建材秒知道
登录
建材号 > 苯酚 > 正文

植物激素2,4-D在植物体内的作用机理

昏睡的飞机
称心的大侠
2022-12-31 12:12:20

植物激素2,4-D在植物体内的作用机理

最佳答案
愤怒的狗
眯眯眼的汉堡
2026-01-25 13:45:49

生长促进剂

植物激素是植物体内合成的对植物生长发育有显著作用的几类微量有机物质。也被成为植物天然激素或植物内源激素。它们在植物体内部分器官合成后转移到其它植物器官,能影响生长和分化。在个体发育中,不论是种子发芽、营养生长、繁殖器官形成以至整个成熟过程,主要由激素控制。在种子休眠时,代谢活动大大降低,也是由激素控制的。

最早发现的激素是吲哚乙酸(IAA),这是一种生长素,它是研究最多的一种激素。吲哚乙酸在植物体内普遍存在,是生理活性最强的生长素。

赤霉素(GA)属于双萜化合物。其中GA3被发现得最早、研究得最广泛。

细胞分裂素(CTK)是一类腺嘌呤衍生物。其中玉米素是从高等植物中分离得到的第一种天然细胞分裂素。

以上三种激素主要促进植物生长,而脱落酸和乙烯主要抑制植物生长。

脱落酸(ABA)是一种倍半萜衍生物。

乙烯是化学结构十分简单的不饱和烃。

在五大激素之外,油菜素被认为是第6类激素。这是一类以甾醇为骨架的植物内源甾体类生理活性物质,又称芸薹素。

植物激素的作用机理是这样的。植物体内的激素与细胞内某种称为激素受体的蛋白质结合后即表现出调节代谢的功能。激素受体与激素有很强的专一性和亲和力。有些受体存在与质膜上,与吲哚乙酸结合后改变质膜上质子泵活力,影响膜透性。有些受体存在与细胞质和细胞核中,与激素结合后影响DNA、RNAH和蛋白质的合成,并对特殊酶的合成起调控作用。

激素间存在各种相互作用。一是增效作用。例如GA3与IAA共同使用可强烈促进形成层的细胞分裂。对某些苹果品种,只有同时使用才能诱导无籽果实形成。

二是促进作用。外源GA3能促进内源生长素的合成,因为施用的GA3可抑制组织内IAA氧化酶和过氧化物酶的活性,从而延缓IAA的分解。高浓度的外源生长素促进乙烯的生成。

三是配合作用。例如生长素可促进根原基的形成,细胞分裂素可诱导芽的产生。进行植物细胞和组织培养时,培养基中必须有配合适当比例的生长素和细胞分裂素才能表现出细胞的全能性,即长根又长芽,成为完整植株。

四是拮抗作用。例如植物顶端产生的生长素向下运输能控制侧芽的萌发生长,表现顶端优势,如将细胞分裂素外施与侧芽,可以克服生长素的控制,促进侧芽萌发生长。又例如GA3诱导大麦籽粒糊粉层中α-淀粉酶生成作用可被ABA抑制。反之,ABA对马铃薯芽的萌发抑制作用可被GA3抵消。外源乙烯促进组织内IAA氧化酶的产生,从而加速IAA的分解,是植物体内IAA水平降低。

人工合成的具有生理活性、类似植物激素的化合物称为植物生长调节剂,或植物外源激素。它们少量施加即可有效地控制植物的生长发育,增加农作物产量,在农业和园艺上得到广泛应用。这些植物生长调节剂有以下几类。

1. 生长促进剂。为人工合成的类似生长素、赤霉素、细胞分裂素类物质。能促进细胞分裂和伸长,新器官的分化和形成,防止果实脱落。它们包括:2,4-D、吲哚乙酸、吲哚丁酸、萘乙酸、2,4,5-T、2,4,5-TP、胺甲萘(西维因)、增产灵、GA3赤霉素、激动素、6-BA、PBA、玉米素等。

2. 生长延缓剂。为抑制茎顶端下部区域的细胞分裂和伸长生长,使生长速率减慢的化合物。导致植物体节间缩短,诱导矮化、促进开花,但对叶子大小、叶片数目、节的数目和顶端优势相对没有影响。生长延缓剂主要起阻止赤霉素生物合成的作用。这些物质包括:矮壮素(CCC)、B9(比久)、阿莫-1618、氯化膦-D(福斯方-D)、助壮素(调节安)等。

3. 生长抑制剂。与生长延缓剂不同,主要抑制顶端分生组织中的细胞分裂,造成顶端优势丧失,使侧枝增加,叶片缩小。它不能被赤霉素所逆转。这类物质有:MH(抑芽丹)、二凯古拉酸、TIBA(三碘苯甲酸)、氯甲丹(整形素)、增甘膦等。

4. 乙烯释放剂。人工合成的释放乙烯的化合物,可催促果实成熟。乙烯利是最为广泛应用的一种。乙烯利在pH值为4以下是稳定的,当植物体内pH值达5~6时,它慢慢降解,释放出乙烯气体。

5. 脱叶剂。脱叶剂可引起乙烯的释放,使叶片衰老脱落。其主要物质有三丁三硫代丁酸酯、氰氨钙、草多索、氨基三唑等。脱叶剂常为除草剂。

6. 干燥剂。干燥剂通过受损的细胞壁使水分急剧丧失,促成细胞死亡。它在本质上是接触型除草剂。主要有百草枯、杀草丹、草多索、五氯苯酚等。

使用植物生长调节剂虽然可以调节植物生长,但滥用激素往往造成无法弥补的产量损失,因此使用浓度一定要适当,使用次数一定不能过多。

最新回答
开朗的招牌
柔弱的小蘑菇
2026-01-25 13:45:49

24D属于植物生长调节剂,是促进种子萌发和果实发育的。

存储方法

储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。

合成方法

1、 先用苯酚氯化制得2,4-二氯酚,后者在氢氧化钠存在下与氯乙酸缩合生成2,4-D钠盐,再酸化成2,4-D原药。另一种新工艺是将苯酚和氯乙酸在碱性条件下先缩合,然后氯化而得。

