建材秒知道
登录
建材号 > 甲苯 > 正文

锌还原卤代烃的机理

凶狠的香菇
欣喜的缘分
2022-12-31 10:23:29

锌还原卤代烃的机理

最佳答案
不安的小天鹅
花痴的纸鹤
2026-01-26 23:14:28

二卤代烃与锌反应机理

取代反应是带负电碱性亲和试剂进攻从卤代烃的背后进攻,与之前的卤代烃形成过渡态化合物,卤离子得到电子从物质上脱落,羟基保留,最终形成了醇。这种醇的构型与之前的构型相比发生了翻转。醇羟基也可以被卤素原子取代,同理。这是SN2反应(三级醇是SN1反应,会发生重排)。

最新回答
糊涂的帆布鞋
搞怪的荷花
2026-01-26 23:14:28

有机物是有机化合物的简称,所有的有机物都含有碳元素。但是并非所有含碳的化合物都是有机化合物,比如CO,CO2。除了碳元素外有机物还可能含有其他几种元素。如H、N、S等。虽然组成有机物的元素就那么几种(碳最重要),但到现在人类却已经发现了超过3000万种有机物。而它们的特性更是千变万化。因此,有机化学是化学中一个相当重要的研究范畴。

甲烷

甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂(如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。

甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及甲醛等物质的原料。

413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。

甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。

烯烃

烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物。属于不饱和烃,分为链烯烃与环烯烃。按含双键的多少分别称单烯烃、二烯烃等。

链单烯烃分子通式为CnH2n,常温下C2—C5为气体,是非极性分子,不溶或微溶于水。双键基团是烯烃分子中的功能基团,具有反应活性,可发生氢化、卤化、水合、卤氢化、次卤酸化、硫酸酯化、环氧化、聚合等加成反应,还可氧化发生双键的断裂,生成醛、羧酸等。

可由卤代烷与氢氧化钠反应制得:

RCH2CH2X + NaOH —— RHC=CH2 + NaX + H2O (X为氯、溴、碘)

也可由醇失水或由邻二卤代烷与锌反应制得。小分子烯烃主要来自石油裂解气。环烯烃在植物精油中存在较多,许多可用作香料。 烯类是有机合成中的重要基础原料,用于制聚烯烃和合成橡胶。

炔烃

炔烃是一种有机化合物。属于不饱和烃。其官能团为碳碳三键(C≡C)。通式为CnH2n-2简单的炔烃化合物有乙炔(C2H2),丙炔(C3H4)等。因为乙炔在燃烧时放出大量的热,炔常被用来做焊接时的原料。

乙炔用电石和水制取。

CaC2+H2O→C2H2+CaO

最简单的芳烃。分子式C6H6。为有机化学工业的基本原料之一。无色、易燃、有特殊气味的液体。熔点5.5℃,沸 点80.1℃,相对密度0.8765 (20/4℃)。在水中的溶解度很小,能与乙醇、乙醚、二硫化碳等有机溶剂混溶。能与水生成恒沸混合物,沸点为69.25℃,含苯 91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。苯在燃烧时产生浓烟。苯是一种无色、具有特殊芳香气味的液体,能与醇、醚、丙酮和四氯化碳互溶,微溶于水。苯具有易挥发、易燃的特点,其蒸气有爆炸性。经常接触苯,皮肤可因脱脂而变干燥,脱屑,有的出现过敏性湿疹。长期吸入苯能导致再生障碍性贫血。

卤代反应

反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

以溴为例:反应需要加入铁粉,铁在溴作用下先生成三溴化铁。

在工业上,卤代苯中以氯和溴的取代物最为重要。

硝化反应

苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。

磺化反应

用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。

苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

烷基化反应

在AlCl3催化下苯环上的氢原子可以被烷基(烯烃)取代生成烷基苯,这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯

在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

加成反应

苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。

此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。

氧化反应

苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。

但是在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

这是一个强烈的放热反应。

卤代烃

卤代烃

卤代烃

halohydrocarbon

烃分子中的氢原子被卤素(氟、氯、溴、碘)取代后生成的化合物。

命名根据取代卤素的不同,分别称为氟代烃、氯代烃、溴代烃和碘代烃;也可根据分子中卤素原子的多少分为一卤代烃、二卤代烃和多卤代烃;也可根据烃基的不同分为饱和卤代烃、不饱和卤代烃和芳香卤代烃等。此外,还可根据与卤原子直接相连碳原子的不同,分为一级卤代烃RCH2X、二级卤代烃R2CHX和三级卤代烃 R3CX。

