消毒剂与防腐剂的差别
消毒剂和防腐剂之间没有严格的界限,常总称为“消毒防腐剂”。主要用于体表、器械、排泄物和周围环境的消毒,黏膜、创面、腔道的冲洗,以预治病原体所致的感染,作为部分药品的防腐剂等。(1)消毒剂消毒剂(Disinfectant)也称化学消毒剂,用于杀灭传播媒介上病原微生物,使其达到无害化要求,将病原微生物消灭于人体之外,切断传染病的传播途径,达到控制传染病的目的。常用消毒剂按成分分类主要有:含醛类、酚类、醇类、碱类、含氯类、含碘类、过氧化物类、环氧乙烷、表面活性剂、重金属类、染料类等。①酚类:包括苯酚、甲酚、卤代苯酚及酚的衍生物,常用的煤酚皂,其主要成分为甲基苯酚。卤化苯酚可增强苯酚的杀菌作用,例如三气羟基二苯醚。②醛类:包括甲醛和戊二醛等,可作为一种活泼的烷化剂作用于微生物蛋白质中的氨基、竣基、羟基和巯基,从而破坏蛋白质分子,使微生物死亡。甲醛和戊二醛可杀灭各种微生物,但对人体皮肤、黏膜有刺激和固化作用,并可使人致敏,因此不可用于空气消毒,仅用于医疗器械的消毒或灭菌,且经消毒或灭菌的物品必须用灭菌水将残留的消毒液冲洗干净后才可使用。③醇类:最常用的醇类消毒剂是乙醇和异丙醇,可凝固蛋白质,导致微生物死亡;可杀灭细菌繁殖体,破坏多数亲脂性病毒,如单纯疱疹病毒、乙型肝炎病毒、人类免疫缺陷病毒等。醇类杀灭微生物作用受有机物影响且易挥发,应采用浸泡消毒或反复擦拭以保证其作用时间。醇类可作为某些消毒剂的溶剂,使细胞膜和酶受害而死亡。⑤含氯类:包括无机气化合物(如次氯酸钠、次氯酸钙、氯化磷酸三钠)、有机气化合物(如二氯异m尿酸钠、三氯异氰尿酸、氯铵T等),溶于水可产生具有杀灭微生物活性的次氯酸。次氯酸分子量小,易扩散到细菌表面并穿透细胞膜进人菌体内,使菌体蛋白氧化导致细菌死亡。含氯消毒剂可杀灭各种微生物,包括细菌繁殖体、病毒、真菌、结核杆菌和抵抗力最强的细菌芽胞。⑥含碘类:包括碘酊和碘伏,可杀灭细菌繁殖体、真菌和部分病毒,可用于皮肤、黏膜消毒,医院常用于外科洗手消毒。⑦过氧化物类:具有强氧化能力,各种微生物对其十分敏感,可将所有微生物杀灭。这类消毒剂包括过氧化氢、过氧乙酸、二氧化氯和臭氧等
常用的消毒剂产品以成分分类主要有9种:含氯消毒剂、过氧化物类消毒剂、醛类消毒剂、醇类消毒剂、含碘消毒剂、酚类消毒剂、环氧乙烷、双胍类消毒剂和季铵盐类消毒剂。按消毒效果分类有3种:高效消毒剂、中效消毒剂、低效消毒剂。
含氯消毒剂:是指溶于水产生具有杀微生物活性的次氯酸的消毒剂,其杀微生物有效成分常以有效氯表示。次氯酸分子量小,易扩散到细菌表面并穿透细胞膜进入菌体内,使菌体蛋白氧化导致细菌死亡。含氯消毒剂可杀灭各种微生物,包括细菌繁殖体、病毒、真菌、结核杆菌和抗力最强的细菌芽胞。这类消毒剂包括无机氯化合物(如次氯酸钠、次氯酸钙、氯化磷酸三钠)、有机氯化合物(如二氯异氰尿酸钠、三氯异氰尿酸、氯铵T等)。无机氯性质不稳定,易受光、热和潮湿的影响,丧失其有效成分,有机氯则相对稳定,但是溶于水之后均不稳定。
过氧化物类消毒剂:具有强氧化能力,各种微生物对其十分敏感,可将所有微生物杀灭。这类消毒剂包括过氧化氢、过氧乙酸、二氧化氯和臭氧等。它们的优点是消毒后在物品上不留残余毒性。
