乙二醇生产工艺?
1、氯乙醇法,以氯乙醇为原料在碱性介质中水解而得,该反应在100℃下进行。
2、环氧乙烷水合法,环氧乙烷水合法有直接水合法和催化水合法,水合过程在常压下进行也可在加压下进行。
3、目前有气相催化水合法 以氧化银为催化剂,氧化铝为载体,在150~240℃反应,生成乙二醇。
4、乙烯直接水合法 乙烯在催化剂存在下在乙酸溶液中氧化生成单乙酸酯或二乙酸酯,进一步水解均得乙二醇。
5、环氧乙烷与水在硫酸催化剂作用下进行水合反应,反应液经碱中和、蒸发、精馏即得成品。
6、甲醛法。
7、以工业品乙二醇为原料,经减压蒸馏,于1333Pa下,收集中间馏分即可。
8、将乙二醇真空蒸馏,所得主要馏分用无水硫酸钠进行较长时间干燥,然后用一支好的分馏柱重新真空蒸馏。
扩展资料:
乙二醇的毒理环境:
毒性:属低毒类。
急性毒性:LD508.0~15.3g/kg(小鼠经口);5.9~13.4g/kg(大鼠经口);1.4ml/kg(人经口,致死)
亚急性和慢性毒性:大鼠吸入12mg/m3(连续多次)八天后2/15只动物眼角膜混浊、失明;人吸入40%乙二醇混合物9/28人出现短暂昏厥;人吸入40%乙二醇混合物加热至105℃反复吸入14/38人眼球震颤,5/38人淋巴细胞增多。
危险特性:遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。若遇高热,容器内压增大,有开裂和爆炸的危险。
燃烧(分解)产物:一氧化碳、二氧化碳、水。
参考资料来源:百度百科-乙二醇
不知道你具体要问什么,就跟你介绍一下简单的压合吧。
简单4层板制作流程:
上工序→棕化→预叠→排版→压合→打靶→铣边→下工序
如下图,现将芯板棕化,增加芯板铜层与PP的结合力,然后按层压结构叠板(即下图,在芯板上下两面加上PP),然后放进压机的钢盘中,放之前先放铜箔,再放已经叠好的板,再放铜箔。这个叫排版。接着将钢盘送进压机进行热压(使PP熔化将芯板与上下两面铜箔结合在一起)、冷压(就是将压好的板冷却),最后出炉。因为铜箔比芯板大,且压合时会流胶,造成板边不一样大,因此出炉后要铣边,锣成一样大小方便后期制作。而铣边的时候需要将板统一固定位置,故要打靶避免伤到内层图形。
5.1 引言
溶剂的类别:
a. 质子性溶剂,或氢键供体类溶剂(路易斯酸),例如,水、乙醇、乙酸和氨;
b. 氢键受体类溶剂(路易斯碱),例如,水、三乙胺、乙酸乙酯、丙酮和DMF;
c. 极性非质子溶剂,或称为“非羟基溶剂”,例如,DMSO、DMF和二甲基乙酰胺DMAc;
d. 氯代烷烃类溶剂,例如,二氯甲烷、氯仿和四氯化碳;
e. 氟碳类溶剂,例如,六氟异丙醇;
f. 烃类溶剂,例如,己烷、异辛烷和甲苯;
g. 离子液体;
h. 超临界气体,例如,超临界二氧化碳。
溶质被溶剂所包围的过程叫做溶剂化,水的溶剂化则被称为水合。溶剂化值指的是包围一个离子的溶剂分子数。一般来说,溶剂化程度随着电荷数的增加和离子半径的减小而增大。一个物种的反应活性随着溶剂化程度减小而提高,因为溶剂化的分子屏蔽了反应物,分散了电荷。某分子的其中一个部位可能更易于被另一种溶剂所溶剂化。比如,偶极性的非质子溶剂,例如DMSO,溶剂化阳离子,从而使另一部分的阴离子更容易反应。冠醚,常用作相转移催化剂(PTC),也类似地和阳离子形成配合物而使阴离子部位更具有活性。在溶剂混合物中两种溶剂可溶剂化分子的不同部分,使得组成混合溶剂后溶解性能比各自任何一种单一溶剂好。有个明显的例子,氢氧化钠的溶剂化程度的降低是如何影响其反应活性的:固体氢氧化钠(三分子水合物)的碱性比15%氢氧化钠(11分子水合物)碱性增强50000倍。(PTC据说能产生“裸露的阴离子”,但是少量的水是必须的,特别是对于固-液相转移反应。在研发相转移催化过程中,水分的含量是一个关键的参数。)溶剂化是选择溶剂要考虑的众多重要因素之一。
谨慎选择溶剂的重要性:
a. 给设备和操作人员提供安全、无害的大规模生产条件;
b. 溶剂的理化性质,如极性、沸点、水混溶性,影响反应的速率、两相的分离、结晶的效果及通过共沸或干燥固体除去挥发性组分;
c. 其他理化性质,如混合物的黏度影响传质和传热、副产物的形成和物理运输;
d. 回收和套用溶剂的难易程度,极大地影响产品成本(CoG)。
最好的溶剂应该能使产物从反应中直接结晶析出来。
为快速工艺放大选择溶剂的最关键原则是均相反应通常比非均相反应快得多,也容易放大。如果必须是非均相的条件,必须选择溶剂和反应条件使反应混合物是液态而易混匀的。(对于传统的氢化反应,由于是液-固-气分散体系,有效的搅拌是相当重要的。)许多情况下,产物的分离能驱动反应持续进行。最好是能结晶而不是形成沉淀或油状物,这种情况下会卷入原料。
对于有些反应过程,非均相的条件是有利的。非均相的条件可以加速反应或者减少产物在反应条件下的降解。
相转移催化剂通常用在两种不混溶的溶剂中,反应发生在有机相或界面。有时固-液相转移催化反应也用到碱类,诸如碳酸钾悬浮在反应体系中。
在某些已开发的非均相的反应中原料会随着反应的进行而溶解。某些反应全程都是悬浊液。选择对组分有一定溶解性的溶剂可提高反应效率,如往水相中的反应添加乙醇或者DMSO。某些反应,非均相的条件也可能增加副反应。
酰胺的大规模制备通常用到Schotten-Baumann反应,具体来说,将胺与酰氯或酸酐缩合,再用碱溶液中和生成的酸。如果不加碱,等摩尔量的胺和酰氯反应的理论收率只有50%。如果不加有机溶剂,产物酰胺会析出来并且夹杂原料,所以一般都用有机溶剂。用与水不混溶的有机溶剂可以减少易水解的试剂和产物的降解。
【二氯甲烷中制备酰氯,需要更加仔细的操作(Vilsmeier试剂能溶于二氯甲烷,但反应放热厉害,且产物容易消旋)。DMF不适合制备酰氯,DMF和氯化试剂能形成二甲氨基甲酰氯(DMCC),在μg/mg水平就有动物致癌性】
在pH 8以上进行Schotten-Baumann偶联反应,酰氯容易水解,并可见吖内酯的形成及消旋;而pH<7时,由于胺被质子化了,偶联反应进行得很慢。反应最好的条件是用缓冲剂调pH到8,加酰氯的同时滴加1 M氢氧化钠以维持pH在7~8之间。
一些学术研究使用的溶剂在工业生产中也许并不受欢迎。
具有较低闪点(在该温度下,蒸气能够被引燃)的溶剂会因安全问题而避免使用。易燃溶剂及溶在这些溶剂里面的试剂,如甲基锂的乙醚溶液,会被限制在地面运输。
极性是溶剂的一个关键参数。介电常数能衡量溶剂传导电荷的能力。Gutmann供体数从本质上衡量溶剂分子的路易斯碱的碱性。Hansen溶解度参数考虑了范德华力、偶极作用和氢键,Hildebrand参数则发展了它。Reichardt的π-π*吸收位置漂移的溶剂化显色。
强极性溶剂能稳定极性染料基态的能量,导致更大的π-π*越前。在溶剂中的染料颜色能指示溶解它的单一溶剂或混合溶剂的极性。
选择溶剂的时候,溶剂的沸点很重要。高沸点的溶剂,例如二甲苯,因为将溶剂残留去除到可接受的水平存在潜在的困难,所以很少选择它来分离原料药。高沸点、水溶性溶剂更容易通过萃取除去。