性质 基本上与烃相似,低级的是气体或液体,高级的是固体。它们的沸点随分子中碳原子和卤素原子数目的增加(氟代烃除外)和卤素原子序数的增大而升高。

卤代烷中的卤素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相应的醇、醚、腈、胺等化合物。

其分子通式为CnH2n+1 OH

alcohols

烃分子中一个或几个氢被羟基取代而生成的一类有机化合物。芳香烃的环上的氢被羟基取代而生成的化合物不属醇类而属酚类。

一般醇为无色液体或固体,含碳原子数低于12的一元正碳醇是液体,12或更多的是固体,多元醇(如甘油)是糖浆状物质。一元醇溶于有机溶剂,三个碳以下的醇溶于水。低级醇的熔点和沸点比同碳原子数的烃高得多,这是由于醇分子中有氢键存在,发生缔合作用。

当有机醇中的羟基被巯基取代时,可称为硫醇,结构通式如图,可称为硫醇.硫醇的化学性质与醇有很多相似之处,醇与醇能生成醚,同样,硫醇与硫醇生成的是硫醚.

在铜催化和加热的条件下脱2H生成醛(链端)或酮(链中)

醛的通式为R-CHO,-CHO为醛基。

醛基是羰基(-CO-)和一个氢连接而成的基团。

醛的反应老考,有银镜反应、有和新制氢氧化铜反应出砖红色沉淀等,都是被氧化生成有机酸。

有机酸

有机酸类 (Organic acids)是分子结构中含有羧基(一COOH)的化合物。

有酸的通性。

可以和醇或酚类酯化。

酚(phenol),通式为ArOH,是芳香烃环上的氢被羟基(—OH)取代的一类芳香族化合物。最简单的酚为苯酚。

分类

依分子中羟基数分为一元酚、二元酚及多元酚;

羟基在萘环上的称为萘酚,在蒽环上称为蒽酚。

酸性

与普通的醇不同,由于受到芳香环的影响,酚上的羟基(酚羟基)有弱酸性,酸性比醇羟基强。

如苯酚(C6H5OH)自身在水中的电离:

酚可与强碱生成酚盐,如苯酚钠。

易被氧化

在空气中无色的晶体酚易被氧化为红色或粉红色的醌。

配合物

酚在溶液中与三氯化铁可形成配合物,并呈现蓝紫色,可以鉴定三氯化铁或酚。

反应

酚羟基的邻对位易发生各种亲电取代反应;

酚羟基可发生烷基化及酰基化反应。

制备

酚一般可由芳烃磺化后经碱熔融制得;

酚也可由卤代芳烃与碱在高温高压催化下反应制得;

芳香伯胺经重氮盐水解也可制得酚。

七、有机反应类型与对应物质类别

1.取代反应

(1)定义:

有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。

(2)能发生取代反应的物质:

①烷烃:光照条件下与X2取代;

②芳香烃:Fe(FeX3)条件下与X2发生苯环上的取代;与浓硝酸浓硫酸在50~60℃水浴下的硝化反应;与浓硫酸在70~80℃水浴条件下的磺化反应;在光照下与X2发生烷基上的取代;

③醇:与HX取代;与含氧酸酯化;分子间脱水;

注:醇与钠的反应归入置换反应。

④酚:与浓溴水生成2,4,6-三溴苯酚;与浓硝酸生成2,4,6-三硝基苯酚;

注:液态酚与钠的反应仍属于置换反应。

⑤酯:酯的水解;

⑥羧酸:羧酸的酯化反应;

⑦卤代烃:与NaOH溶液共热水解。

(3)典型反应

CH4+Cl2 CH3Cl+HCl

CH3CH2OH+HBr CH3CH2Br+H2O

CH3CH2OH+HOCH2CH3 CH3CH2OCH2CH3

2.加成反应

(1)定义:

有机物分子里不饱和的碳原子跟其他原子或原子团直接结合生成别的物质。

(2)能发生加成反应的物质,包括含C=C、C C、-CHO、羰基、苯环的物质,具体如下:

①烯烃:与H2、X2、HX、H2O、HCN等加成;

②炔烃:与H2、X2、HX、H2O、HCN等加成;