2、 由2,4-二氯苯酚与一氯乙酸在NaOH溶液中加热回流制得2,4-二氯苯氧乙酸钠,再用盐酸酸化而成。

3、 以苯酚为原料,先与氯乙酸缩合后经氯化,或先氯化后与氯乙酸缩合均可制得产品。(1)先缩合后氯化工艺。将苯酚置于反应釜,加热熔融,先后投入2.2倍(摩尔比)地氢氧化钠和1.2倍(摩尔比)地氯乙酸,并在100-110℃下反应30min。反应物冷却后,用盐酸中和,可析出苯氧乙酸,收率82%以上。苯氧乙酸于65-90℃下,缓慢通入1.4倍-1.6倍(摩尔比)地氯气,氯化产物即2,4-二氟苯氧乙酸,收率89%。(2)先氯化后缩合工艺。将熔融的苯酚置于氯化器中,在45-65℃下通氯约8-9h,当反应物料相对密度达1.406(40℃)时氯化反应结束。反应物趁热加入30%的氢氧化钠溶液,加热至沸后,滴加氯乙酸钠溶液,并回流4-5h。稍冷后用30%的盐酸中和至PH1-3。趁热加苯萃取,并分出有机层。冷却后析出白色结晶,经抽滤、烘干得成品。

4、 以苯酚为原料,先与氯乙酸缩合后经氯化,或先氯化后与氯乙酸缩合均可制得产品。先缩合后氯化工艺将苯酚置于反应釜,加热熔融,先后投入2.2倍(摩尔比)的氢氧化钠和l.2倍(摩尔比)的氯乙酸,并在100~110℃下反应30min。反应物冷却后,用盐酸中和,可析出苯氧乙酸,收率82%以上。苯氧乙酸于65~90℃下,缓慢通入1.4~1.6倍(摩尔比)的氯气,氯化产物即为2,4-二氯苯氧乙酸,收率89%。先氯化后缩合工艺将熔融的苯酚置于氯化器中,在45~65℃下通氯约8~9h,当反应物料相对密度达1.406(40℃)时氯化反应结束。反应物趁热加入30%的氢氧化钠溶液,加热至沸后,滴加氯乙酸钠溶液,并回流4~5h。稍冷后用30%的盐酸中和至Ph值1~3。趁热加苯萃取,并分出有机层。冷却后析出白色结晶,经抽滤、干燥得成品。

精明的大地
负责的爆米花
2026-01-25 13:45:49

滴异丙酯通过植物体内吸输导,具有防止落果,保鲜活性。在柑橘成熟时施用,防止采前落果。土壤或植物中降解成2,4-二氯苯酚,再分解。操作时注意防护。

避免药液接触眼睛和皮肤,勿吸入药雾,勿让儿童接近。药品远离种子、化肥和农药贮存,亦勿靠近火源。无专用解毒经,出现中毒,可进行对症治疗。

紧张的山水
清秀的酒窝
2026-01-25 13:45:49
传统合成水杨酸的方法中,通常用2,5-二氯苯酚钾与CO2为原料单釜制备3,6-二氯水杨酸。Kolbe-Schmitt反应是一个非均相的气固反应,是一种高压高温反应过程,不仅反应时间长,单程收率低,质量也难以控制;反应结束后需要降温泄压后方可出料酸化,所以Kolbe-Schmitt反应设计高温高压,对其反应过程的连续化和进出料的连续化都有很大的难度。本发明提出的水杨酸的合成工艺,是在传统工艺的基础上,提出的一种改进的羧基化连续化反应的新合成方法;本发明通过改进了催化剂,反应物料投料比以及出料方式从而实现连续化生产的目的,来提高传统设备的生产效率。

技术实现要素:

本发明所要解决的技术问题是针对现有技术中存在的不足,而提供一种高压连续羧酸化合成水杨酸的方法,通过改进催化剂、反应物料投料比以及出料方式从而实现连续化生产的目的,提高了传统设备的生产效率。

为了实现上述目的,本发明采用如下技术方案:

一种高压连续羧酸化合成水杨酸的方法,包括以下步骤:

(1)以2,5-二氯苯酚为原料,在有机溶剂二甲苯中,与氢氧化钾水溶液在回流条件(回流的温度为98-142℃)下进行分凝除水反应至水分除尽(分凝器中不再有水分出)合成2,5-二氯苯酚钾,见反应式(I);

所述的氢氧化钾与2,5-二氯苯酚的摩尔比为0.7-0.95:1;

(2)将步骤(1)中含有2,5-二氯苯酚钾的二甲苯溶液,与无水碳酸钾经过混合器混合后送入高压反应釜或回路反应器中,向高压反应釜或回路反应器中通入CO2,2,5-二氯苯酚钾、无水碳酸钾和CO2,在C7以上的醇类催化剂存在下反应生成3,6-二氯水杨酸钾,见反应式(II);

在高压反应釜或回路反应器中进行反应时,控制CO2的压力为5.5-10MPa,反应温度为135-160℃,反应时间为3-10hr;

所述的无水碳酸钾与2,5-二氯苯酚钾的摩尔比为0.6-1:1;

(3)步骤(2)中物料反应3-10hr后,一边出料一边进料进行连续化生产;出料时,步骤(2)中高压高温的合成液通过喷枪出料管利用喷枪管道原理进行泄压连续出料至加水接收槽,再经过盐酸酸化、离心得到目标产物水杨酸;

反应方程式如下:

优选的,步骤(1)中,所述的2,5-二氯苯酚溶解于二甲苯中,2,5-二氯苯酚的质量分数为25%-45%,优选为30~35%;所述的氢氧化钾的水溶液,氢氧化钾

老迟到的心情
欢呼的朋友
2026-01-25 13:45:49
危险废物定义:

1、具有腐蚀性、毒性、易燃性、反应性或者感染性等一种或者几种危险特性的;

2、不排除具有危险特性,可能对环境或者人体健康造成有害影响,需要按照危险废物进行管理的。

种类:

1、固体废物;

2、液态废物。

危险废物危害:

1、破坏生态环境。随意排放、贮存的危废在雨水地下水的长期渗透、扩散作用下,会污染水体和土壤,降低地区的环境功能等级。

2、影响人类健康。危险废物通过摄入、吸入、皮肤吸收、眼接触而引起毒害,或引起燃烧、爆炸等危险性事件长期危害包括重复接触导致的长期中毒、致癌、致畸、致变等。

3、制约可持续发展。危险废物不处理或不规范处理处置所带来的大气、水源、土壤等的污染也将会成为制约经济活动的瓶颈。

危险废物处理方法:

1、物理处理:物理处理是通过浓缩或相变化改变固体废物的结构?使之成为便于运输、贮存、利用或处置的形态,包括压实、破碎、分选、增稠、吸附、萃取等方法。

2、化学处理:化学处理是采用化学方法破坏固体废物中的有害成分,从而达到无害化,或将其转变成为适于进一步处理、处置的形态。其目的在于改变处理物质的化学性质,从而减少它的危害性。这是危险废物最终处置前常用的预处理措施,其处理设备为常规的化工设备。

3、生物处理:生物处理是利用微生物分解固体废物中可降解的有机物,从而达到无害化或综合利用。生物处理方法包括好氧处理、厌氧处理和兼性厌氧处理。与化学处理方法相比,生物处理在经济上一般比较便宜?应用普遍?但处理过程所需时间长,处理效率不够稳定。

4、热处理:热处理是通过高温破坏和改变固体废物组成和结构,同时达到减容、无害化或综合利用的目的。其方法包括焚化、热解、湿式氧化以及焙烧、烧结等。热值较高或毒性较大的废物采用焚烧处理工艺进行无害化处理,并回收焚烧余热用于综合利用和物/化处理以及职工洗浴、生活等,减少处理成本和能源的浪费。

5、固化处理:固化处理是采用固化基材将废物固定或包覆,以降低其对环境的危害,是一种较安全地运输和处置废物的处理过程,主要用于有害废物和放射性废物,固化体的容积远比原废物的容积大。

愤怒的哈密瓜,数据线
烂漫的橘子
2026-01-25 13:45:49

固体废物的危害表现在:

1、侵占土地

固体废物不像废气、废水那样到处迁移和扩散,必须占有大量的土地。城市生活垃圾如不能得到及时处理和处置,将会占用农田,破坏农业生产,以及地貌、植被、自然景观等。

2、污染土壤

固体废物如果处理不当,有害成分很容易经过地表径流进人土壤,杀灭土壤中的微生物,破坏土壤的结构,从而导致土壤健康状况恶化。

3、水污染

大量的固体废物直接向江河湖海倾倒,不仅减少了水域面积,淤塞航道,而且污染水体,使水质下降。固体废物对水体的污染,有直接污染地表水,也有的下渗后污染了地下水。

4、大气污染

固体废物向大气飘散 固体废物在收运、堆放过程中未作密封处理,有的经日晒、风吹、雨淋、焚化等作用,挥发了大量废气、粉尘;有的发酵分解后产生有毒气体,向大气中飘散,造成大气污染。

5、影响市容环境卫生

固体废物在城市里大量堆放而又处理不妥,不仅妨碍市容,而且有害城市卫生。城市堆放的生活垃圾,非常容易发酵腐化,产生恶臭,招引蚊蝇、老鼠等滋生繁衍,容易引起疾病传染。

扩展资料

固体废物处置方法包括海洋处置和陆地处置两大类。海洋处置主要分海洋倾倒与远洋焚烧两种方法。随着人们对保护环境生态重要性认识的加深和总体环境意识的提高,海洋处置已受到越来越多的限制。陆地处置包括土地耕作、工程库或贮留池贮存、土地填埋以及深井灌注几种。

全社会对固体废物污染的严重性和治理工作的重要性的认识亟待提高,应切实把宣传普及党中央治理固体废物污染决策部署和“固废法”作为生态环境保护的一项重要基础性工作,积极倡导绿色生产生活方式。

1、推进固体废物资源化,应进一步落实生产者责任延伸制度,推动生产企业重视和建立产品回收体系,加快实现对废弃产品的规范回收和循环利用。

2、应充分发挥市场化机制作用,鼓励和支持民营企业在固体废物综合利用上大显身手,打造一批具有示范带动作用的产业。

3、应进一步推进固体废物污染治理创新。各地方、广大群众在实践中创造了很多行之有效的改善环境和处理垃圾的好做法好经验,政府有关部门应当重视发现、总结、推广。

4、固体废物治理需要强有力的科技支撑。鼓励具备科研能力和监测、检测技术条件的高校、科研院所参与固体废物污染防治工作。

参考资料来源:百度百科-固体废物

参考资料来源:中国人大网-对检查固体废物污染环境防治法实施情况报告的意见

火星上的彩虹
完美的溪流
2026-01-25 13:45:49

合适的光照,适宜的温度,水,还有空气(CO2),这些是自然条件.另外,还要有植物生长所需的各种矿质营养元素,就是各种肥料。

光线是植物生长最重要的因素。每种植物对光线的强度需求不同,大部分植物喜欢晒太阳, 少部分喜欢阴暗处,所以在挑选植物种植前,要先考虑环境可以给予的日照时间及程度。

给予植物适当的水分,才雒够维持正常的生长。有些植物而j 干,在略干的环境下反而会刺渤开花,有些则是因雨而开花,要看植物原生环境的不同。视植物的习性调整给予水分,是种植能要领。