产物富集萃取时,乙酸乙酯被认为是一种比乙酸异丙酯更具反应活性的溶剂。实验室存在的乙酸乙酯含有过氧化物,可以氧化亚砜、胺类和酮类,后者可以得到Beayer-Villiger氧化产物【酮在过氧化物(如过氧化氢、过氧化羧酸等)氧化下得到相应的酯的化学反应。醛可以进行同样的反应,氧化的产物是相应的羧酸】;氧化剂最有可能是过氧乙酸,由乙酸乙酯水解得到的乙醇和空气生成。
乙酸异丙酯比乙酸乙酯更稳定,可与氢氧化钠水溶液共同作用将盐酸盐游离出来。当用乙酸乙酯和2M氢氧化钠处理时,使用碳酸氢钠水溶液就不会发生上述情况。制备硫酸盐时,要将乙酸乙酯改成乙酸异丙酯,因为后者在酸性条件下更难水解。用乙酸乙酯萃取伯胺,形成了一种乙酰胺,产物能萃取到二氯甲烷中。(后面一种情况,反应产物是一种甲氧基乙酰胺,在Sukuzi偶联的碱性条件下,甲氧基乙酰胺会发生部分水解。通过重结晶除去乙酰胺杂质很难。)氨、正丁胺和乙酸乙酯发生乙酰化的速度快于乙酸异丙酯,而萃取时水的存在能加速胺类的乙酰化。一般来说,用乙酸异丙酯萃取比用乙酸乙酯得到的杂质少。
NMP被认为环境友好,但因生殖毒性被重新划入二类溶剂。
2-甲基四氢呋喃在有机金属反应中很有用。购买的2-甲基四氢呋喃含有高达400 μg/mL的BHT作为稳定剂添加的,另外一种则不含添加剂;2-甲基四氢呋喃暴露在空气中生成过氧化合物的速度比四氢呋喃稍快。2-甲基四氢呋喃和HCl反应比四氢呋喃慢。3M的甲基锂溶液,溶剂可以是2-甲基四氢呋喃,也可以是二乙氧基甲烷(DEM)。
甲基乙基酮(MEK)会形成活性过氧化物,引发聚合和其他反应。在氧气存在下,MEK可用于氧化Co(II)到Co(III),是一种很有用的氧化剂。尽管MEK有合适的沸点,能与水形成共沸,也要考虑到它生成过氧化物的能力。
甲基异丁基酮(MIBK)对底层大气中臭氧的形成来说是一种高容量的溶剂,被认为生成大气臭氧的能力比乙酸异丙酯强,因此要避免使用MIBK。
5.2 使用共沸物时选择的溶剂
共沸物是恒定沸点的混合物,有着固定的摩尔组成。共沸物由两种、三种或者更多组分组成,可以是均相或非均相的。重要的共沸物是沸点降低的共沸物,即混合物的沸点比任意组分的沸点都要低。(熟悉的共沸物中,浓盐酸是个例外,形成沸点升高的共沸物。)所有非均相的共沸物的沸点都降低。不同的液体如果沸点接近就可以形成共沸物。许多有机溶剂可以与水形成共沸物,可利用这一性质除水。
共沸物的主要价值在于能有效去除反应混合物中易挥发的组分。共沸除去易挥发组分可以促进反应进行。共沸物有益于分离后处理。六甲基二硅烷(酸催化脱三甲基硅烷保护基的副产物)能和醚类、醇类、乙腈及三甲基硅醇形成共沸物。即使共沸物不能完全除去杂质组分,也能降低沸点。共沸物如果能够回收套用,也是较为经济的溶剂。
当一对共沸物的组成接近1:1时,从其中一种溶剂中分离出另一种溶剂更容易。
通常减压蒸馏时会进一步减少馏出物中较少组分的比例,如乙酸乙酯-水共沸物减压蒸馏过程,这也被称为“破坏型共沸物”。在异丙醇-水共沸物中,没有发现该现象。
5.3 选择溶剂以增加反应速率,减少杂质生成
一般来说,增加溶剂极性的效果取决于原料或中间体中是否有高浓度电荷(电荷/体积)。(有时描述为电荷局部定域较大,而电荷局部定域较小有时称为电荷分散。)极性溶剂优先溶解离子或电荷浓度高的中间体。如果中间体中电荷浓度比原料高,极性溶剂能够稳定中间体和促进其生成,因而加快反应速率。如果中间体的电荷比原料的电荷分散,极性溶剂会稳定原料,降低反应速率。自由基诱导的反应受溶剂极性的影响很小。定量的电荷局部定域/离域模型没有考虑溶剂的其他影响,例如氢键、螯合作用、温度以及反应的浓度。有时,改变溶剂也可改变反应机理。
5.4 溶剂中的杂质和反应溶剂
分子筛是最普遍有效的除水处理方法。规模化生产中,溶剂和设备一般是共沸除水,或填充过量的吸水试剂。
过氧化物可在实验室和放大常见的溶剂中生成,如异丙醇和乙酸乙酯。溶剂暴露在空气和光线中会产生氢过氧化物和其他过氧化物。一般来说,含有氢原子的化合物在自由基反应中易生成过氧化合物,例如叔碳、苄基型碳、烯丙基型碳、醚氧的α-碳、醛和醇。生成过氧化物后,问题就来了。例如过氧化异丙醚会在溶剂瓶口附近析出,或浓缩溶剂时过氧化物会富集。
检查溶剂中过氧化合物的简便检测方法:用水润湿过氧化检测试纸,然后滴一滴溶剂。碘量法滴定是一种定量的方法。BHT(大约250 μg/mL)通常添加到市售的四氢呋喃和2-甲基四氢呋喃中作为安全措施。放大时,浓缩四氢呋喃和2-甲基四氢呋喃会添加BHT作为安全措施。蒸出溶剂时,可能会使作为稳定剂的BHT富集,干扰HPLC和其他分析。BHT经氧化可生成黄色的二聚物。
过氧化物除了可能引发安全问题,还能影响反应进程。
放大时还要注意静电的蓄积,带电荷的烃类溶剂通常是很麻烦的。非金属添加剂,例如Statsafe,已经被开发用来减少溶剂的导电性,减少静电释放的风险。一般来说,烃类静电释放的风险比较大,例如庚烷。使用多聚物和胺类的混合物作为添加剂的溶剂生产原料药,添加剂可能会被认为是原料药中的杂质。当加入少量极性溶剂时,例如异丙醇,能减少静电释放的风险。
二氯甲烷的反应活性通常会被忽略。桥头胺类,例如士的宁、奎宁及三乙烯二胺,尤其易与二氯甲烷发生反应,其次是甲基叔胺和仲胺。脯氨酸和二氯甲烷可以制备缩醛胺。由于氯的第二次取代比第一次快得多,吡啶很快形成缩醛胺。类似地,吡啶和二氯甲烷反应形成二吡啶盐,第二次取代比第一次快得多。4-二甲氨基吡啶(DMAP)反应速度是吡啶的7倍。1-羟基苯并三唑(HOBt)是多肽偶联时常用的一种催化剂,能和二氯甲烷反应。硫醇和二氯甲烷反应的活性在相转移催化反应中被忽略。格氏试剂在无水氯化铁和其他离子盐的存在下,能与二氯甲烷发生反应。镍-甜菜碱复合物和二氯甲烷发生二次反应生成手性4-氨基谷氨酸。二氯甲烷甚至能与奥氮平、氯氮平和氧氟沙星反应,他们都有一个N-甲基哌嗪基团。也许二氯甲烷是许多化合物中都包含对称亚甲基二胺的源头。应该充分考虑二氯甲烷与亲核试剂的反应活性。低沸点的二氯甲烷易挥发,不易储存,在使用过程中难以达到挥发性有机化合物排放标准,使其在生产中没有吸引力。
不要长时间储存胺类的二氯甲烷萃取液。亲核性的胺,尤其是奎宁,易和二氯甲烷反应。
四氢呋喃在酸性条件下会反应,生成开环和多聚的副产物。实验室中用甲磺酸代替硫酸就不会生成该副产物,但20 kg规模时,发现有开环副产物。在这个条件下,二甲氧基乙烷优于四氢呋喃。四氢呋喃能和酰氯、酰溴反应。四氢呋喃和2-甲基四氢呋喃在酸性水溶液下水解速率很慢,可作萃取相。四氢呋喃和二甲氧基乙烷在氯气存在下会聚合放热。反应中使用2 M硼烷-四氢呋喃复合物发生过工业事故。10~50 ℃下,溶于四氢呋喃的硼烷-四氢呋喃复合物产生氢气和硼酸三丁酯,50℃以上降解生成乙硼烷。该试剂推荐在0~5 ℃下储存,在低于35 ℃下反应。
