺脒(SG)、磺胺异?唑(SIZ)、磺胺二甲嘧啶(SM2)。
青霉素和其他抗生素相继出现后,由于他们具有更高的抗菌作用,磺胺药的应用受到影响,但磺胺药具有性质稳定、易于组织生产、价格低廉、服用方便等优点,在抗菌药物中始终占有重要的地位。
1956年第一个每日只服一次的长效磺胺──磺胺甲氧嗪(3-磺胺-6-甲氧哒嗪)的出现,使磺胺药的应用有了新的发展。以后,又出现一些每日服二次的中效磺胺,如磺胺甲基异?唑,即新诺明(SMZ),并阐明了磺胺嘧啶的中效性质。此外,还发现两个超长效品种:2-磺胺-3-甲氧吡嗪(可每2~3天服用一次),2-磺胺-5,6-二甲氧嘧啶(每周服一次,故称周效磺胺)。60年代,发现了抗菌增效剂甲氧苄氨嘧啶(TMP),可增强磺胺药的抑菌作用达数倍至数十倍,并扩大抗菌范围,使磺胺药的医疗地位又得到了加强。现在临床上应用最广的有磺胺嘧啶、双嘧啶(SD+TMP)、磺胺甲基异?唑和复方新诺明(SMZ+TMP)以及磺胺二甲嘧啶等产品。
此外,磺胺药临床应用中,发现有些品种具抑制碳酸酐酶的作用,有的则有降血糖的副作用。经过系统的化合物合成与筛选,终于发展以双氢克尿噻为代表的磺胺类利尿药和以甲苯磺丁脲为代表的磺胺类口服降血糖药。
5生产
磺胺药的生产一般都以乙酰苯胺(退热冰)为起始原料,经氯磺酸氯磺化(见磺化得对乙酰氨基苯磺酰氯。对乙酰氨基苯磺酰氯经氨水胺化、碱液水解和盐酸中和便得磺胺(SN)。磺胺与硝酸胍、纯碱熔融,处理后得磺胺脒。磺胺和磺胺脒曾是磺胺药常用品种,现在它们和对乙酰氨基苯磺酰氯都只作为磺胺药生产的中间体。磺胺嘧啶和磺胺甲基异?唑的生产方法不同。①磺胺嘧啶:在N,N′- 二甲基甲酰胺中,依次加入三氯化磷和乙烯基乙醚进行加成反应,所得加成物与磺胺脒在甲醇钠中进行环合反应,即得磺胺嘧啶钠盐,再经酸析和精制便得成品。②磺胺甲基异?唑:草酸二乙酯与丙酮在甲醇钠作用下缩合成为乙酰丙酮酸乙酯,与盐酸羟胺进行环合,便得5-甲基异?唑-3-甲酸乙酯。经氨水胺解和次氯酸钠霍夫曼降解,便得 3-氨基-5-甲基异?唑。后者与对乙酰氨基苯磺酰氯在缚酸剂作用下缩合,便得乙酰化物,最后经碱液水解、酸析和精制便得成品。
6应用
磺胺药物抗菌谱较广,对于多种球菌如脑膜炎双球菌、溶血性链球菌、肺炎球菌、葡萄球菌、淋球菌及某些杆菌如痢疾杆菌、大肠杆菌、变形杆菌、鼠疫杆菌都有抑制作用,对某些真菌(如放线菌)和疟原虫也有抑制作用。临床上应用于治疗流行性脑脊髓膜炎、上呼吸道感染(如咽喉炎、扁桃体炎、中耳炎、肺炎等)、泌尿道感染(如急性或慢性尿道感染、轻症肾盂肾炎)、肠道感染(如细菌性痢疾、肠炎等)、鼠疫、局部软组织或创面感染、眼部感染(如结膜炎、沙眼等)、疟疾等。
不同微生物分解利用糖类的能力有很大差异,或能利用或不能利用,能利用者,或产气或不产气。可用指示剂及发酵管检验。
试验方法:以无菌操作,用接种针或环移取纯培养物少许,接种于发酵液体培养基管中,若为半固体培养基,则用接种针作穿刺接种。接种后,置36±1.0°C培养,每天观察结果,检视培养基颜色有无改变(产酸),小倒管中有无气泡,微小气泡亦为产气阳性,若为半固体培养基,则检视沿穿刺线和管壁及管底有无微小气泡,有时还可看出接种菌有无动力,若有动力,培养物可呈弥散生长。本试验主要是检查细菌对各种糖、醇和糖苷等的发酵能力,从而进行各种细菌的鉴别,因而每次试验,常需同时接种多管。一般常用的指示剂为酚红、溴甲酚紫,溴百里蓝和An-drade指示剂。
二、淀粉水解试验
某些细菌可以产生分解淀粉的酶,把淀粉水解为麦芽糖或葡萄糖。淀粉水解后,遇碘不再变蓝色。