每种植物有其适合生长的温度,依照植物原生环境的不同,有些喜欢高温,有些耐低温有些花在凉季开,有些在热季开有些会休眠、落叶。在种植花草之前,要先了解其适宜的生长温度。

来自热带雨林的植物,非常喜欢潮湿的环境,来自沙漠的植物,就喜欢干燥一点的环境,植物原生环境的不同,在生长习性上也有所差别,但大部分的植物都喜欢生长环境较潮湿一点。

空气越流通,对植物生长越好。在通风良好的环境下,植物较能顺利生长,病虫害也相对减少。植物的叶子白天进行光合作用,吸收二氧化碳放出氧气夜晚进行呼吸作用,吸收氧气放出二氧化碳。

但植物的根部任何时候都是进行呼吸作用,因此植物根部需要大量氧气,如果空气流通不足,造成植物根部缺氧,对植物的生长会有害。

植物栽培介质若含有适当的养分,对植物的生长是有益处的。有些植物原本生长在沙漠或潮湿沼泽地的特殊环境,这些贫瘠地区本身就没有太多养分,若给予这些植物太多养分。

反而会妨害植物的生长,例如供给仙人掌太多养分,反而会造成其茎部裂开,因此养分的多寡要视植物原生环境而定。

扩展资料:

植物生长激素:

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。

例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。

植物激素的化学结构已为人所知,人工合成的相似物质称为生长调节剂,如吲哚乙酸;有的还不能人工合成,如赤霉素。市场上售出的赤霉素试剂是从赤霉菌的培养过滤物中制取的。这些外加于植物的吲哚乙酸和赤霉素,与植物体自身产生的吲哚乙酸和赤霉素在来源上有所不同。

所以作为植物生长调节剂,也有称为外源植物激素。最近新确认的植物激素有,多胺,水杨酸类,茉莉酸(酯)等等。植物体内产生的植物激素有赤霉素、激动素、脱落酸等。现已能人工合成某些类似植物激素作用的物质如2,4-D(2,4-二氯苯酚代乙酚)等。

参考资料来源:百度百科-植物激素

参考资料来源:百度百科-植物

缓慢的山水
拼搏的店员
2026-01-25 13:45:49
竹炭,吸收空气中的有害物质

竹类植物,秀丽挺拔、四季常青。地下茎年年行鞭、出笋、成竹。竹笋,是人类的保健食品;留笋成竹,竹林子孙满堂,家族兴旺,吸收二氧化碳,放出氧气,维护着优美的生态环境。 竹类植物千姿百态。世界竹类植物有70多属,1200多种;中国竹类植物有35属,400余种;不同品种,有不同特性、不同用途。 竹材可以“代木”,制作家具、农具、各种人造板、编织工艺品及生活用品。 它还可以“胜木”,用来制造一般木材不能制造的集装箱底板,铁路平车地板、性能优良、多姿多彩的竹地板等产品。 更鲜为人知的是它还可以制成竹炭、成为人类健康的卫士。

二、竹炭的形成 中国是世界上炭的发源地,早在一千多年前的唐代,白居易就留下了“卖炭翁”的悲壮诗篇;古人除了把炭作为烧饭、取暖的燃料之外,也巧妙地把炭作为防腐、杀菌、保鲜剂加以应用,这在中国的古代历史中可以找到大量的例证。 竹炭是竹材在高温、缺氧(或限制性地通入氧气)的条件下,使竹材受热分解而得到的固体产物。在制备竹炭的同时,还可以得到一种用途广泛的液体产物——竹醋液。 根据竹材炭化过程中的温度及液体、气体产物的变化规律可以认为,竹炭的形成先后经历了竹材干燥阶段(炉(窑)内温度≤120℃)、竹材预炭化阶段(120—260℃)、竹材炭化阶段(260—400℃)、竹炭精炼阶段(≥400℃)。 形成竹炭的最终温度不仅对竹炭的产量、生产成本、竹炭的得率有影响,而且对竹炭的性能、用途更具有重要的意义。 竹炭可用传统的砖砌窑和现代化的机械炉来生产。 砖砌窑的特点: 投资少、操作简单; 但生产周期长(22-30天)、窑温不易控制、质量不均匀、密封性能差、竹炭得率低(15-17%) 一种机械窑的特点: 投资较砖砌窑增加; 生产周期较短(7-10天)、温度容易控制、密封性能好、制炭得率较高(20%左右)。 另一种不锈钢机械炉的特点: 投资较高; 生产周期短(8小时)、温度易控制、密封性能好、生产得率高(24—26%)竹炭质量稳定、精炼竹醋液、以及可燃气体循环利用。 竹炭遇到空气,能吸收空气中的各种有害气体,使室内空气得以净化而变得清新;在水里它可以吸收水中有害物质而使普通水成为优质饮用水;它还能产生负离子和远红外线,帮助人们去病、防病,增强体质,成为人类的健康的卫士。究其根源,竹炭的这些特殊性能主要源于自身的特殊微观结构。