DMF可被酸或碱催化,歧化生成一氧化碳和二甲胺。N-甲基吡咯烷酮和NaH在热力学上是不稳定的。二乙氧基甲烷(DEM)在pH 2时会水解,推荐的反应条件中pH不应低于4.甲基叔丁基醚(MTBE)可在酸催化下加入叔丁醇和异丙烯生成,看起来在酸性条件下足够稳定,可以用于后处理萃取,但40 ℃下能和浓盐酸反应,更高温度下能和硫酸反应。MTBE与亚硫酰胺和溴反应放热。回流MTBE-乙醇制备某乙酯的甲磺酸盐时,叔丁酯从MTBE和乙酯的反应中沉淀出来。若之前的萃取液残留MTBE,酯类的氨甲基化就很慢;副产物是异戊烯胺,由MTBE分解产物产生。硫酸介导的腈水合时,产物常常磺化。加入甲苯利于搅拌,则伯酰胺产率高;该反应条件下部分甲苯会磺化,表现为一种代替牺牲的溶剂。在仲胺存在下,使用甲基异丁基酮(MIBK)保护伯胺。
在无水的酸性条件下使用四氢呋喃时,要考虑开环形成的副产物,生产胺盐最好用其他溶剂。
5.5 水作为溶剂
水中氢甲酰化(加氧合成过程):产物从水相中分离,只需将反应器再充满气体原料。溶于磺酸盐配体的铑催化剂被束缚在水相中,损失的那部分催化剂只有十亿分之一的范围。两相工艺使金属试剂在水相中溶解度很高。基于联苯二酚和邻二氮杂菲的磺化配体也被用于水相偶联反应。
水加速反应
在水面上的Diels-Alder反应及芳香Claisen重排相对于无溶剂反应稍有加速,比使用其他溶剂时快。加速的原因可能是因为氢键,增加了极性、疏水作用和其他性质。非均相条件下,反应自始至终是悬浊液,放大时需要额外小心。预期困难时原料、产物和杂质混在一起,如果放大转化需要加大搅拌,那么得到的是小颗粒,使得过滤和分离更加困难。水作溶剂的条件下,Click反应,水中非酸性条件下生成四氮唑。水可加速Baylis-Hillman反应,加倍4,6-二烯酮的消除。加入少量乙醇或者DMSO可加速水中的反应,这可能是由于它们起到了与表面活性剂类似的作用。
往水中加入各种表面活性剂,可形成微乳液或胶束以促进反应。羟醛反应的表面活性剂,三甲基硅基可作为保护基防止水解。水中的Sukuzi偶联用到聚乙二醇:聚乙二醇可作为表面活性剂或相转移催化剂溶解金属活性组分。表面活性剂可应用于温和的烯烃复分解反应、Sonogashira反应、Heck反应、Suzuki反应、Negishi反应以及胺化反应。
该物质一般认为是安全的(GRAS),无毒,无需处理原料药中残留的相转移催化剂。水中用相转移催化剂催化反应后,产物可萃取到有机相,含相转移催化剂的水相可在下次反应时套用。
水最佳的应用之一是催化极性物质的反应而无需保护基。酶通常能耐受分子中的各种官能团,许多酶能发挥最好活性的前提是介质中至少部分含有水。
水既不是万能的,也不是完美的理想溶剂,即使不需要后处理且廉价。负责任地处理水蒸气和回收套用的费用很大。这些后处理包括反萃挥发性溶剂、活性炭吸附及生物除污,然后再排向城市用水处理装置。此外,如果同时使用有机溶剂后处理,会丧失水中操作的优势。
5.6 溶剂的替代
被认为是廉价“绿色”溶剂
2-甲基四氢呋喃:有机金属试剂的反应、萃取及相转移催化反应
二乙氧基甲烷(DEM)
1,3-丙二醇
1,2-丙二醇:可代替2-甲氧基乙醇,食品级的已用于原料药到药物成品。
甘油:氮杂-Michael反应,作为转移氢化的溶剂和试剂,也可作为还原羰基的溶剂。
当亲脂性的产物单独形成一相时,甘油和丙二醇则显示出其优点。
当反应需要高沸点溶剂时,从产物中分离溶剂就变成一个问题。DW-therm是沸点240℃的三乙氧基硅烷的混合物,用于热环化,该溶剂可蒸馏回收;其他高沸点溶剂(DMSO、1,3,5-三异丙基苯、矿物油及四甲基亚乙基砜)效果不能满意。高沸点、水溶性溶剂便于萃取到水中除去。丙二醇被认为是合理的溶剂,ICH没有对它设置限制。聚乙二醇低毒,可作为轻度泻药,环氧乙烷的小分子衍生物,例如1,4-二氧六环,已知是有毒的。乙二醇和它的代谢产物羟基乙酸和草酸对中枢神经系统、心脏及肾脏有毒性。
二甘醇和丙二醇物理性质相似,二甘醇毒性更大。甲氧基乙醇(或称乙二醇单甲基醚)被禁止或限制使用。[甲氧基乙酸是甲氧基乙醇毒性最大的代谢物。最广泛用来代替甲氧基乙醇的溶剂是1-甲氧基-2-丙醇(PGME)及1-丁氧基-2-乙醇(EGBE)。]
EPA要求生产、进口货使用14种聚乙烯醚类用于“重要的新应用”必须提前90天通知EPA。聚乙烯醚类的清单包括乙二醇二甲醚、二乙二醇二甲基醚、三甘醇二甲醚及四乙醇二甲醚(都是二甲基醚),避免使用乙二醇衍生物作为溶剂生产原料药的倒数第二步中间体是明智的。
安全性:二乙二醇二甲醚加热时能和金属钠或金属铝剧烈反应。NaOH介导的二甘醇在200℃下降解酿成过工业事故,估计1,2-二醇的脱水是放热的。源于乙二醇和丙三醇溶剂中的高温反应,应该在反应前先做个实验室危害评估。
碳氟化合物在水中和常规有机溶剂中溶解性都不好,这一性质使其在分离和合成中得到应用。氟化的反向硅胶色谱可以用来纯化氟化原料药。全氟类烃类价格高于传统溶剂,氟化溶剂在合成领域尚未大规模应用。三氟甲苯可以用来替代二氯甲烷,它会和强还原剂发生反应,很少应用于大规模反应。
离子液体因为其沸点较高,能够很好地减少挥发造成的损失,被认为是一种“绿色”溶剂。在合成原料药的最终步骤前好几步的地方使用这些化合物,或许可以避免毒理方面的担忧。
超临界二氧化碳(scCO2)溶解性与正己烷相似。氢气在scCO2中的溶解性要比在传统溶剂中好很多,此外还证实了用于多相催化剂催化的连续非对称氢化的可能性。原料药中痕量的钌可以用scCO2除去,残留的钌会被吸附在反应釜的壁上。scCO2色谱无论是用在分析分离还是制备分离中,都是非常快速和有效的。将晶体暴露在二氧化碳中,会导致晶型转变。限制scCO2应用的主要原因是用于控制压缩和释放二氧化碳的设备的耗费。
5.7 无溶剂反应
在无溶剂反应中,稍过量的液体反应物作溶剂,而产物往往是非晶态的。由于反应过程中不加溶剂,反应的总量很大,这种反应在淬灭的时候,容易产生高温。通过无溶剂反应来优化设计反应时非常有效的,特别是试图提升反应速率,而其他方法效果都不好时。
5.8 总结与展望
溶剂的选择需要综合考虑各种因素,而首要的一点是保证安全。在实验条件下,各组分的理化性质可能比溶剂的极性对反应的影响驱动力更大。当一个溶剂可以与一个比较难以除去的杂质共沸时,可用此溶剂除去这种难除的杂质。一般情况下,需要经过很多筛选实验才能决定哪个溶剂才是某种生产过程中最理想的溶剂。
●用Sol-Gel法制备ZnO膜
【例一】 所用的原材料为分析纯的醋酸锌Zn(CH3COO)2·2H2O(纯度≥99.0%),溶剂为异丙醇、去离子水和二乙醇胺NH(CH2CH2OH)2。非适量的Zn(CH3COO)2·2H2O在异丙醇中加热溶解,然后加入NH(CH2CH2OH)2,其比例为x[Zn(CH3COO)2·2H2O]∶x[NH(CH2CH2OH)2]=1∶2,搅拌10min后再加入去离子水,其比例为x[Zn(CH3COO)2·2H2O]∶x[H2O]=1∶1,加热最后使溶液浓度为0.3mol/L,过滤后倒入滴瓶。