试验方法:以18~24h的纯培养物,涂布接种于淀粉琼脂斜面或平板(一个平板可分区接种,试验数种培养物)或直接移种于淀粉肉汤中,于36±1°C培养24~48h,或于20℃培养5天。然后将碘试剂直接滴浸于培养表面,若为液体培养物,则加数滴碘试剂于试管中。立即检视结果,阳性反应(淀粉被分解)为琼脂培养基呈深蓝色、菌落或培养物周围出现无色透明环、或肉汤颜色无变化。阴性反应则无透明环或肉汤呈深蓝色。
淀粉水解系逐步进行的过程,因而试验结果与菌种产生淀粉酶的能力、培养时间,培养基含有淀粉量和pH等均有一定关系。培养基pH必须为中性或微酸性,以pH7.2最适。淀粉琼脂平板不宜保存于冰箱,因而以临用时制备为妥。
三:V-P试验
某些细菌在葡萄糖蛋白胨水培养基中能分解葡萄糖产生丙酮酸,丙酮酸缩合,脱羧成乙酰甲基甲醇,后者在强碱环境下,被空气中的氧氧化为二乙酰,二乙酰与蛋白胨中的胍基生成红色化合物,称V-P(+)反应。
试验方法:
1)O’Meara氏法:将试验菌接种于通用培养基,于36±1°C培养48h,培养液1ml加O’Meara试剂(加有0.3%肌酸Creatine或肌酸酐Creatinine的40%氢氧化钠水溶液)1ml,摇动试管1~2min,静置于室温或36±1°C恒温箱,若4h内不呈现伊红,即判定为阴性。亦有主张在48~50°C水浴放置2h后判定结果者。
2)Barritt氏法:将试验菌接种于通用培养基,于36±1°C培养4天、培养液2.5ml先加入a萘酚(2-na-phthol)纯酒精溶液0.6ml,再加40%氢氧化钾水溶液0.2ml,摇动2~5min,阳性菌常立即呈现红色,若无红色出现,静置于室温或36±1°C恒温箱,如2h内仍不显现红色、可判定为阴性。
3)快速法:将0.5%肌酸溶液2滴放于小试管中、挑取产酸反应的三糖铁琼脂斜面培养物一接种环,乳化接种于其中,加入5%α-萘酚3滴,40%氢氧化钠水溶液2滴,振动后放置5min,判定结果。不产酸的培养物不能使用。
本试验一般用于肠杆菌科各菌属的鉴别。在用于芽胞杆菌和葡萄球菌等其它细菌时,通用培养基中的磷酸盐可阻碍乙酰甲基醇的产生,故应省去或以氯化钠代替。
四:甲基红(Methyl Red)试验
肠杆菌科各菌属都能发酵葡萄糖,在分解葡萄糖过程中产生丙酮酸,进一步分解中,由于糖代谢的途径不同,可产生乳酸,琥珀酸、醋酸和甲酸等大量酸性产物,可使培养基PH值下降至pH4.5以下,使甲基红指示剂变红。
试验方法:挑取新的待试纯培养物少许,接种于通用培养基,培养于36±1°C或30°C(以30°C较好)3~5天,从第二天起,每日取培养液1ml,加甲基红指示剂1~2滴,阳性呈鲜红色,弱阳性呈淡红色,阴性为黄色。迄至发现阳性或至第5天仍为阴性、即可判定结果。
甲基红为酸性指示剂,pH范围为4.4~6.0,其pK值为5.0。故在pH5.0以下,随酸度而增强黄色,在pH5.0以上,则随碱度而增强黄色,在pH5.0或上下接近时,可能变色不够明显,此时应延长培养时间,重复试验。
五:靛基质(Imdole)试验
某些细菌能分解蛋白胨中的色氨酸,生成吲哚。吲哚的存在可用显色反应表现出来。吲哚与对二甲基氨基苯醛结合,形成玫瑰吲哚,为红色化合物。
试验方法:将待试纯培养物小量接种于试验培养基管,于36±1°C培养24h时后,取约2ml培养液,加入Kovacs氏试剂2~3滴,轻摇试管,呈红色为阳性,或先加少量乙醚或二甲苯,摇动试管以提取和浓缩靛基质,待其浮于培养液表面后,再沿试管壁徐缓加入Kovacs氏试剂数滴,在接触面呈红色,即为阳性。
实验证明靛基质试剂可与17种不的靛基质化合物作用而产生阳性反应,若先用二甲苯或乙醚等进行提取,再加试剂,则只有靛基质或5-甲基靛基质在溶剂中呈现红色,因而结果更为可靠。