醛类消毒剂:包括甲醛和戊二醛等。此类消毒原理为一种活泼的烷化剂作用于微生物蛋白质中的氨基、羧基、羟基和巯基,从而破坏蛋白质分子,使微生物死亡。甲醛和戊二醛均可杀灭各种微生物,由于它们对人体皮肤、黏膜有刺激和固化作用,并可使人致敏,因此不可用于空气、食具等消毒,一般仅用于医院中医疗器械的消毒或灭菌,且经消毒或灭菌的物品必须用灭菌水将残留的消毒液冲洗干净后才可使用。
醇类消毒剂:最常用的是乙醇和异丙醇,它可凝固蛋白质,导致微生物死亡,属于中效消毒剂,可杀灭细菌繁殖体,破坏多数亲脂性病毒,如单纯疱疹病毒、乙型肝炎病毒、人类免疫缺陷病毒等。醇类杀微生物作用亦可受有机物影响,而且由于易挥发,应采用浸泡消毒或反复擦拭以保证其作用时间。醇类常作为某些消毒剂的溶剂,而且有增效作用,常用浓度为75%。据国外报道:80%乙醇对病毒具有良好的灭活作用。近年来,国内外有许多复合醇消毒剂,这些产品多用于手部皮肤消毒。
含碘消毒剂:包括碘酊和碘伏,可杀灭细菌繁殖体、真菌和部分病毒,可用于皮肤、黏膜消毒,医院常用于外科洗手消毒。
酚类消毒剂:包括苯酚、甲酚、卤代苯酚及酚的衍生物,常用的煤酚皂又名来苏尔,其主要成分为甲基苯酚。卤化苯酚可增强苯酚的杀菌作用,例如三氯强基二苯醚作为防腐剂已广泛用于临床消毒、防腐。
环氧乙烷:又名氧化乙烯,属于高效消毒剂,可杀灭所有微生物。由于它的穿透力强,常将其用于皮革、塑料、医疗器械、医疗用品包装后进行消毒或灭菌,而且对大多数物品无损害,可用于精密仪器、贵重物品的消毒,尤其对纸张色彩无影响,常将其用于书籍、文字档案材料的消毒。
此外,还有双胍类和季铵盐类消毒剂,它们属于阳离子表面活性剂,具有杀菌和去污作用,医院里一般用于非关键物品的清洁消毒,也可用于手消毒,将其溶于乙醇可增强其杀菌效果作为皮肤消毒剂。由于这类化合物可改变细菌细胞膜的通透性,常将它们与其他消毒剂复配以提高其杀菌效果和杀菌速度。
羟基,甲基皆可使苯环活化,尤其是邻对位
但是,间位其实也被活化了,只是效果没有邻对位显著而已
羟基定位性更强(或者说苯酚反应活性更强,用溴水就能反应),以取代羟基邻位为主,但由于上述原因,甲基邻位也可发生取代
羟基直接和芳烃核(苯环或稠苯环)的sp2杂化碳原子相连的分子称为酚,这种结构与脂肪烯醇有相似之处,故也会发生互变异构,称为酚式结构互变。但是,酚的结构较为稳定,因为它能满足一个方向环的结构,故在互变异构平衡中苯酚是主要存在形式。
酚类化合物种类繁多,有苯酚、甲酚、氨基酚、硝基酚、萘酚、氯酚等,而以苯酚、甲酚污染最突出。
苯酚简称酚,又名石炭酸,微酸性(腐蚀性),常温下能挥发,放出一种特殊的刺激性臭味,在空气中变粉红色。医院常用的“来苏水”消毒剂便是苯酚钠盐的稀溶液。
甲酚又称煤酚,与苯酚的化学活性及毒性类似,也经常同时存在。
酚类按其芳环上所直接连接的羟基数目的不同,可分为一元酚和多元酚;按其挥发性又可分为挥发酚与不挥发酚。一元酚多具有挥发性(沸点在230℃以内)。 最简单的酚是苯酚,这是一种有特殊气味的无色固体,最早是从煤焦油中发现的,故又俗称为石炭酸(因其有酸性)。