当在醋酸锌和异丙醇的混合溶液中加入二乙醇胺时,其溶液则变得清澈透明,并且其溶液可长期保存。因而,二乙醇胺不但使醋酸锌完全溶于异丙醇,而且还使溶液的稳定性得到改善。在合成先体溶液的过程中,我们也采用了乙醇胺和三乙醇胺,比较起来乙醇胺的稳定效果不如二乙醇胺,而三乙醇胺的粘度又比较大,不利于制备高质量的薄膜。
在100级的洁净环境下,采用旋转涂覆的方法在基片上形成凝胶膜(条件为3000r/min、30s),放入管式电炉中通氧气,在300°C下处理30min,重复以上过程,直到获得所需厚度的薄膜。然后再在不同的温度下热处理30min。
【例二】 溶胶-凝胶制备氧化锌薄膜所用的原料主要是锌的可溶性无机盐或有机盐如Zn(NO3)2,Zn(CH3COO)2等.在催化剂冰醋酸及稳定剂乙醇胺等作用下,溶解于乙二醇甲醚等有机溶剂中而形成溶液.溶胶-凝胶法制备薄膜时前驱体、溶剂、催化剂以及稳定剂的选择关系到薄膜的质量.本实验选择二水合乙酸锌[Zn(CH3COO)2·2H2O]作为前驱体,乙二醇甲醚[2-methoxyethano]作为溶剂,乙醇胺[monoethanolamine]作为稳定剂.将一定质量的二水合乙酸锌溶解于乙二醇甲醚中,再加入与二水合乙酸锌等摩尔的乙醇胺,在60℃经1h的充分搅拌后,形成锌离子浓度为0.75mol/l的透明均质溶液.然后采用旋转涂覆技术制备薄膜.
【例三】 采用溶胶-凝胶工艺制备薄膜,前驱体、溶剂以及稳定剂的选择关系到薄膜最终的品质,除此之外,也关系到产品成本的高低及镀膜工艺的复杂程度。在本论文中选择二水合乙酸锌(Zn(OAc)2·2H2O)作为前驱体,乙二醇甲醚(2-methoxyethanol)作为溶剂,单乙醇胺(monoethanolamine)作为稳定剂将一定量的二水合乙酸锌溶解于乙二醇甲醚中,再加入与二水合乙酸锌等摩尔的单乙醇胺,在60℃经充分搅拌后,形成透明均质的溶液为了制备Al3+离子掺杂型ZnO薄膜,将六水合三氯化铝(AlCl3·6H2O)加入到以上所配置的溶液中,充分搅拌后,形成透明均质溶液。
利用普通Na-Ca-Si玻璃载玻片作为基体材料,采用浸镀法制备薄膜,提拉速度为6mm/min提拉过程结束后,将凝胶薄膜立即放入70~90℃低温环境热处理10min,然后再放入400~600℃热处理30s,此后就可以进行第二次浸镀,在薄膜达到所要求的厚度之后,最后一次在相应的高温下热处理30min这样就可以制备出品质较佳的纯ZnO以及Al3+离子掺杂型ZnO薄膜。
膜特点:单次镀膜厚度约为30~50nm;高c轴择优取向性;高可见光透光率;高电导率;所制备的薄膜为纤锌矿型结构,表面均匀、致密,薄膜材料晶粒尺寸大约为50~200nm左右。
【例四】 纯ZnO粉体与掺杂ZnO粉体制备所用溶胶的组成不同.纯ZnO粉体所用的溶胶由化学纯的Zn(CH3COO)2·2H2O制成,而掺杂ZnO粉料制备所用的溶胶是由一定化学配比的Zn(CH3COO)2·2H2O和Bi(NO3)3·5H2O,Mn(CH3COO)2·4H2O制成.它们均为在催化剂冰醋酸和稳定剂乙醇胺的作用下溶解于乙二醇甲醚而成.溶胶在60℃条件下搅拌数小时达到稳定之后,置于120~150℃下,使溶剂逐渐蒸发.然后,缓慢升温至350~750℃,使有机物分解,形成ZnO,再经碾磨形成粉体.
●La-Ca-Mn-O
La2O3+Mn(NO3)2[液态]+CaCO3以化学配比称量,溶于浓硝酸中,以刚好溶解为宜,然后加热到约1000C左右,加入尿素〖尿素的质量与[La2O3+Mn(NO3)2(固态)+CaCO3]的质量比约为1:1〗。利用尿素的水解反应,过了一段时间,就能成为粘稠状物质,称之为溶胶。将溶胶冷却,变为凝胶,其内部颗粒已为纳米颗粒。接着对凝胶加热,温度比1000C稍高一点,凝胶体积膨胀到烧杯的1/4左右就停止加热,待凝胶体积收缩后,再继续加热,如此反复,直到冒出很浓的黑烟,此时凝胶变成了粉末。接着将粉末在稍高一点的温度下烘干。 所得干粉末可象一般材料一样压片烧结,硝酸盐一般在600多度分解,800度成相已很好,一般烧结温度在900-10000C。
●Nanocrystalline (Y0.95Eu0.05)3Al5O12 phosphor prepared by nitrate-citrate sol-gel combustion process
Al(NO3)3 · 9H2O (analytical grade), Y(NO3)3 · 6H2O (99.99% pure), Eu2O3 (99.99% pure), and C6H8O7 ·H2O(hydrated citric acid, analytical grade) were used as starting materials. Hydrated citric acid was the source of citrate anion that was used as both chelating agent to metal cations and fuel for the combustion. High purity Eu2O3 was dissolved in HNO3 and then dissolved in deionized water with a stoichiometric amount of yttrium nitrate, aluminum nitrate and an appropriate dosage of citric acid. After the mixed solution was heated at 60 0C and continuously stirred using a magnetic agitator for several hours, the solution turned to yellowish sol. Then, heated at 80 0C and stirred constantly, the sol transformed into transparent sticky gel. The gel was rapidly heated to 180 0C and an auto combustion process took place companying with the evolution of brown fume. Finally, a yellowish product, fluffy precursor, was yielded. The precursor was then heat-treated at varying temperatures from 600 0C to 1000 0C for two hours in a muffle furnace in air.