③苯及同系物:与H2在Ni催化下加成、与Cl2在紫外光下加成;

④醛:与HCN、H2等;

⑤酮:H2;

⑥还原性糖:H2;

⑦油酸、油酸盐、油酸某酯、油(不饱和高级脂肪酸甘油酯)的加成:H2、H2O、X2等;

⑧不饱和烃的衍生物,如卤代烯烃、卤代炔烃、烯醇、烯醛、烯酸、烯酸酯、烯酸盐等等。

说明:

一般饱和羧酸、饱和酯不发生加成反应。

(3)典型反应

CH2=CH2+Br2→CH2Br—CH2Br

3.加聚反应

(1)定义:

通过加成聚合反应形成高分子化合物。

(2)特征:①是含C=C双键物质的性质。②生成物只有高分子化合物。

(3)能发生加聚反应的物质:烯、二烯、含C=C的其他类物质。

(4)典型反应

4.缩聚反应

(1)定义: 通过缩合(缩去HX、H2O、NH3等)反应生成高分子化合物的反应。

(2)特征:生成高分子化合物和小分子物质。

(3)能发生缩聚反应的物质

①苯酚与甲醛 ②二元醇与二元酸 ③羟基羧酸 ④氨基酸 ⑤葡萄糖

(4)典型反应

说明:

(1)加聚反应与缩聚反应,是合成高分子化合物的两大反应,但区别很大。

(2)加聚反应是由不饱和的单体聚合成高分子的反应,其产物只有一种高分子化合物。

(3)参加缩聚反应的单体一般含有两种或两种以上能相互作用的官能团(或两个或两个以上易断裂的共价键)的化合物,产物中除一种高分子化合物外,还生成有小分子.如H2O、HCl、NH3等。链节的组成与参加反应的任何一种单体均不相同。

(4)从反应机理上看,加聚反应是不饱和分子中的双键发生的,实质还是加成反应。双键是发生加聚反应的内因。缩聚反应是通过单体中的官能团相互作用经缩合生成小分子,同时又聚合成大分子的双线反应。发生缩聚反应的内因是相互能作用的官能团(或较活动的原子)。

(5)发生加聚反应的单体不一定是一种物质。也可以是两种或两种以上。如丁苯橡胶就是由单体1,3—丁二烯和苯乙烯加聚而成,缩聚反应的单体不一定就是两种,也有一种的,如单糖缩聚成多糖、氨基酸缩聚成多肽,也可以是两种以上的。

5.消去反应

(1)定义:

从一个有机分子中脱去小分子(如H2O,HX等),而生成不饱和化合物(含双键或叁键)的反应。

(2)能发生消去反应的物质:醇、卤代烃。

(3)典型反应

6.氧化反应

(1)含义:有机物去H或加O的反应.

(2)类型:

①在空气或氧气中燃烧。

②在催化剂存在时被氧气氧化。如:

③有机物被某些非O2的氧化剂氧化。包括:

a.能被酸性KMnO4氧化的是含C=C、C C、-CHO及部分含-OH的物质,具体包括:

烯、炔、二烯、油脂(含C=C)、苯的同系物、酚、醛、葡萄糖、部分醇等。

说明:

饱和的羧酸、饱和的酯一般不能被酸性高锰酸钾氧化。

b.能被银氨溶液或新制备的Cu(OH)2悬浊液氧化的是含-CHO的物质,包括:

醛类、甲酸及甲酸酯、甲酸盐、葡萄糖、麦芽糖。

RCHO+2Cu(OH)2 RCOOH+Cu2O↓+2H2O

7.还原反应

(1)含义:有机物加H去O的反应。

(2)类型:含C=C、C C、-CHO、羰基、苯环的物质,包括:

烯、二烯、炔、芳香族化合物、油脂、醛、甲酸及其盐和酯、酮、葡萄糖、麦芽糖等。如:

8.酯化反应(属于取代反应)

(1)定义:酸跟醇起作用,生成酯和水的反应。

(2)能发生酯化反应的物质:羧酸与醇、无机含氧酸与醇、无机含氧酸与纤维素。

(3)典型反应

9.水解反应(属于取代反应)

(1)反应特征:有水参加反应,有机物分解成较小的分子。

(2)能够水解的物质:碳化钙等、

CH3COOC2H5+NaOH CH3COONa+CH3CH2OH

注:

其他水解的物质有CaC2、Al2S3、弱酸根、弱碱的阳离子等。举例如下:

CaC2+2H2O Ca(OH)2↓+H2O

Al2S3+6H2O=2Al(OH)3↓+3H2S↑

Fe3++3H2O Fe(OH)3+3H+

CO32-+H2O HCO3-+OH-

10. 其它反应

①有机物跟钠反应

②碳化

③氨基酸的两性

④低聚合:

八、常见有机物的鉴别

常见有机物的鉴别试剂、反应现象(或能否反应)如下表:(注:能反应的打“√”,不能反应的略)

碳碳双键 碳碳叁键 甲苯 卤代烃 醇 苯酚 醛 甲酸 乙酸 甲酸酯 葡萄糖 淀粉 蛋白质

Na √ √ √ √

NaOH 水解后加硝酸银 √ √ √ 水解 √

Na2CO3 √ √ √

NaHCO3 √ √

Br2水 √ √ 萃取 白色沉淀 √ √ √ √

H+、KMnO4 √ √ √ 伯仲醇可以 √ √ √ √ √

石芯试剂 √ √

银氨溶液 √ √ √ √

新制Cu(OH)2 常温 溶解 溶解 √

加热 √ √ √ √

FeCl3 √

I2水 √

说明:

能使溴水、H+、KMnO4溶液褪色,且能发生银镜反应的还有葡萄糖溶液。

冷酷的黑猫
无私的枕头
2026-01-26 23:14:28
卤代烃是一类重要的活性化合物,卤素原子通过化学反应可以转变为其他许多官能团。

5.4.1卤代烃被羟基、烷氧基、硝基、氨基、硫醇基、炔基取代,生成醇、醚、亚硝酸酯和硝基化合物等有机化合物。

亲核取代反应虽然有SN1和SN2两种反应机理,但是底物在实际反应时并不是完全按照SN1或SN2机理来进行的,有些底物主要按照其中一种过程发生反应,也有不少底物是二者兼而有之。同时,改变反应条件也可以使SN2和SN1这两个过程发生改变。这些因素有下列几点。

(1)底物结构中的立体效应和电子效应

(2)离去基团的影响

5.4.2 卤代芳烃的亲核取代反应和苯炔

卤苯上卤原子的未成对电子和苯环π电子有p-π共轭,C-X键有部分双键性质不易断裂。

当芳香族卤代烃中卤原子的邻、对位上有硝基取代时,给卤原子就变得活泼起来了,而且活性随着邻、对位上硝基的增多而增大。

碳负离子越是稳定,也越是容易生成,反应活化能越低,整个取代反应就进行很快或者易于发生。

卤代芳烃在液氨中与氨基钠反应,卤原子被取代生成芳香胺。

5.4.3 消除反应

卤代烃和碱的醇溶液反应,脱去一分子卤化氢而形成碳碳不饱和键。

这种从一个分子中失去某些小分子同时生成新键的反应称为消除反应。对卤代烃而言,绝大部分脱卤代烃的反应是1,2-消除反应。此外,消除反应的方向取向上还有一种规律,即产物有可能生成共轭烯烃时,则消除方向总是有利于向生成共轭烯烃的方向进行。这可以从产物共轭二烯的稳定性来得到理解,在热力学和动力学上这样的反应都是有利的进程。

各种卤代烃消除卤化氢反应的容易程度为叔>仲>伯

5.4.3.1 消除反应的历程

卤代烃的β-消除反应也有与亲核反应相似的两种反应历程,即单分子消除反应和双分子消除反应机理。

苯环的硝化反应可能有三个机理。

5.4.3.2 消除反应的立体化学过程

消除反应得到的是π键,由于π键结构的要求,过度态中的氢和卤素原子应该在同一平面内才能确保逐渐形成的双键中的两个p轨道有最大的重叠。故消除反应时两个离去基是位于共平面构象进行。从卤代烃的立体结构分析,E2消除反应有两种可能的立体化学过程,即顺式和反式消除。

5.4.4 亲核取代反应和消除反应的竞争

消除反应和亲核取代有相似的历程,因此,消除反应发发生常伴随有亲核取代反应,反之亦然。影响这二类不同化学反应的规律因素有如下几点。

(1)卤代烃的结构

(2)试剂的碱性

(3)溶剂极性

(4)反应温度

5.4.5 脱卤化反应和还原反应

邻二卤代烃除了能够脱卤代氢、炔烃或共轭烯烃外,在锌、镍等金属还原的条件或碘负离子存在下还可以脱去一分子卤生成烯烃(参见3.2)。邻二碘代物的脱碘成烯反应很快,不需要外加试剂,稍稍热即可。因此,烯烃很难发生有效的加成反应。烯烃很难和碘发生有效的加成反应。