在空气中放置时,许多酚类化合物都是因带有部分氧化产物而呈现粉红色和深棕色,酚分子间及酚与水分子之间也能生成氢键,故其沸点和在水中是溶解性都比分子量相近的芳烃高和大。酚在冷水中的溶解度较少,但与热水可以互溶,也易溶与醇、醚等有机溶剂。主要代表物有:
1、苯酚(C6H5OH) 俗名石炭酸,除来源于煤焦油外,还可由氯苯水解或异丙苯氧化等方法制备;有机合成的重要原料,多用于制造塑料、医药、农药、染料等;
2、对苯二酚 无色晶体,易被氧化为对苯醌,可用作显影剂、抗氧化剂、阻聚剂;
3 、萘酚 有α、β两种异构体。 α-萘酚和β-萘酚分别与三氯化铁生成紫色和绿色沉淀;可由相应的萘磺酸钠经碱熔而制得。也可在酸性条件下,由萘胺水解得到。
酚类化合物是一种原型质毒物,对一切生活个体都有毒杀作用。能使蛋白质凝固,所以有强烈的杀菌作用。其水溶液很易通过皮肤引起全身中毒;其蒸气由呼吸道吸入,对神经系统损害更大。长期吸入高浓度酚蒸汽或饮用酚污染了的水可引起慢性积累性中毒;吸入高浓度酚蒸汽、酚液或被大量酚液溅到皮肤上可引起急性中毒。如不及时抢救,可在3~8小时内因神经中枢麻痹而残废。慢性酚中毒常见有呕吐,腹泻、食欲不振、头晕、贫血和各种神经系病症。人对酚的口服致死量为530毫克/公斤体重。
酚对水产和微生物、农作物都有一定的毒害。水中含酚0.1~0.2毫克/升时,鱼肉即有臭味不能食用;6.5~9.3毫克/升时,能破坏鱼的鳃和咽,使其腹腔出血、脾肿大甚至死亡。含酚浓度高于100毫克/升的废水直接灌田,会引起农作物枯死和减产。
大多数酚是无色针状结晶或白色结晶,少数烷基酚为高沸点液体;有特殊气味,遇空气和光变红,遇碱变色更快。
低级酚都有特殊的刺激性气味,尤其对眼睛、呼吸道粘膜、皮肤等有强烈的刺激和腐蚀作用,在使用时应注意安全保护措施。有的酚具有较强的杀菌能力、如医院中使用的消毒水--来苏儿,就是混合甲酚的水溶液。
酚虽然可以发生碳氧键和氢氧键断裂两类反应,但由于p-π共轭效应,碳氧键非常牢固,不易断裂。但是,氢氧键是容易断裂的,因为生成的酚负离子中的负电荷可以离域分散而得以稳定。酚上的苯环则由于上述共轭作用而比苯更容易进行亲电取代反应。
酚(phenol),通式为ArOH,是芳香烃环上的氢被羟基(-OH)取代的一类芳香族化合物。最简单的酚为苯酚。酚类化合物是指芳香烃中苯环上的氢原子被羟基取代所生成的化合物,根据其分子所含的羟基数目可分为一元酚、二元酚和多元酚(三个或三个以上酚羟基)。
酚的羟基直接与苯环的sp2杂化的碳原子相连,这与脂肪族化合物中的烯醇很相似。另外,由于 酚的羟基氧原子的未共用电子对与苯环的共轭作用,不但使苯酚成稳定化合物,而且也有利苯酚的离解。值得注意的是,酚的羟基氧原子杂化类型为不等性sp2杂化,不同于醇羟基氧原子的不等性sp3杂化。
酚类易被氧化,但产物复杂。纯苯酚系无色结晶,在空气中放置后,就能逐渐氧化变为粉红色、红色或暗红色。苯酚如用酸性重铬酸钾强烈氧化,则生成对苯醌。
邻苯二酚和对苯二酚比苯酚更容易被氧化成相应的醌,但间苯二酚不能被氧化为相应的醌。醌是一般都具有颜色。
大多数的酚能与氯化铁的稀水溶液发生显色反应。不同的酚与氯化铁反应呈显不同的颜色。例如,苯酚、间苯二酚、1,3,5-苯三酚与氯化铁溶液作用,均显紫色;甲苯酚呈蓝色;邻苯二酚、对苯二酚呈绿色;1,2,3-苯三酚呈红色,α-萘酚为紫色沉淀,β-萘酚则为绿色沉淀等。此显色反应常用以鉴别酚类的存在。