更清晰的解答请看此网页:http://zhousm.nease.net/!chinese/physics/m_prep/sol_gel.htm
1.合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ
CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) =-92.4kJ/mol
2.合成氨的催化机理
热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:
xFe + N2→FexN
FexN +〔H〕吸→FexNH
FexNH +〔H〕吸→FexNH2
FexNH2 +〔H〕吸FexNH3xFe+NH3
在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。
3.催化剂的中毒
催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。
催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。
4.我国合成氨工业的发展情况
解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。
近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。
5.化学模拟生物固氮的研究
目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。
国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:
①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。
目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。
固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。
[编辑本段]生产方法
生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用,但随着能源格局的变化,现在煤制氨又被重视起来,外国主要是粉煤气化技术发展很快,国内则转向型煤制气技术已非常成熟。
用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。
贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。
制碱法 一、联合制碱法
(侯氏制碱法)
NH3+CO2+H20+NaCl=NH4Cl+NaHCO3↓ (NaHCO3 因溶解度较小,故为沉淀,使反应得以进行)
2NaHCO3=Na2CO3+CO2↑+H2O ("="上应有加热的符号)
其要点是在索尔维制碱法的滤液中加入食盐固体,并在30 ℃~40 ℃下往滤液中通入氨气和二氧化碳气,使它达到饱和,然后冷却到10℃以下,根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,结晶出氯化铵(一种化肥),其母液又可重新作为索尔维制碱法的制碱原料。
此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2 ,革除了 CaCO3 制 CO2 这一工序。
碳酸钠用途非常广泛。虽然人们曾先后从盐碱地和盐湖中获得碳酸钠,但仍不能满足工业生产的需要。
1862年,比利时人索尔维(Ernest Solvay 1838—1922)发明了以食盐、氨、二氧化碳为原料制取碳酸钠的“索尔维制碱法”(又称氨碱法)。此后,英、法、德、美等国相继建立了大规模生产纯碱的工厂,并组织了索尔维公会,对会员以外的国家实行技术封锁。
第一次世界大战期间,欧亚交通梗塞。由于我国所需纯碱都是从英国进口的,一时间,纯碱非常缺乏,一些以纯碱为原料的民族工业难以生存。1917年,爱国实业家范旭东在天津塘沽创办了永利碱业公司,决心打破洋人的垄断,生产出中国的纯碱。他聘请正在美国留学的侯德榜先生出任总工程师。
1920年,侯德榜先生毅然回国任职。他全身心地投入制碱工艺和设备的改进上,终于摸索出了索尔维法的各项生产技术。1924年8月,塘沽碱厂正式投产。1926年,中国生产的“红三角”牌纯碱在美国费城的万国博览会上获得金质奖章。产品不但畅销国内,而且远销日本和东南亚。
针对索尔维法生产纯碱时食盐利用率低,制碱成本高,废液、废渣污染环境和难以处理等不足,侯德榜先生经过上千次试验,在1943年研究成功了联合制碱法。这种方法把合成氨和纯碱两种产品联合生产,提高了食盐利用率,缩短了生产流程,减少了对环境的污染,降低了纯碱的成本。联合制碱法很快为世界所采用。
侯氏制碱法的原理是依据离子反应发生的原理进行的,离子反应会向着离子浓度减小的方向进行。也就是很多初中高中教材所说的复分解反应应有沉淀,气体和难电离的物质生成。他要制纯碱(Na2CO3),就利用NaHCO3在溶液中溶液中溶解度较小,所以先制得NaHCO3。再利用碳酸氢钠不稳定性分解得到纯碱。要制得碳酸氢钠就要有大量钠离子和碳酸氢根离子,所以就在饱和食盐水中通入氨气,形成饱和氨盐水,再向其中通入二氧化碳,在溶液中就有了大量的钠离子,铵根离子,氯离子和碳酸氢根离子,这其中NaHCO3溶解度最小,所以析出,其余产品处理后可作肥料或循环使用。
二、氨碱法
1862年,比利时人索尔维(Ernest Solvay,1832-1922)以食盐、氨、二氧化碳为原料,制得了碳酸钠,是为氨碱法(ammomia soda process)。
反应分三步进行:
NH3+CO2+H2O===NH4HCO3
NH4HCO3+NaCl===NaHCO3+NH4Cl
2NaHCO3===Na2CO3+CO2 +H2O
反应生成的CO2可以回收再用,而NH4Cl又可以与生石灰反应,产生NH3,重新作为原料使用:2NH4Cl+CaO===2NH3+CaCl2+H2O
氨碱法使生产实现了连续性生产,食盐的利用率得到提高,产品质量纯净,因而被称为纯碱,但最大的优点还在于成本低廉。1867年索尔维设厂制造的产品在巴黎世界博览会上获得铜制奖章,此法被正式命名为索尔维法。此时,纯碱的价格大大下降。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。这些国家发起组织索尔维公会,设计图纸只向会员国公开,对外绝对保守秘密。凡有改良或新发现,会员国之间彼此通气,并相约不申请专利,以防泄露。除了技术之外,营业也有限制,他们采取分区售货的办法,例如中国市场由英国卜内门公司独占。由于如此严密的组织方式,凡是不得索尔维公会特许权者,根本无从问津氨碱法生产详情。多少年来,许多国家要想探索索尔维法奥秘的厂商,无不以失败而告终。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。
覆铜箔层压板制造工艺覆铜箔层压板生产工艺流程如下:树脂合成与胶液配制-增强材料浸胶与烘干-浸胶料剪切与检验-浸胶料与铜箔叠层-热压成型-裁剪-检验包装。
树脂溶液的合成与配制都是在反应釜中进行的。纸基覆箔板用的酚醛树脂大多是由覆箔板厂合成。
玻璃布基覆箔板的生产是将原料厂提供的环氧树脂与固化剂混合溶解于丙酮或二甲基甲酰胺、乙二醇甲醚中,经过搅拌使其成为均匀的树脂溶液。树脂溶液经熟化8~24h后就可用于浸胶。
浸胶是在浸胶机上进行的。浸胶机分卧式和立式两种。卧式浸胶主要用于浸渍纸,立式浸胶机主要用于浸渍强度较高的玻璃布。浸渍树脂液的纸或玻璃布主,经过挤胶辊进入烘道烘干后,剪切成一定的尺寸,经检验合格后备用。
根据产品设计要求,把铜箔和经过浸胶烘干的纸或玻璃布配成叠层,放进有脱模薄膜或有脱模剂的两块不锈钢板中间,叠层连同钢板一起放到液压机中进行压制。