三、竹炭微观结构与其性能关系 碳由单一元素构成,结构千变万化、性能无穷无尽、用途多种多样。主要是由于原子键合方式、分子结构类型以及集合形态的多样性而产生的。碳按三种典型键合方式形成单质碳时则为金刚石,石墨和卡宾,它们的性能也有明显的差别。 碳的同素异形体中,由于碳原子的结合方式不同,单质的碳主要有四种同素异性体,即金刚石,石墨、卡宾和富勒烯(包括碳纳米管)。 一个碳原子周围有四个碳原子相连,在三维空间形成骨架状,各向联系力均匀、牢固、具高强度-金刚石硬的特性 一个碳原子周围有三个碳原子,碳与碳原子组成六边形环状,无限多的六边形组成一层,层与层之间联系力弱。层内三个碳原子联系很牢固,层之间易滑动-石墨软的特性。 85年,美英两位科学家用激光照射石墨,使其蒸发而成碳灰,质谱分析发现,这种碳内含两种不明物质,其分子量分别为碳的60和70倍,并具有特殊的结构,经证实,它们属于碳的第三种同素异性体,命名为富勒烯碳。本身是不导电的绝缘体,当碱金属原子嵌入分子后,形成系列化合物,成为超导体,具有完美的三维超导性。 中,20个正六边形和12个正五边形构成圆球形结构,共有60个质点,分别由60个碳原子占有。 91年,日本科学家用透射电镜检测石墨电弧设备中产生的球状分子,意外发现了由管状同轴纳米管组成的碳分子,其结构相当于石墨的平面组织卷成的管状,是富勒烯碳家族的重要的成员。是被广泛关注的碳纳米管,是化学反应中的新型催化剂,有很多的奇异功能。是纳米科技的主要研究方向,在材料、电子、能源领域有重要的前景。 竹材的维管束、薄壁细胞、导管形成竹炭的微观孔隙结构,其形状非常类似并接近于由五元环和六元环所组成的洋葱状富勒烯(C60)和展开的碳纳米管结构。 竹炭的性能与其发达的孔隙结构有着密切的关系,它的吸附性能、催化性能及电性质等都与炭材料的微观结构有关,因而研究炭材料微观孔隙结构具有重要意义。 竹炭所具有的类似并接近于洋葱状富勒烯(C60)和展开的碳纳米管结构的特殊孔隙形状是各种以木材为原料而制成的木炭所不具备的孔隙结构。因此我们认为竹炭的这种特殊的微观孔隙结构是竹炭具有特殊性能的根本原因。