利用二卤代物的脱卤反应还可以制备环烷烃,特别是小环化合物。

卤代物可以用锂铝氢来还原为烃,碘代物提供负离子H-,它以游离子或不完全游离的方式作为亲核试剂进攻,卤素原子带着一对电子离去,反应速度为伯卤代烃最大,仲卤代烃其次,叔卤代烃最小。因此,反应基本上是以SN2方式进行的产率很高。

卤代烃的还原还可以用其他化学试剂,如锌和盐酸、钠和液氨、氢碘酸等活性氢还原剂或催化氢解来实现,卤代烃的还原也相当于对卤原子的取代反应。

5.4.6 与金属反应

卤代烃可以与Li、Na、Cu、Mg、Zn、Ca和许多过渡元素形成金属和碳成键的一类有机金属化合物。根据金属活性和电负性的大小,金属和碳之间可以形成离子键、共价键和配位键等各种不同的键形式。由于金属的电负性总是比碳小,因此有机金属化合物的M—C键有极性,金属为正,碳端为负,反应时带着一对电子作为亲核试剂进攻其他分子中的缺电部分。

5.4.6.1 格氏试剂

格氏试剂是有机金属化合物中重要也是应用最为广泛的一类有机金属化合物。

人们把RMgX称为格氏试剂。

制备格氏试剂所需要卤代烃的活性也是RI>RBr>RCl,一般常用活泼易于和生成的格氏试剂发生偶联作用。

乙烯基和芳基卤代物不易和镁作用,活性稍差,需以四氢呋喃为溶剂加热回流来得到烯基和苯基卤代镁格氏试剂。

格氏试剂中C—Mg键的极性很强(镁的电负性为1.2,与碳相差1.3),非常活泼,可以和空气中的氧、二氧化碳和水汽发生反应,故格氏试剂需要在无水无氧的条件下制备:

(化学式见p243)

乙醚和四氢呋喃等溶剂在格氏试剂的制备和保存中有着重要作用。烃基卤化镁的镁原子可以接受两个醚分子中氧上的非键电子对生成络和物,络和物的形成使有机镁化物稳定并溶解于溶剂中。

格氏试剂在有机合成上有非常重要的用途,它可以和许多化合物发生反应。

1)与活泼氢作用。

2)与活泼卤代物如烯丙基卤代物的偶联反应。

3)与极性双键或叁键化合物如醛、酮、醌等进行加成反应,可广泛用于合成醇、酮、酸等化合物。

4)与无机卤化物的反应。

这些元素有机化合物都有很大的用处。如,有机镉是合成酮的重要试剂,烷基铝是烯烃聚合的催化剂,有机汞和有机锡是杀菌剂,有机硅是性能优良的材料,三苯基磷是一个很有用的有机试剂。

5.4.6.2有机锂化物

卤代烃与金属锂反应生成有机锂化物。

制备有机锂所用的卤代物为氯代烃或溴代烃,碘代物不宜用来制备有机锂化物,因为生成的有机锂会进一步和碘代物作用生成偶联产物,溴代芳烃生成芳基锂的反应很好,但是氯代芳烃的活性太低而与锂不容易起作用。芳基锂也可以由溴代芳烃和丁基锂交换得到。

某些具有较大空间位阻的酮很难和格氏试剂反应,但是可以和有机锂化物作用。

有机锂化和物可以与一些金属卤化物反应得到金属有机化合物。

5.4.6.3有机锌化物

有机锌化物是人们最早合成和应用的金属有机化合物。但是,由于它操作不便,又容易在空气中自燃,因此很快为后来所发现的格氏试剂所替代。

5.6.4有机铝化物

有机铝化物R3Al可以有卤代烃和金属直接反应或由格氏试剂与AlCl3作用得到。

5.4.7卤代芳烃芳环上的亲电取代反应

芳香族卤代物也能进行芳香环上的各种亲电取代反应,卤素是第一定位基。但由于卤原子的诱导效应,使芳环钝化,反应要比相应的芳烃困难,如氯苯的硝化要比苯在高温度下才能进行,主要生成邻和对硝基氯苯。