合格的覆箔板应进行包装。每两张双面覆箔板间应垫一层低含硫量隔离纸,然后装进聚乙烯塑料袋内或包上防潮纸。
一、矿场油气集输的任务及内容
矿场油气集输是指把各分散油井所生产的油气集中起来,经过必要的初加工处理,使之成为合格的原油和天然气,分别送往长距离输油管线的首站(或矿场原油库)或输气管线首站外输的全部工艺过程。
概括地说,矿场油气集输的工作范围是以油井井口为起点,矿场原油库或输油、输气管线首站为终点的矿场业务;主要任务是尽可能多的生产出符合国家质量指标要求的原油和天然气,为国家提供能源保障;具体工作内容包括油气分离、油气计量、原油脱水、天然气净化、原油稳定、轻烃回收、含油污水处理等工艺环节。
二、矿场油气集输流程
矿场油气集输流程是油气在油气田内部流向的总说明。它包括以油气井井口为起点到矿场原油库或输油、输气管线首站为终点的全部工艺过程。矿场油气集输流程可按多种方式划分。
(一)按布站级数划分
在油井的井口和集中处理站之间有不同的布站级数,据此可命名为一级布站流程、二级布站流程和三级布站流程。
一级布站流程是指油井产物经单井管线直接混输至集中处理站进行分离、计量等处理。该流程适用于离集中处理站较近的油井。
二级布站流程(见图7-2)是指油井产物先经单井管线混输至计量站,在计量站分井计量后,再分站(队)混输至集中处理站处理。该流程适用于油井相对集中、离集中处理站不太远、靠油井压力能将油井产物混输至集中处理站的油区,一般是按采油队布置计量站。
图7-2 二级布站集输流程
三级布站流程是指油井产物在计量站分井计量后,先分站(队)混输至接转站,在接转站进行气液分离,其中的液相经加压后输至集中处理站进行后续处理,气相由油井压力输至集中处理站或天然气处理厂进行处理。该流程适用于离集中处理站较远、靠油井压力不能将油井产物混输至集中处理站的油区。
总体而言,二级布站流程是较合理的布站方式,其特点是密闭程度较高,油气损耗较少,能量利用合理,便于集中管理。但在实际应用中,要根据具体情况具体分析确定布站方式。
(二)按加热降黏方式划分
我国油田生产的原油多数是“三高(高含蜡、高凝点、高黏度)”原油,一般采用加热方式输送。按加热方式的不同可分为井口加热集输流程、伴热集输流程(蒸汽伴热或热水伴热)、掺合集输流程(掺蒸汽、掺热油、掺热水、掺活性水)和井口不加热集输流程等。
1.井口加热集输流程
井口加热集输流程如图7-3所示。油井产物经井口加热炉加热后,进计量站分离计量,再经计量站加热炉加热后,混输至接转站或集中处理站。这是目前我国油田应用较普遍的一种集输流程。
图7-3 井口加热集输流程
1—井口水套加热炉;2—计量分离器;3—计量站水套加热炉;4—计量仪表
2.伴热集输流程
伴热集输流程是用热介质对集输管线进行伴热的集输流程,按所用的伴热介质不同可分为蒸汽伴热集输流程和热水伴热集输流程。
图7-4为蒸汽伴热集输流程,通过设在接转站内的蒸汽锅炉产生蒸汽,用一条蒸汽管线对井口与计量站间的混输管线进行伴热。
图7-4 蒸汽伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—锅炉;7—水池
图7-5为热水伴热集输流程,通过设在接转站内的加热炉对循环水进行加热。去油井的热水管线单独保温,对井口装置进行伴热;回水管线与油井的出油管线一起对油管线进行伴热。
这两种流程比较简单,适用于低压、低产、原油流动性差的油区的伴热集输,但需有蒸汽产生设备或循环水加热炉,一次性投资大,运行中热损失大,热效率较低。
3.掺合集输流程
掺合集输流程是将具有降黏作用的介质掺入井口出油管线中,以达到降低油品黏度、实现安全输送的目的。常用作降黏介质的有蒸汽、热稀油、热水和活性水等。
图7-6为掺稀油集输流程。稀油经加压、加热后从井口掺入油井的出油管线中,使原油在集输过程中的黏度降低。该流程适用于地层渗透率低、产液量少、原油黏度高的油井,但设备较多,流程复杂,需要有适于掺合的稀油。
图7-5 热水伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—缓冲水罐;7—循环水泵;8—循环水加热炉
图7-6 掺稀油集输流程
1—来油计量阀组;2—加热炉;3—三相分离器;4—脱水泵;5—沉降罐;6—脱水加热炉;7—电脱水器;8—净化油罐;9—稀油分配计量阀组;10—稀油加热炉;11—外输泵;12—流量计;13—稀油缓冲罐;14—掺油泵;15—天然气去气体净化站;16—净化原油外输;17—稀油进站;18—含油污水去污水站
图7-7为掺活性水集输流程。通过一条专用管线将热活性水从井口掺入油井的出油管线中,将原油变成水包油型的乳状液,使原来油与油、油与管壁间的摩擦变为水与水、水与管壁间的摩擦,以达到降低油品黏度的目的。该流程适用于高黏度原油的集输,但流程复杂,管线、设备易结垢,后端需要增加破乳、脱水等设施。
4.井口不加热集输流程
图7-8为井口不加热集输流程,是随着油田开采进入中、后期,油井产液中含水不断增加而采用的一种集输方法。由于油井产液中含水的增高,一方面使采出液的温度有所提高,另一方面使采出液可能形成水包油型乳状液,从而使得输送阻力大为减小,为井口不加热、油井产物在井口温度和压力下直接混输至计量站创造了条件。
图7-7 掺活性水集输流程
图7-8 井口不加热集输流程
(三)按布管形式划分
按通往井口管线的根数可分为单管集输流程、双管集输流程和三管集输流程等。此外,还有环形管网集输流程、枝状管网集输流程、放射状管网集输流程、米字形管网集输流程等。
单管集输流程是指井口与计量站之间只有一条油井产物混输管线,如图7-3所示的加热集输流程。双管集输流程是指井口与计量站之间有两条管线,一条输送油井产物,另一条输送热介质,实现降黏输送,如图7-7所示的掺活性水集输流程。三管集输流程是指井口与计量站之间有三条管线,一条输送油井产物,另外两条实现热介质在计量站与井口之间的循环,如图7-5所示的热水伴热集输流程。
环形管网集输流程如图7-9所示,是用一条通往接转站或集中处理站的环形管道将油区各油井串联起来,实现二级或一级布站。该流程多用于油田外围油区的集输。
(四)按油气集输系统密闭程度划分
按油气集输系统密闭程度可划分开式集输流程和密闭集输流程。
开式集输流程是指油井产物从井口到外输之间的所有工艺环节当中,至少有一处是与大气相通的,如图7-10中的6、9、13等储油罐处。这种流程运行管理的自动化水平要求不高,参数容易调节,但油气的蒸发损耗大,能耗大。
密闭集输流程是指油井产物从井口到外输之间的所有工艺环节都是密闭的,如图7-11所示。这种流程减少了油气的蒸发损耗,降低了能耗,但由于整个系统是密闭的,若局部出现参数波动,会影响到整个系统,要求运行管理的自动化水平较高。
图7-9 单管环形管网集输流程
图7-10 开式集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、9、13—储油罐;7、11—一级、二级脱水泵;8、15—脱水、外输加热炉;10—污水泵;12—电脱水器;14—外输油泵
图7-11 密闭集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、10—压力缓冲罐;7—脱水泵;8、12—脱水、外输加热炉;9—电脱水器;11—外输油泵
(五)海上油田集输流程
目前通用的海上油气生产和集输系统流程主要有半海半陆式集输流程和全海式集输流程两种模式。
半海半陆式油气集输流程适用于离岸近的中型油田和油气产量大的大型油田。它是由海上平台、海底管线和陆上终端构成等部分组成的,如图7-12所示。
全海式集输流程是指油气的生产、集输、处理、储存均是在海上平台进行的,处理后的原油在海上直接装船外运。此流程适用于远离岸边的中小型海上油田。
图7-12 半海半陆式油气集输流程
三、油气初加工处理
在石油的开采过程中,伴随着原油的采出,同时也采出一定量的伴生气、水、泥沙等。在实际生产过程中,需对油井采出液进行必要的初加工处理,从而得到合格的原油和天然气。
(一)油气分离