四. 竹炭的主要特性 1.竹炭的元素组成 竹炭的元素组成主要是碳、氢、氧和氮及硅、镁、钠、钙等金属及非金属元素。碳和氮元素的含量随碳化温度的升高而升高,氢、氧元素的含量则随温度的增加而减少。炭化温度从200~1000℃时,碳元素的含量从52.06%增加至85.42%,氮元素的含量从0.12%增加至0.68%,氧元素的含量则从38.55%减少至4.85%。竹炭的灰份含量随着炭化温度的升高而增加(2.26%~4.69%),竹炭中的灰份元素组成较复杂,其中含量较多的有钾、镁、钠、钙、铁等。 竹炭中含有一些人体需要的微量元素如铜、硒、锌、锶等。利用竹炭中的这些元素,将竹炭加工成片炭,用于烧水和煮饭。将50g竹炭放在1000cc水中煮沸10分钟,测定水中矿物质浓度的结果如下: 表1 竹炭在水中煮沸后水中矿物质浓度的变化(mg/L) 竹炭加入水中后,由于大量的钾、镁、钙等矿物质元素溶解在水中,增加了人体所必须的营养成分,同时可使水的分子团变小,有利于人体吸收。试验还表明自来水经竹炭处理后,自来水中2.4 - 二氯苯酚去除率可达100%,效果十分明显。由于上述作用,片炭用于烧水或者煮饭,其效果就显而易见了。 2.竹炭的比表面积和导电性能 竹炭内部的各类孔隙,具有微孔、中孔和大孔,因而竹炭中的这些孔隙的内表面积之和称为比表面积,使它对多种有害气体具有很好的吸附能力。比表面积的大小与炭化温度有关,炭化温度为700℃左右时其比表面积最大。 表2 炭化温度与竹炭的比表面积关系 竹材和木材一样,通常都是不良导体,可称为绝缘体。但形成竹炭以后,导电性能发生了极大的变化,当炭化温度为700℃左右时的竹炭,其电阻率仅为5.40&#21510-5Ωm,显示出良好的导电性能,可称为导体。通常竹炭的导电性随炭化温度的升高而增长。木炭虽有类似的趋势,但数值差异很大。 表3 竹炭的导电率与炭化温度的关系 3.竹炭产生远红外线和负离子 (1)竹炭的远红外远红外线是波长在0.78-300um的电磁波(近红外:0.78-3um;中红外: 3-30um;远红外: 30-300um),具有不受空气影响而直接到达接受对象的特性。人的皮肤对远红外线吸收率高,传热率也高。一旦接受远红外线就能迅速达到皮肤内层,特别是对4-14um波长的红外线的吸收效果最为明显。还具有抑菌、防臭、促进人体表面微血管的血液循环等功能,达到保暖保健、促进新陈代谢之功效。对于预防和治疗关节炎、失眠等病症有明显作用。竹炭的红外线功能测试结果见表4: 表4 竹炭的红外辐射率备注 F1—全波长积分发射率 F2—(8~25um)积分发射率 F3—8.45um积分发射率 F4—9.50um积分发射率 F5—10.60um积分发射率 F6—12.00um积分发射率 F7—13.50um积分发射率 F8—(14~25um)积分发射率 (2)竹炭的负离子负离子是空气中一种带负电荷的气体离子。空气中的负离子主要是负氧离子,被吸入人体后,能调节神经中枢的兴奋状态,改善肺的换气功能,促进新陈代谢。它还对高血压、气喘、流感、失眠、关节炎等许多疾病有一定的治疗作用。 将10g竹炭样品放置在1m3的密封仓中12小时,用静态法负离子测试仪连续测试,空气负离子浓度增加量为170个/cm3。这充分证明了竹炭具有产生负离子的功能。 4.竹炭吸收空气中的有害气体的能力 将甲醛、苯、甲苯、氨、三氯甲烷等五种典型的有害有毒气体,用一定质量的不同炭化温度的竹炭(300-1000℃)对他们进行吸附,研究竹炭对上述有害气体的吸附能力。 (1)竹炭对甲醛的吸附性能 室内空气中甲醛含量为0.1mg/m3时人就感觉有异味和不适感;0.5mg/m3可刺激眼睛引起流泪;0.6mg/m3时引起咽喉不适或疼痛;随着浓度升高还可引起恶心、呕吐、咳嗽、胸闷、气喘;当大于65mg/m3时甚至可以引起肺炎、肺水肿等损伤,甚至导致死亡。国际癌症研究所已建议将其作为可疑致癌物。 竹炭对甲醛吸附能力,最高的可达19.39%,(炭化温度为900℃时的竹炭),其它条件的竹炭对甲醛的吸附率大于16%。 炭化温度和比表面积对竹炭吸附甲醛率的影响不是很大。另外,竹炭对甲醛的吸附持续时间长达24天。 (2)竹炭对苯、甲苯的吸附性能苯、甲苯是重要的芳香族烃有机化工原料之一,广泛运用于合成树脂、合成纤维、塑料、橡胶、洗涤剂、染料、农药、医药等方面作为原料和溶剂。在建筑装饰的涂料、填料及墙纸等装饰材料中都含有苯和甲苯。 人在短时间吸入苯、甲苯时,可出现中枢神经系统麻醉。长期吸入,能导致再生障碍性贫血,并可引起白血病。苯化合物已被世界卫生组织确定为强烈致癌物质。 竹炭对苯的吸附较快地达到了平衡,当炭化温度为500℃、600℃、700℃,吸附时间1天时,其吸附率就达到了较高值,分别为10.08%、9.65%、8.69%,说明中温炭对苯的吸附速度较快,这也证明了对苯的吸附性能主要是其比表面积在起作用。 竹炭对甲苯的吸附与竹炭对苯的吸附类似,也是当炭化温度为500℃、600℃、700℃时,吸附时间为1天时,其吸附率就达到了较高值,分别为8.42%、8.14%、5.65%,说明中温竹炭对甲苯的吸附也较快,这也说明了对甲苯的吸附性能主要是其比表面积在起作用。 (3)竹炭对氨的吸附性能 氨是一种无色而具有强烈刺激性臭味的气体,人可感觉最低浓度为5.3ppm。氨是一种碱性物质,它对接触的皮肤组织有腐蚀和刺激作用。 炭化温度较低时(300℃、400℃)竹炭对氨气有很好的吸附能力,其吸收率达到30.65%和22.73%,而且其吸附持续时间较长,达到了24天。这主要是因为低温竹炭其pH值较低,呈酸性,而氨气是呈碱性的,所以竹炭对氨气的吸附主要体现在化学吸附,而不仅仅只发生物理吸附。 (4)竹炭对三氯甲烷的吸附性能 三氯甲烷代表卤代烷烃类有机化合物,是常见的工业污染物。研究竹炭对三氯甲烷的吸附性能具有重要的意义 当炭化温度较低时(如300℃),竹炭对三氯甲烷的吸附性能很好,达到40.68%,而且其吸附持续时间较长,达到了24天。竹炭对三氯甲烷的吸附率随炭化温度的升高而降低。而黄彪研究的杉木炭化物对三氯甲烷的吸附率最大值出现在600℃,吸附率为8.5%,从这一点可以看出竹炭与木炭对三氯甲烷的吸附率有很大的差别。 国家环保产品质量监督检验中心将1.25kg竹炭,放在1M3的气候箱中,经24、48小时测定,4种有害气体的浓度的降低率和有害菌的杀菌率。 表5 有害气体浓度的降低率和有害菌的杀菌率 5. 竹炭吸收水体中有害物质的能力 人类的生活和生产活动产生的大量污水排入江河,使水体受到污染,竹炭可以净化和明显地改善水体中的重要水质指标,目前的初步研究效果如下: (1)色度和浊度效果明显: 有色废水排入水体,使天然水体着色,减弱水体的透光性,称为色度;泥沙、粘土、有机物、无机物、浮游生物和微生物等悬浮物质形成水体混浊,称为浊度。 将0.2克竹炭加入80毫升污水中,经竹炭吸附处理后,污水的色度去除率可达80%; 将0.2克竹炭加入80毫升污水中,经竹炭吸附处理后,浊度去除率可达73%。 对污水中化学耗氧量(COD)的去除效果明显: 水体中有机物含量过高可降低水中溶解氧的含量。当水中溶解氧耗尽时,水质则腐败变臭,导致水生生物缺氧以致死亡。因此在一定条件下,用强氧化剂处理水样时所消耗的氧化剂的量作为水的一项重要指标,称为化学耗氧量(COD)。将适量的竹炭加入污水中,经竹炭吸咐处理后,COD值去除率可达54%。 对污水中总氮的去除效果显著: 生活污水和工业污水排入水体,使水中的有机氮和无机氮化合物含量增加,生物和微生物大量繁殖,消耗水中溶解氧,使水体质量恶化造成浮游生物繁殖旺盛,出现富营养化状态。研究结果表明:将0.2克竹炭加入80毫升污水中,经竹炭吸附处理后,污水中总氮去除率可达71%. 对污水中总余氯的去除率接近100%: 水体中过量氯离子是引起人体组织癌变的重要机因,而自来水厂需使用漂白粉对水体进行净化,因此余氯含量是水质的重要指标。竹炭对水体中2,4—二氯苯酚的吸附量较大,原水加炭处理后的水样中未检测出有2,4—二氯苯酚,竹炭对水中余氯的去除效果达到100%,可以说竹炭对氯的去除率有奇效。 对污水中有机磷农药的去除有一定效果,如竹炭对水体中乐果的去除效果达70%;对水体中甲基对硫磷达60%。 6. 竹炭的调湿功能 当环境湿度很大时,竹炭利用其吸湿作用,吸附室内空气中的水分;当环境湿度变小时,竹炭利用其解吸作用,放出水分,以达到调节室内空气湿度的作用。 在相对湿度为95%时的吸湿率可以达到14%,即在室内放置100公斤竹炭,可以吸收空气中14公斤的水蒸汽。