具有羟基与sp2杂化碳原子相连的结构( —C=C—OH )结构的化合物能与氯化铁的水溶液显示特殊的颜色一般的醇式羟基无此反应,故也可用来区别醇与烯醇。
酚羟基由于p-π共轭而难于被取代,但苯环上的氢原子可被取代,发生卤化、硝化和磺化等反应,并且羟基是邻、对位定位基,对苯环有活化作用,故酚比苯更容易进行亲电取代反应。
1、卤化苯酚
水溶液与溴水反应立刻生成三溴苯酚白色沉淀,环境检测中常用来对苯酚定性或定量测定;
2、硝化苯酚
在室温下可被稀硝酸硝化,生成邻、对位硝基化合物。使用稀硝酸即可生成邻硝基苯酚和对硝基苯酚的混合物。如使用浓硝酸和浓硫酸的混合物作硝化剂则可生成二硝基苯酚或三硝基苯酚。2,4,6-三硝基苯酚俗称苦味酸,酸性比苯酚强得多。
希望我能帮助你解疑释惑。
但酚的性质找到一些!
酚的羟基直接与苯环的sp2杂化的碳原子相连,这与脂肪族化合物中的烯醇很相似。另外,由于 酚的羟基氧原子的未共用电子对与苯环的共轭作用,不但使苯酚成稳定化合物,而且也有利苯酚的离解。
弱酸性
酸性比较:碳酸>苯酚>水。 酚比醇的酸性强,是由于酚式羟基的O-H键易断裂,生成的苯氧基负离子比较稳定,使苯酚的离解平衡趋向右侧,而表现弱酸性。酚式羟基的氢除能被金属取代外,还能与强碱溶液生成盐(如酚钠)和水。 若在苯酚钠的水溶液中通入二氧化碳,即有游离苯酚析出。这是因为苯酚酸性比碳酸弱,所以酚盐能被碳酸所分解。 C6H5ONa+CO2+H2O→C6H5OH+NaHCO3 由于酚的酸性弱于碳酸,所以酚只能溶于氢氧化钠而不溶于碳酸氢钠。实验室里常根据酚的这一特性,而与既溶于氢氧化钠又能溶于碳酸氢钠的羧酸相区别。此方法也可用于中草药中酚类成分与羧酸类成分的分离。
傅-克反应
苯酚也容易发生傅 - 克酰基化和烷基化反应。但是,酚羟基要三氯化铝作用形成铝盐,因此需要用较多的三氯化铝来催化反应,得到对和邻酰基苯酚。邻酰基酚中酚羟基的氢与酰基氧原子之间可以形成氢键,这使它在非极性溶液中的溶解度较大,利用该特性采用重结晶的方法能分离这个异构体。 傅 - 克反应需要以硝基苯或二硫化碳为溶剂,若以三氟化硼为催化剂,酚和羧酸也能直接反应得到酰基代酚。 苯酚与邻苯二甲酸酐在浓硫酸或无水氯化锌作用下发生上述的酰基化反应,两分子苯酚与一分子酸酐缩合后得到酚酞这一最为常用的酸碱指示剂。酚酞在 pH 小于 8.5 的溶液中为无色液体,当 pH 大于 9 时,形成电荷离域范围很大的粉红色的共轭双负离子。酚的烷基化反应一般以醇或烯烃在浓硫酸催化下进行,反应不容易控制在单取代阶段。
氧化反应
酚类易被氧化,但产物复杂。纯苯酚系无色结晶,在空气中放置后,就能逐渐氧化变为粉红色、红色或暗红色。苯酚如用酸性重铬酸钾强烈氧化,则生成对苯醌。 邻苯二酚和对苯二酚比苯酚更容易被氧化成相应的醌,但间苯二酚不能被氧化为相应的醌。醌是一般都具有颜色。
与FeCl3的显色反应