油气分离是油田油气处理的首要环节,它是借助于油气分离器来实现油、气、水、砂等的分离。
油气分离器是油气田用得最多、最重要的设备之一,其类型很多。在生产实际过程中,应用较多的是卧式两相油气分离器和卧式油气水三相分离器等。
1.卧式油气两相分离器
卧式两相油气分离器的结构如图7-13所示,流体由油气混合物入口进入分离器,经入口分流器后,流体的流向和流速发生突变,使油气得到初步分离。在重力的作用下,分离后的液相进入集液部分,在集液部分停留足够的时间(我国规定:一般原油在分离器内的停留时间为3min,起泡原油为5~20min),使液相中的气泡上升到液面进入气相。集液部分的液相最后经原油出口流出分离器进入后续的处理环节。来自入口分流器的气体则分散在液面上方的重力沉降部分,使气体所携带的粒径较大的油滴(>100μm)靠重力沉降到气—液界面。未沉降下来的油滴则随气体进入除雾器,在除雾器内聚结、合并成大油滴,靠重力沉降到集液部分,脱出油滴的气体经气体出口流出分离器。
图7-13 卧式油气两相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—出油阀;8—原油出口;9—集液部分
2.卧式油气水三相分离器
两相油气分离器只是简单地将油井产物分成气液两相。实际上,油井产物是油、气、水等的混合物,在油气分离的同时,也要实现水的分离。
图7-14 卧式油气水三相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—挡油板;8—出油口;9—出水口;10—挡水板;11—油池;12—水室
卧式三相油气水分离器可以实现油气水的分离,其结构如图7-14所示,流体由油气混合物入口进入分离器,入口分流器把油气水混合物大致分成气、液两相。液相由导管引至油水界面以下进入集液部分,在集液部分油水实现分离,上层的原油及其乳状液从挡油板上层溢出进入油池,经出油口流出分离器。水经挡水板进入水室,通过出水口流出分离器。气体水平通过重力沉降部分,经除雾器后由气出口流出。
(二)原油脱水
石油的开采,伴随着产生大量的水。原油中的含水大都以游离水和乳化水两种形态存在,它们给油气集输、储运乃至石油加工带来了许多危害,因此,必须对原油进行脱水。
乳化水是水与原油形成的乳状液,其物理性质发生了很大的变化,因而是脱水的主要对象。乳化水通常有两种类型,一种是油包水型(W/O)乳化水,其水为分散相、油为连续相;另一种是水包油型(O/W)乳化水,其油为分散相、水为连续相。
原油脱水的方法很多,主要有热沉降脱水、化学脱水、离心法脱水、粗粒化脱水、电脱水等。实际脱水过程中,最常用的是热化学破乳脱水法和电脱水法。
1.热化学破乳脱水
热化学破乳脱水就是将含水原油加热到一定的温度,并向原油中加入少量的化学破乳剂,从而破坏油水乳状液的稳定性,促使水滴碰撞、聚结、沉降,以达到油水分离的目的。
2.电脱水
原油电脱水方法适合于处理含水量在30%左右的油包水型原油乳状液。它是将原油乳状液置于高压直流或交流电场中,在电场力的作用下,促使水滴合并、聚结,形成较大粒径的水滴,实现油水的分离。
原油电脱水过程中,水滴在电场中是以电泳聚结、偶极聚结、振荡聚结三种方式进行聚结合并的。其中,在交流电场中,水滴以偶极聚结、振荡聚结方式为主;在直流电场中,水滴以电泳聚结方式为主,偶极聚结方式为辅。
(三)原油稳定及轻烃回收
1.原油稳定
原油是多组分的碳氢化合物的混合物。在原油集输过程中,由于操作条件的变化,会使原油中的部分轻组分挥发,造成原油蒸发损耗。为了降低原油的蒸发损耗,充分利用油气资源,保护环境,提高原油储运过程中的安全性,须采用一系列工艺措施,将原油中挥发性强的轻组分(主要是C1~C4)脱出,降低原油的挥发性和饱和蒸气压,使原油保持稳定,这一工艺过程称为原油稳定。
原油稳定的方法很多,主要有闪蒸稳定法、分馏稳定法、大罐抽气法等。
闪蒸稳定法是将未稳定的原油加热到一定温度,然后减压闪蒸分离得到相应的气相和液相产物。这是目前应用较广的方法。闪蒸稳定法的原理流程如图7-15所示。
图7-15 闪蒸稳定法的原理流程图
1—换热器;2—加热炉;3—闪蒸塔;4—压缩机;5—冷凝器;6—分离器;7—泵
分馏稳定法是根据原油中各组分挥发度不同的特点,利用精馏的原理将原油中的C1~C4组分脱出,达到稳定的目的。分馏稳定法的典型流程如图7-16所示。分馏稳定法的主要设备是稳定塔,稳定塔是一个完全的精馏塔,塔的上部为精馏段,下部为提馏段,塔顶有回流系统,塔底有重沸系统。这种方法设备多,流程较复杂,但稳定原油的质量好。
图7-16 分馏稳定法的典型流程图
1—换热器;2—稳定塔;3—冷凝器;4—分离器;5—回流罐;6—泵;7—重沸器
大罐抽气法是利用原油处理站内的沉降脱水油罐,在罐顶安装抽气管线,利用压缩机自罐中抽出油蒸气,经增压、冷却、计量后输送至轻烃回收装置进行回收。
2.轻烃回收
轻烃是指天然气中所含的C3以上的烃类混合物,它们在天然气中以气态的形式存在,通过不同的工艺方法将它们以液态的形式回收称为轻烃回收。
轻烃回收的方法较多,常用的有固体吸附法、液体吸收法及低温分离法等。
固体吸附法是利用固体吸附剂(如活性炭、活性氧化铝等)对各种烃类的吸附能力不同,而使天然气中的各组分得以分离的方法。
液体吸收法是利用天然气中各组分在液体吸收油(如石脑油、煤油等)中的溶解度不同,而使天然气中的各组分得以分离的方法。
这两种方法是早期轻烃回收较常用的方法,由于投资高、能耗大、收率低,现已逐步为低温分离法所替代。
低温分离法是利用天然气各组分冷凝温度不同的特点,在降温过程中使各组分得以分离的方法。这种方法的特点是使气体获得低温。通常低温获得的方法主要有制冷剂制冷、膨胀机膨胀制冷及两者混合使用的制冷方法等。
(四)油田气的净化
油田气含有多种杂质,如砂粒、岩屑等固体杂质,水、凝析油等液体杂质,水蒸气、硫化氢、二氧化碳等气体杂质。固体杂质的存在,会导致管道、设备、仪表等的磨损,严重时会堵塞管道,降低输送量,影响生产安全;水蒸气的存在,不仅降低了管线的输送能力和气体热值,而且当输送压力和环境条件变化时,还可能使水蒸气从天然气流中析出,形成液态水、冰或天然气的固体水合物,从而增加管路压降,严重时堵塞管道;酸性气体H2S或CO2的存在,会加剧管线、设备的腐蚀,影响化工产品的质量。由此可见,气体净化是油田气长距离输送或进行轻烃回收前必不可少的环节。气体净化主要采用以下几种方法:
1.吸附法
吸附法是利用油田气中的不同组分在固体吸附剂表面上积聚特性不同的原理,使某些组分吸附在固体吸附剂表面,进行脱除的方法。
2.吸收法
吸收法是用适当的液体吸附剂处理气体混合物以除去其中的一种或多种组分的方法。如用液态烃吸收气态烃,用水吸收CO2,用甘醇脱水或用多乙二醇甲醚脱硫,用碱液吸收CO2等。在操作过程中,对吸收后的溶液可进行再生,使溶剂得到循环使用。
3.冷分离法
由于多组分混合气体中各组分的冷凝温度不同,在冷凝过程中高沸点组分先凝结出来,这样就可以使组分得到一定程度的分离。冷却温度越低,分离程度越高。例如低温分离法脱水、膨胀机制冷脱水等都是冷分离方法。这一方法流程简单,成本低廉,特别适用于高压气体。
4.直接转化法
直接转化法是通过适当的化学反应,使杂质转化成无害的化合物留在气体内,或者转化成比原杂质易于除去的化合物,达到净化目的。
四、油气计量
油气计量是指对石油和天然气流量的测定。在油气田生产过程中,从井口到外输间主要分为油气井产量计量、外输流量计量和交接数量计量三种。
(一)油气井产量计量
油气井产量计量是指对生产井所生产的油量和气量的测定。目的是了解油气井生产状态,为油气井管理、油气层动态分析提供资料数据。
对于产量高的油气井,通常是每口井单独设置一套计量装置,称为单井计量。对于产量低的油气井,通常是8~12口油井共用一套计量装置,并对每口油井生产的油、气、水进行计量,油井日产量要定期、定时轮换进行计量。这种计量方式称为多井计量。