五、纳米改性竹炭 活性炭和竹炭等都具有发达的孔隙结构,可以吸附有害物质,但它们的吸附都存在饱和现象。即吸附到了一定程度,就不具有吸附作用,而且存在对环境二次污染的可能性。 竹炭由于只经过炭化阶段,而不像活性炭那样一定要经过活化阶段,因此竹炭的孔隙要比活性炭大(活性炭微孔占主导作用)。活性炭微孔的直径≤20Å(2nm),竹炭的孔隙以大孔为主,其直径以200nm左右为主。 纳米Ti02光催化剂可氧化分解各种有机化合物和部分无机物,能将有毒、有害物质(如:甲醛、苯、甲苯、氨等)分解为无毒、无害的二氧化碳和水;同时纳米光催化剂超强的氧化能力可破坏细胞的细胞膜,使细菌质流失而死亡,凝固病毒的蛋白质,抑制病毒的活性,并捕捉、杀除空气中的浮游细菌,具有极强的防污、杀菌和除臭功能。 为了克服竹炭的吸附性能存在饱和现象的缺陷,把纳米材料负载到竹炭上,使竹炭性质发生根本的变化,得到纳米改性竹炭光催化吸附、杀菌剂,使竹炭的吸附作用和纳米材料的优异性能得到了完美的结合。纳米改性竹炭能将有毒、有害物质分解为无毒、无害的二氧化碳和水,同时该产品具有抑菌、杀菌能力,这样就解决了竹炭吸附饱和性的问题。 1. 纳米改性竹炭的微观结构 从扫描电镜图中可以清晰的看到纳米材料负载在竹炭的孔隙边沿和孔隙的表面,这样既保持了竹炭原有的特殊孔隙结构,又没有把孔隙堵塞,保证了竹炭的吸附性能和纳米材料的优良性能。 2. 纳米改性竹炭的抑菌功能抑菌作用的判断方法:在细菌培养皿上,放置3mm圆形抑菌试验样品,经48小时培养,观察、测量。 当:抑菌环直径大于7mm者,判为有抑菌作用。 抑菌环直径小于等于7mm者,判为无抑菌作用。 三次重复试验均有抑菌作用者,判为合格。 阴性对照组应无抑菌环产生,否则试验无效。 经抑菌、抗菌试验,结论如下: (1)两种纳米改性竹炭(颗粒、粉末)对大肠杆菌具有很好的抑菌能力,防治效力E=100%。而纳米TiO2、磷酸法活性炭和商业竹炭没有抑菌能力,它们的防治效力E=0 (2)竹炭香波和竹醋液香波对大肠杆菌有很好的抑菌能力,它们的防治效力E=100%。 (3)对金黄色葡萄球菌的抑菌率试验为99.84%,该样品对金黄色葡萄球菌有抑菌作用。 (4)对白色念珠菌的抑菌率平均为99.61%,该样品对白色念珠菌有抑菌作用。 3.纳米改性竹炭对甲醛、苯、甲苯的吸附与降解 纳米改性竹炭的净化过程包括吸附与降解两个部分。吸附过程与竹炭吸附性质有关,吸附为纳米二氧化钛的光催化提供了高浓度环境,从而大大加快了纳米材料光催化降解有毒、有害物质的速率。而它的降解是在光的作用下,竹炭表面吸附的有害气体通过纳米二氧化钛光催化剂的表面发生光催化降解反应。 (1)对甲醛的吸附与降解 表6 . 纳米改性竹炭吸附、降解甲醛的能力注:二氧化碳的增加量被认为全部由污染物降解生成在各种光照条件下,纳米改性竹炭对甲醛的净化效果明显,在紫外灯的作用下,甲醛的净化率在12h后达到97.0%,而且二氧化碳的增加量最多(达到150mg/m3),说明其对甲醛的分解贡献最大。在日光灯和白炽灯的作用下,甲醛的净化率在12h后分别达到92.4%和88.8%,其二氧化碳的增加量分别达到116mg/m3和105mg/m3。在自然光的作用下,纳米改性竹炭对甲醛的净化率也达到78.0%。从甲醛的降解氧化过程可以看出,甲醛在&#183OH自由基的攻击下,可以转换成无毒、无害的二氧化碳和水。因此也可以期待,吸附在竹炭中的甲醛,完全可以全部降解氧化 。 (2)对苯的吸咐与降解 表7 纳米改性竹炭吸附、降解苯的能力 在各种光照条件下,纳米改性竹炭对苯的净化效果较明显,但比纳米改性竹炭对甲醛的净化效果要低一些,主要是因为苯的化学稳定性比甲醛要高和苯降解的步骤复杂。同样,在紫外灯的作用下,苯的净化率在12h后达到93.5%,而且二氧化碳的增加量最多(达到110mg/m3),说明其对苯的分解贡献最大。在日光灯和白炽灯的作用下,苯的净化率在12h后分别达到87.8%和85.0%,其二氧化碳的增加量分别为76mg/m3和69mg/m3。在自然光的作用下,纳米改性竹炭对苯的净化率也达到73.5%,二氧化碳的增加量达到54mg/m3。光催化苯的降解反应过程与甲醛相似。 (3)对甲苯的吸附与降解表8 纳米改性竹炭吸附、降解甲苯的能力 在各种光照条件下,纳米改性竹炭对甲苯的净化效果较明显,而且比纳米改性竹炭对苯的净化效果要高一些,主要是因为苯的化学稳定性比甲苯要高。同样,在紫外灯的作用下,甲苯的净化率在12h后达到94.5%,而且二氧化碳的增加量最多(达到122mg/m3),说明其对甲苯的分解贡献也最大。在日光灯和白炽灯的作用下,苯的净化率在12h后分别达到88.3%和87.0%,其二氧化碳的增加量分别为91mg/m3和79mg/m3。在自然光的作用下,纳米改性竹炭对甲苯的净化率也达到76.8%,二氧化碳的增加量达到60mg/m3。二氧化碳的增加量比苯多,主要是甲苯多了一个甲基,它的最终产物也是二氧化碳和水。光催化甲苯降解的反应过程与甲醛相似。