这是资料上的

其实对于高中生来说掌握最重要的实质是卤代烃的取代反应不光是与水

各种官能团都能取代卤原子每种都有其规律和难点

比如苯环上面的卤原子跟氢氧化钠反应时1mol卤原子消耗多少molNaOH

好高骛远(先把基础知识掌握好吧)

怡然的路灯
美丽的鸡
2026-01-26 23:14:28
烷烃,不能加成,不能使酸性高锰酸钾溶液褪色,不能使溴水褪色,能燃烧,淡蓝色火焰;烯烃与炔烃,能加成,能使酸性高锰酸钾溶液褪色,能使溴水褪色,能燃烧,明亮带黑烟火焰;卤代烃,主要以消去反应鉴别;苯,不能与X化氢加成,光照下取代,与纯卤素单质反应,不能使酸性高锰酸钾褪色;甲基使苯环活化,硝化取代邻对位氢,不能使溴水褪色。回头我先看看书,学考学坏脑子了

现实的哈密瓜,数据线
能干的黄蜂
2026-01-26 23:14:28
化学反应。

主要看第一次消除后双键的位置,如果第一次消除后第二次消除能生成共扼双烯一般会优先生成双烯。所以要看连卤素的两碳连了什么基团。

药品:无水乙醇和浓硫酸(体积比约为 1:3,共取约 20mL)、酸性高锰酸钾溶液、溴水 仪器:铁架台(带铁圈)、烧瓶夹、石棉网、圆底烧瓶、温度计(量程 200℃)、玻璃导管、橡胶管、集气瓶、水槽等。 无水乙醇与浓硫酸的混合:先加无水乙醇,再加浓硫酸。 碎瓷片的作用:避免混合液在受热时暴沸。 温度计液泡的位置:插入混合液中 为什么要使混合液温度迅速上升到 170℃?减少副反应发生,提高乙烯的纯度。

包容的路灯
自信的百褶裙
2026-01-26 23:14:28
卤代烃可以和苯环发生取代反应,以AlCl3作为催化剂。

甲苯和乙苯在酸性高猛酸钾溶液中都被氧化为苯甲酸。只要与苯环直接相连的碳原子上有氢,就会被酸性高猛酸钾氧化为苯甲酸,不管后面的基团有多大。

忧郁的黄蜂
动人的电脑
2026-01-26 23:14:28

卤代反应这里以溴代反应为例:①在三价铁离子(溴化铁)催化剂下甲苯与液溴反应。 甲苯中的甲基为邻对位致活基团,可以提高其邻位与对位的亲电取代活性, 所以甲苯 苯环上的氢原子被溴原子取代,主要取代2、4号碳上的氢,主要生成邻溴甲苯 和 对溴甲苯两种取代产物 以及 溴化氢

②在光照条件下: 甲苯和气态溴单质反应,取代基在侧链的甲基,生成溴化苄和溴化氢

靓丽的金鱼
寂寞的茉莉
2026-01-26 23:14:28
有机溶剂是能溶解一些不溶于水的物质(如油脂、蜡、树脂、橡胶、染料等)的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。

有机溶剂的种类 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等;②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。

虚拟的白昼
丰富的翅膀
2026-01-26 23:14:28
沸点表(国际标准)