六、硝酸盐(Nitrate)还原试验
有些细菌具有还原硝酸盐的能力,可将硝酸盐还原为亚硝酸盐、氨或氮气等。亚硝酸盐的存在可用硝酸试剂检验。
试验方法:临试前将试剂的A(磺胺酸冰醋酸溶液)和B(α-萘胺乙醇溶液)试液各0.2ml等量混合、取混合试剂约0.1ml、加于液体培养物或琼脂斜面培养物表面,立即或于10min内呈现红色即为试验阳性,若无红色出现则为阴性。
用α-萘胺进行试验时,阳性红色消退很快、故加入后应立即判定结果。进行试验时必须有未接种的培养基管作为阴性对照。α-萘胺具有致癌性、故使用时应加注意。
七、明胶(Gelatin)液化试验
有些细菌具有明胶酶(亦称类蛋白水解酶),能将明胶先水解为多肽,又进一步水解为氨基酸,失去凝胶性质而液化。
试验方法:挑取18~24h待试菌培养物,以较大量穿刺接种于明胶高层约2/3深度或点种于平板培养基。于20~22℃培养7~14天。明胶高层亦可培养于36±1℃。每天观察结果,若因培养温度高而使明胶本身液化时应不加摇动、静置冰箱中待其凝固后、再观察其是否被细菌液化,如确被液化,即为试验阳性。平板试验结果的观察为在培养基平板点种的菌落上滴加试剂,若为阳性,10~20min后,菌落周围应出现清晰带环。否则为阴性。
八、尿素酶(Urease)试验
有些细菌能产生尿素酶,将尿素分解、产生2个分子的氨,使培养基变为碱性,酚红呈粉红色。尿素酶不是诱导酶,因为不论底物尿素是否存在,细菌均能合成此酶。其活性最适pH为7.0。
试验方法:挑取18~24h待试菌培养物大量接种于液体培养基管中,摇均,于36±1℃培养10,60和120min,分别观察结果。或涂布并穿刺接种于琼脂斜面,不要到达底部,留底部作变色对照。培养2,4和24h分别观察结果,如阴性应继续培养至4天,作最终判定,变为粉红色为阳性。
九、氧化酶(Oxidase)试验
氧化酶亦即细胞色素氧化酶,为细胞色素呼吸酶系统的终末呼吸酶,氧化酶先使细胞色素C氧化,然后此氧化型细胞色素C再使对苯二胺氧化,产生颜色反应。
试验方法:在琼脂斜面培养物上或血琼脂平板菌落上滴加试剂1~2滴,阳性者Kovacs氏试剂呈粉红色~深紫色,Ewing氏改进试剂呈蓝色。阴性者无颜色改变。应在数分钟内判定试验结果。
十、硫化氢(H2S)试验
有些细菌可分解培养基中含硫氨基酸或含硫化合物,而产生硫化氢气体,硫化氢遇铅盐或低铁盐可生成黑色沉淀物。
试验方法:在含有硫代硫酸钠等指示剂的培养基中,沿管壁穿刺接种,于36±1℃培养24~28h,培养基呈黑色为阳性。阴性应继续培养至6天。也可用醋酸铅纸条法:将待试菌接种于一般营养肉汤,再将醋酸铅纸条悬挂于培养基上空,以不会被溅湿为适度;用管塞压住置36±1℃培养1~6天。纸条变黑为阳性。
十一、三糖铁(TSI)琼脂试验
试验方法:以接种针挑取待试菌可疑菌落或纯培养物,穿刺接种并涂布于斜面,置36±1℃培养18~24h,观察结果。
本试验可同时观察乳糖和蔗糖发酵产酸或产酸产气(变黄);产生硫化氢(变黑)。葡萄糖被分解产酸可使斜面先变黄,但因量少,生成的少量酸,因接触空气而氧化,加之细菌利用培养基中含氮物质,生成碱性产物,故使斜面后来又变红,底部由于是在厌氧状态下,酸类不被氧化,所以仍保持黄色。
十二、硫化氢-靛基质-动力(SIM)琼脂试验
试验方法:以接种针挑取菌落或纯养物穿刺接种约1/2深度,置36±1℃培养18~24h,观察结果。培养物呈现黑色为硫化氢阳性,混浊或沿穿刺线向外生长为有动力,然后加Kovacs氏试剂数滴于培养表面,静置10min,若试剂呈红色为靛基质阳性。培养基未接种的下部,可作为对照。