大多数的酚能与氯化铁的稀水溶液发生显色反应。不同的酚与氯化铁反应呈显不同的颜色。例如,苯酚、间苯二酚、1,3,5-苯三酚与氯化铁溶液作用,均显紫色;甲苯酚呈蓝色;邻苯二酚、对苯二酚呈绿色;1,2,3-苯三酚呈红色,α-萘酚为紫色沉淀,β-萘酚则为绿色沉淀等。此显色反应常用以鉴别酚类的存在。 具有羟基与sp2杂化碳原子相连的结构( —C=C—OH )结构的化合物能与FeCl3的水溶液显示特殊的颜色一般的醇式羟基无此反应,故也可用来区别醇与烯醇。
苯环上的取代反应
酚羟基由于p-π共轭而难于被取代,但苯环上的氢原子可被取代,发生卤化、硝化和磺化等反应,并且羟基是邻、对位定位基,对苯环有活化作用,故酚比苯更容易进行亲电取代反应。 1、卤化 苯酚水溶液与溴水反应立刻生成三溴苯酚白色沉淀,环境检测中常用来对苯酚定性或定量测定; 2、硝化 苯酚在室温下可被稀硝酸硝化,生成邻、对位硝基化合物。使用稀硝酸即可生成邻硝基苯酚和对硝基苯酚的混合物。如使用浓硝酸和浓硫酸的混合物作硝化剂则可生成二硝基苯酚或三硝基苯酚。2,4,6-三硝基苯酚俗称苦味酸,酸性比苯酚强得多。
方法介绍
酚类化合物通常以酚的衍生物来命名,在酚的前面加上芳环的名称,以此作为母体,在加上其他取代基的名称和位置,多元酚则称之为二酚、三酚等等。有些酚类化合物可以用羟基化合物命名。 酚的制备方法和醇有所不同,目前主要有以下几类方法。
1卤代物的水解
芳香卤代物的水解不如脂肪族卤代物那么容易,一般需要加温加压在工业生产上进行,反应可能是经过苯炔中间体过程。当卤素的邻对为上有吸电子基团存在时,芳环受到缺电活化,使水解反应容易发生。
2磺酸盐碱熔法
芳磺酸用亚硫酸钠 Na2SO3 中和为芳磺酸钠盐再有碱熔融后酸化得到酚。 这是生产苯酚最早的一个方法。反应中要用到强酸强碱,污染大,反应步骤又长,自动话生产率低,当分子中含有羰基、卤素、氨基、硝基等官能团时,在高温生产时还容易受到氧化等副反应的影响,这些因素都限制了这个反应的应用价值。然而,这个反应产率高,纯度也还可以,副产物 Na2SO3 和 SO3 可反复使用,设备简单,无论在实验室还是工业上都仍有应用价值,像间二苯酚、对甲苯酚,苯酚等产品还主要是由此法产生。
3重氮盐水解
芳香烃硝化还原得到苯胺后再制得重氮盐,重氮盐水解后得到苯酚。 目前工业生产苯酚的最主要方法是用异丙苯空气氧化法,该方法除了生成苯酚外,还得到丙酮这一重要工业原料。
4格氏反应
芳香卤代物格氏反应和硼酸酯作用后再水解也是实验室里得到酚的一个好方法。
苯酚再和氢氧化钠溶液反应得到苯酚钠!——苯酚属于酸,又叫石炭酸,酸一般都能和碱反应得到盐和水!
但注意:氯苯在氢氧化钠水溶液中很难水解生成苯酚。
由于酚羟基氧上的p轨道与苯环共轭,使碳氧键难以断裂,因而酚羟基很难发生脱水反应,也不能和卤化氢作用生成卤代苯。
选择鉴别的辅助材料:2,4-二硝基苯肼,FeCl3显色剂, I2的碱性溶液
分别与2,4-二硝基苯肼反应,显色的定义为A组(苯乙酮+苯甲醛);不显色的定为B组(苯酚+溴化苄)
A组,在I2的碱性溶液,有黄色晶体产生的为苯乙酮,无黄色晶体的则是苯甲醛;
B组,与FeCl3显色的为苯酚,不显色的为溴化苄。
BrO3- +5Br- +6H+=3Br2+3H2O
C6H6O(苯酚)+3Br2=C6H3OBr3(2,4,6-三溴苯酚)+3HBr
生成的2,4,6-三溴苯酚是白色絮状沉淀