液氨 -33.35℃ 特殊溶解性:能溶解碱金属和碱土金属 剧毒性、腐蚀性

液态二氧化硫 -10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶 剧毒

甲胺 -6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯 中等毒性,易燃

二甲胺 7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂 强烈刺激性

石油醚 不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶 与低级烷相似

乙醚 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶 麻醉性

戊烷 36.1 与乙醇、乙醚等多数有机溶剂混溶 低毒性

二氯甲烷 39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶 低毒,麻醉性强

二硫化碳 46.23 微溶与水,与多种有机溶剂混溶 麻醉性,强刺激性

溶剂石油脑 与乙醇、丙酮、戊醇混溶 较其他石油系溶剂大

丙酮 56.12 与水、醇、醚、烃混溶 低毒,类乙醇,但较大

1,1-二氯乙烷 57.28 与醇、醚等大多数有机溶剂混溶 低毒、局部刺激性

氯仿 61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶 中等毒性,强麻醉性

甲醇 64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶 中等毒性,麻醉性,

四氢呋喃 66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃 吸入微毒,经口低毒

己烷 68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶 低毒。麻醉性,刺激性

三氟代乙酸 71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物

1,1,1-三氯乙烷 74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶 低毒类溶剂

四氯化碳 76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶 氯代甲烷中,毒性最强

乙酸乙酯 77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐 低毒,麻醉性

乙醇 78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶 微毒类,麻醉性

丁酮 79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶 低毒,毒性强于丙酮

苯 80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶 强烈毒性

环己烷 80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶 低毒,中枢抑制作用

乙睛 81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶 中等毒性,大量吸入蒸气,引起急性中毒

异丙醇 82.40 与乙醇、乙醚、氯仿、水混溶 微毒,类似乙醇

1,2-二氯乙烷 83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶 高毒性、致癌

乙二醇二甲醚 85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂 吸入和经口低毒

三氯乙烯 87.19 不溶于水,与乙醇.乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶 有机有毒品

三乙胺 89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、乙醚 易爆,皮肤黏膜刺激性强

丙睛 97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物 高毒性,与氢氰酸相似

庚烷 98.4 与己烷类似 低毒,刺激性、麻醉性

水 100 略 略

硝基甲烷 101.2 与醇、醚、四氯化碳、DMF、等混溶 麻醉性,刺激性

1,4-二氧六环 101.32 能与水及多数有机溶剂混溶,仍溶解能力很强 微毒,强于乙醚2~3倍

甲苯 110.63 不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶 低毒类,麻醉作用

硝基乙烷 114.0 与醇、醚、氯仿混溶,溶解多种树脂和纤维素衍生物 局部刺激性较强

吡啶 115.3 与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物 低毒,皮肤黏膜刺激性

4-甲基-2-戊酮 115.9 能与乙醇、乙醚、苯等大多数有机溶剂和动植物油相混溶 毒性和局部刺激性较强

乙二胺 117.26 溶于水、乙醇、苯和乙醚,微溶于庚烷 刺激皮肤、眼睛

丁醇 117.7 与醇、醚、苯混溶 低毒,大于乙醇3倍

乙酸 118.1 与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃 低毒,浓溶液毒性强

乙二醇一甲醚 124.6 与水、醛、醚、苯、乙二醇、丙酮、四氯化碳、DMF等混溶 低毒类

辛烷 125.67 几乎不溶于水,微溶于乙醇,与醚、丙酮、石油醚、苯、氯仿、汽油混溶 低毒性,麻醉性

乙酸丁酯 126.11 优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂 一般条件毒性不大

吗啉 128.94 溶解能力强,超过二氧六环、苯、和吡啶,与水混溶,溶解丙酮、苯、乙醚、甲醇、乙醇、乙二醇、2-己酮、蓖麻油、松节油、松脂等 腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变

氯苯 131.69 能与醇、醚、脂肪烃、芳香烃、和有机氯化物等多种有机溶剂混溶 低于苯,损害中枢系统,

乙二醇一乙醚 135.6 与乙二醇一甲醚相似,但是极性小,与水、醇、醚、四氯化碳、丙酮混溶 低毒类,二级易燃液体

对二甲苯 138.35 不溶于水,与醇、醚和其他有机溶剂混溶 一级易燃液体

二甲苯 138.5~141.5 不溶于水,与乙醇、乙醚、苯、烃等有机溶剂混溶,乙二醇、甲醇、2-氯乙醇等极性溶剂部分溶解 一级易燃液体,低毒类

间二甲苯 139.10 不溶于水,与醇、醚、氯仿混溶,室温下溶解乙睛、DMF等 一级易燃液体

醋酸酐 140.0

邻二甲苯 144.41 不溶于水,与乙醇、乙醚、氯仿等混溶 一级易燃液体

N,N-二甲基甲酰胺 153.0 与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强 低毒

环己酮 155.65 与甲醇、乙醇、苯、丙酮、己烷、乙醚、硝基苯、石油脑、二甲苯、乙二醇、乙酸异戊酯、二乙胺及其他多种有机溶剂混溶 低毒类,有麻醉性,中毒几率比较小