六. 污水处理方法实例 利用特殊微生物菌群,寄居在竹炭的内部空隙中并使之繁衍,形成形态各异的生物膜,使水中的污染物吸咐与沉积在其周围,作为食物吞噬,并将其分解成水和二氧化碳,是我们提出的一个利用竹炭进行污水处理的创新方法。 这种方法,可以解决竹炭吸咐饱和过快的矛盾,只要定期向竹炭投放菌群,就可以使竹炭多次循环使用,通常一至两年时间更换一次竹炭,更换后的竹炭可用作锅炉燃料焚烧。 2005年4月,使用10吨经过生物改性的竹炭和必要的工程设施,处理南京林业大学学生生活区一万多学生的生活污水、食堂用餐排出的污水及上游居民小区排放的污水,每天污水量约一万吨。经过5个多月的运行实践,治污效果明显。治污后的水质其生物耗氧、化学耗氧、悬浮物、色度、浊度、氨氮均能达到二、三类水的排放指标。 目前,人们对竹碳研究的还不够深入,应用的不普遍,了解的不多!希望大家都来关心竹碳、认识竹碳、应用竹碳、研究竹碳,让竹碳早日走进千家万户,成为大家延延益寿,岁岁平安的日常用品,成为人们的健康卫士!

年轻的宝马
精明的康乃馨
2026-01-25 13:45:49

主要区别有,性质不同、特点不同、作用不同,具体如下:

一、性质不同

1、木炭

是木材或木质原料经过不完全燃烧,或者在隔绝空气的条件下热解,所残留的深褐色或黑色多孔固体燃料。

2、竹炭

竹炭是以三年生以上高山毛竹为原料,经近千度高温烧制而成的一种炭。

二、特点不同

1、木炭

木炭有大量的微孔和过渡孔,使它不仅有较高的比表面积,而且孔内焦油物质被排除后将有很好的吸附性能。与氧气完全燃烧产生二氧化碳,不完全燃烧产生有毒气体一氧化碳。较为疏松。

2、竹炭

①、竹炭质地坚硬,细密多孔,吸咐力强,具有吸附功能。

②、空隙度高,非常适合作为土壤微生物和有机营养成份的载体,可以增强土壤活力,是一种良好的土壤改良材料。

③、竹炭具有弱导电性,起到防静电与屏蔽电磁辐射的作用。

三、作用不同

1、木炭

金属精制时用作覆盖剂保护金属不被氧化。在化学工业上常作二硫化碳和活性炭等的原料。用作饼干厂、冶炼厂等的燃料,也用于水的过滤、液体的脱色和制备黑色火药等。还在研磨、绘画、化妆、医药、火药、渗碳、粉末合金等各方面应用。

2、竹炭

由于炭质本身有着无数的孔隙,这种炭质气孔能有效地吸附空气中一部分浮游物质,对硫化物、氢化物、甲醇、苯、酚等有害化学物质起到吸附、分解异味和消臭作用。另外,竹炭细密多孔,比表面积大,若周围环境湿度大时,可吸收水分,若周围环境干燥,则可释放水分。

参考资料来源:百度百科-木炭

参考资料来源:百度百科-竹炭

爱笑的蓝天
自由的日记本
2026-01-25 13:45:49

几年前我写过一个综述,供参考:

5. Application of P. chrysosporium in degradation of aromatic compounds

The ability of white rot fungi to degrade waste streams was first recognized from the pulp and paper

Environmental pollutants oxidized by white rot fungi References

Chlorinated compounds 2,4-Dichlorophenol,2,4,5-trichlorophenol,pentachlorophenol,  2,4-D,2,4,5-T,DDT,lindane,3,4-dichloroaniline,  polychlorinateddibenzo-p-dioxines,polychlorinatedbiphenyls reviewed by Mester and Tien, 2000

PAH  Anthenantrene,phenantrene,pyrenebenzo(a)pyrene

Dyes   Polymericdyes(polyR-481,polyB-411,polyY606,remazol brillantblue-R1)azodyes(sulfonatedandnon-sulfonated)

Nitro-substituted compounds 2,4-Dinitrotoluene,TNT

Wastewater paper mill, olive oil mill, textile wastewater Rerez J, 1997 Martirani L, 1996 Assadi M M, 2001

industry, a waste, which contains chlorinated aromatics. Moreover, Kirk (1983) wrote, ``Waste treatment might well become the first directed use of a bioligninolytic system.’’, when he first discovered ligninolytic enzymes in P. chrysosporium.

The following table lists the chemicals degraded by P. chrysosporium from Cameron, 2000.

白腐真菌P. chrysospodium对有机污染物和废水的降解

类别 名称

含氯化合物 2,4-二氯苯酚,2,4,5-三氯苯酚,五氯酚,DDT,林丹,二氯苯胺,多氯联苯

多环芳烃(PAHs) Anthenantrene,苯并(a)芘,蒽,萘

染料 聚合染料,偶氮染料,天青蓝, 溴酚蓝,结晶紫,酚红

生物聚合物 纤维素,木质素

合成聚合物 聚丙烯酸酯,聚丙烯酰胺,尼龙

含氯芳香化合物 2,4,6-三氯苯酚,2,4,5-三氯苯氧乙酸,Aroclor 1242,Aroclor 1254,四氯二苯并-p-二恶英

炸药 TNT,DNT,RDX,HMX,硝化甘油

农药 DDT,氯丹,林丹,毒杀芬

其他 氨基三唑(除草剂),叠氮化物,四氯化碳,氰化物

废水 造纸废水,炼油废水,纺织废水