环己醇 161 与醇、醚、二硫化碳、丙酮、氯仿、苯、脂肪烃、芳香烃、卤代烃混溶 低毒,无血液毒性,刺激性

N,N-二甲基乙酰胺 166.1 溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶 微毒类

糠醛 161.8 与醇、醚、氯仿、丙酮、苯等混溶,部分溶解低沸点脂肪烃,无机物一般不溶 有毒品,刺激眼睛,催泪

N-甲基甲酰胺 180~185 与苯混溶,溶于水和醇,不溶于醚 一级易燃液体

苯酚(石炭酸) 181.2 溶于乙醇、乙醚、乙酸、甘油、氯仿、二硫化碳和苯等,难溶于烃类溶剂,65.3℃以上与水混溶,65.3℃以下分层 高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒

1,2-丙二醇 187.3 与水、乙醇、乙醚、氯仿、丙酮等多种有机溶剂混溶 低毒,吸湿,不宜静注

二甲亚砜 189.0 与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、芳烃混溶 微毒,对眼有刺激性

邻甲酚 190.95 微溶于水,能与乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 参照甲酚

N,N-二甲基苯胺 193 微溶于水,能随水蒸气挥发,与醇、醚、氯仿、苯等混溶,能溶解多种有机物 抑制中枢和循环系统,经皮肤吸收中毒

乙二醇 197.85 与水、乙醇、丙酮、乙酸、甘油、吡啶混溶,与氯仿、乙醚、苯、二硫化碳等男溶,对烃类、卤代烃不溶,溶解食盐、氯化锌等无机物 低毒类,可经皮肤吸收中毒

对甲酚 201.88 参照甲酚 参照甲酚

N-甲基吡咯烷酮 202 与水混溶,除低级脂肪烃可以溶解大多无机,有机物,极性气体,高分子化合物 毒性低,不可内服

间甲酚 202.7 参照甲酚 与甲酚相似,参照甲酚

苄醇 205.45 与乙醇、乙醚、氯仿混溶,20℃在水中溶解3.8%(wt) 低毒,黏膜刺激性

甲酚 210 微溶于水,能于乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 低毒类,腐蚀性,与苯酚相似

甲酰胺 210.5 与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶,几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等 皮肤、黏膜刺激性、惊皮肤吸收

硝基苯 210.9 几乎不溶于水,与醇、醚、苯等有机物混溶,对有机物溶解能力强 剧毒,可经皮肤吸收

乙酰胺 221.15 溶于水、醇、吡啶、氯仿、甘油、热苯、丁酮、丁醇、苄醇,微溶于乙醚 毒性较低

六甲基磷酸三酰胺 233(HMTA) 与水混溶,与氯仿络合,溶于醇、醚、酯、苯、酮、烃、卤代烃等 较大毒性

喹啉 237.10 溶于热水、稀酸、乙醇、乙醚、丙酮、苯、氯仿、二硫化碳等 中等毒性,刺激皮肤和眼

乙二醇碳酸酯 238 与热水,醇,苯,醚,乙酸乙酯,乙酸混溶,干燥醚,四氯化碳,石油醚,CCl4中不溶 毒性低

二甘醇 244.8 与水、乙醇、乙二醇、丙酮、氯仿、糠醛混溶,与乙醚、四氯化碳等不混溶 微毒,经皮吸收,刺激性小

丁二睛 267 溶于水,易溶于乙醇和乙醚,微溶于二硫化碳、己烷 中等毒性

环丁砜 287.3 几乎能与所有有机溶剂混溶,除脂肪烃外能溶解大多数有机物

甘油 290.0 与水、乙醇混溶,不溶于乙醚、氯仿、二硫化碳、苯、四氯化碳、石油醚 食用对人体无毒

顺心的棉花糖
虚拟的镜子
2026-01-26 23:14:28
卤代烃是一类重要的有机合成中间体,是许多有机合成的原料,它能发生许多化学反应,如取代反应、消除反应等。卤代烷中的卤素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相应的醇、醚、腈、胺等化合物。碘代烷最容易发生取代反应,溴代烷次之,氯代烷又次之,芳基和乙烯基卤代物由于碳-卤键连接较为牢固,很难发生类似反应。卤代烃可以发生消去反应,在碱的作用下脱去卤化氢生成碳-碳双键或碳-碳三键,比如,溴乙烷与强碱氢氧化钾在乙醇共热的条件下,生成乙烯、溴化钾和水。卤代烃发生消去反应时遵循查依采夫规则。邻二卤化合物除可以进行脱卤化氢的反应外,在锌粉(或镍粉)作用下还可发生脱卤反应生成烯烃。