油气井产量计量方法有两种:分离计量法和多相流量计量法。分离计量法是利用油气分离器先将油井产物分离成气相和液相,或者气、油和水相,然后分别计量各相的流量。由于计量精度受到分离质量的影响,且油气难以完全分离,因此,该法计量精度差,而且附属设备多,占地面积大。多相流量计量法是自动分析检测油井产物的组成和流量,进而测定油井的产油量、产气量和产液量。它是将分离、计量合成一体完成,具有体积小、精度高、操作方便等特点,是计量发展的方向。
(二)外输流量计量
外输流量计量是对石油和天然气输送流量的测定。它是输出方和接收方进行油气交接经营管理的基本依据。计量要求有连续性,仪表精度高。外输原油一般采用高精度的流量仪表连续计量出体积流量,再乘以密度,减去含水量,求出质量流量。综合计量误差一般要求在±0.35%以内。这就要求原油流量仪表要有较高的精度,同时也应定期进行标定。
(三)交接数量计量
交接数量计量是指油田内部各采油单元之间进行的油品输送流量的计量。它是衡量各采油单元完成生产指标情况,进而进行经济核算的依据。从计量方法上看,交接数量计量与外输流量计量基本相似,但由于这种计量是发生在油田内部各采油单元之间的,因此其计量精度不如外输流量计量要求高。
五、含油污水处理
目前,我国多数油田已进入开发晚期,大多采用注水方式开发,从而导致油井采出液含水量升高(有些油田的综合含水率已达90%)。在初加工处理过程中,油井采出液将脱出大量的含油污水,如果含油污水处理不合理就进行回注和排放,不仅会使油田地面设施不能正常运作,而且会因地层堵塞带来危害,影响油田安全生产,同时也会造成环境污染,因此必须合理地处理、利用含油污水。
(一)含油污水的特点
1.污水含油
污水含油量一般为1000 mg/L左右,少部分油田污水含油量高达3000~5000 mg/L,而且同一污水站瞬时污水的含油量也具有一定的波动性。一般来讲,污水中的油是以浮油(油珠直径大于100μm)、分散油(油珠直径10~100μm)、乳化油(油珠直径0.1~10μm)和溶解油(油珠直径小于0.1μm)四种形态分布于水中的。
2.污水含盐
含油污水中含有多种离子,主要包括Ca2+、Mg2+、K+、Na+、Fe2+等阳离子和Cl-、HCO3-、CO23-、SO24-等阴离子。这些离子之间相互结合,生成各种盐类。在一定的条件下,CaCO3、CaSO4、MgCO3等溶解度较小的盐类易形成沉淀。它们如悬浮在水中,会使水浑浊;如沉积在管壁上,会引起结垢。
3.污水含气
污水中溶解有O2、H2S、CO2等多种有害气体。其中,O2是很强的去极化剂,能使阳极的铁原子失去电子,生成Fe2+或Fe3+,进一步生成Fe(OH)3沉淀。同样,CO2、H2S等酸性气体也能与铁原子结合生成FeCO3垢或FeS沉淀。它们都会大大加剧金属设备和管线的腐蚀、结垢。
4.污水含悬浮固体
污水中的悬浮固体是指污水中所含的固体悬浮物,其颗粒直径范围在1~100μm之间,主要包括泥沙、各种腐蚀产物及垢、细菌、胶质、沥青质等。这些悬浮固体悬浮在水中,会使水浑浊;附着在管壁上,会形成沉淀,引起管壁腐蚀;回注于储油层,会使孔隙堵塞,影响油井产量。
综上所述,污水中的成分复杂,其显著特点是腐蚀性强、结垢快。生产中,应重点针对这类问题加以分析,采取有效措施加以处理。
(二)含油污水处理流程
含油污水处理工艺流程因污水水质、净化处理要求不同而异。按照处理工艺过程,大致可将其划分为自然除油—混凝沉降—压力过滤流程、压力式聚结沉降分离—过滤流程、浮选式流程及开式生化处理流程等。
1.自然除油—混凝沉降—压力过滤流程
自然除油—混凝沉降—压力过滤流程如图7-17所示。从脱水转油站送来的含油污水经自然除油初步沉降后,投加混凝剂进入混凝沉降罐进行混凝沉降。然后进入缓冲罐,经提升泵加压后进入压力滤罐进行压力过滤。滤后水再加杀菌剂,得到合格的净化水,外输用于回注;自然除油罐和混凝沉降罐回收的原油进入污油罐,经油泵加压输送至油站;对压力滤罐进行反冲洗时,反洗水泵从反洗水罐提水,反冲洗排水进入回收水罐,经回收水泵均匀地加入自然除油罐中再进行处理。
该流程处理效果良好,对污水含油量、水量变化波动适应性强,但当处理规模较大时,压力滤罐数量较多、操作量大,处理工艺自动化程度稍低。
图7-17 自然除油—混凝沉降—压力过滤流程
2.压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程如图7-18所示。它加强了流程前段除油和后段过滤净化。脱水站送来的污水,若压力较高,可进旋流除油器;若压力适中,可进接收罐除油。为了提高沉降净化效果,在压力沉降之前增加一级聚结(亦称粗粒化)除油,使油珠粒径变大,易于沉降分离。抑或采用旋流除油后直接进入压力沉降。根据对净化水质的要求也可设置一级过滤和二级过滤净化。
图7-18 压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程处理净化效率较高,效果良好,污水在处理流程内停留时间较短,系统机械化、自动化水平稍高,但适应水质、水量波动能力稍低。
3.浮选式流程
浮选式流程如图7-19所示。该流程首端大都采用溶气气浮,再用诱导气浮或射流气浮取代混凝沉降设施,后端根据净化水回注要求,可设一级过滤和精细过滤装置。
图7-19 浮选式流程
浮选式流程处理效率高,系统自动化程度高,现场预制工作量小,广泛应用于海上采油平台污水系统;在陆上油田,广泛用于稠油污水处理。但该流程动力消耗大,维护工作量稍大。
4.开式生化处理流程
开式生化处理流程如图7-20所示。它是针对部分油田污水采出量较大、不能完全回注、需要部分处理达标排放的实际设计的。含油污水经过平流隔油池除油沉降,再经过溶气浮选池净化,然后进入一级、二级生物降解池和沉降池,最后经提升泵提升至滤池进行砂滤或吸附过滤达标外排。
图7-20 开式生化处理流程图
总之,上述几种流程是目前含油污水处理较常用的流程。当然,由于各油田污水的具体情况不同,上述流程也并非是绝对的,实际应用中,应根据具体的情况选择合适的流程。
有机物VOCS主要指:烷类、芳烃类、酯类、醛类和其他等。目前已鉴定出的有300多种。最常见的有苯、甲苯、二甲苯、苯乙烯、三氯乙烯、三氯甲烷、三氯乙烷、二异氰酸酯(TDI)、二异氰甲苯酯等,甲醛也是挥发性有机化合物,油漆、及含水涂料,工业废气、汽车尾气、光化学烟雾,这些有机物浓度一旦超标,会对人体健康产生极大的伤害,所以国家对其排放有明确的规定。
根据国家国家环保总局颁布的:《HJ/T293-2006清洁生产标准-汽车制造业(涂装)》
《GB24409-2009汽车涂料中有害物质限量》
汽 A类涂料中VOCs限量
涂料品种
挥发性有机化合物(VOC)含量(mg/m3)
限用溶剂含量(%)
热塑型
底漆、中涂、底色漆(效应颜料漆、实色漆)、罩光清漆、本色面漆
≤770
苯≤0.3 甲苯、乙苯和二甲苯总量≤40 乙二醇甲醚、乙二醇乙醚、乙二醇甲醚醋酸酯、乙二醇乙醚醋酸酯、二乙二醇丁醚醋酸酯总量≤0.03
单组分交联型
底漆
≤750
中涂
≤550
底色漆(效应颜料漆、实色漆)
≤750
罩光清漆、本色面漆
≤580
双组分交联型
底漆、中涂
≤670
底色漆(效应颜料漆、实色漆)
≤750
罩光清漆
≤560
本色面漆
≤630
注:1.涂料供应商应提供组分配比和能保证施涂的稀释比例范围,测试挥发性有机化合物和限用溶剂含量项目时按组分配比和最大稀释比例配制后进行测试。 2.汽车发动机、排气管等部位使用的耐高温涂料归入底漆类别;单组分交联型中用于3C1B(三涂-烘干)涂装工艺喷涂的第1、2道涂料归入底色漆类别。 3.某个产品作为不同涂料品种使用,应执行最严要求,如双组分交联型涂料中既能作为实色漆也能作为本色面漆使用的产品,应执行本色面漆的指标。
B类涂料中VOCs限量
涂料品种
限用溶剂含量 %
水性涂料(含电泳涂料)
乙二醇甲醚、乙二醇乙醚、乙二醇甲醚醋酸酯、乙二醇乙醚醋酸酯、二乙二醇丁醚醋酸酯总量≤0.03
粉末、光固化涂料
——
注:对于水性涂料(含电泳涂料),涂料供应商应提供施工配比。进行限用溶剂含量测试时:不加水,将各组分和溶剂(如产品规定施涂时需加溶剂,试验时需要加入)混匀后进行测试。
按照以上国家标准,VOCS的排放至少选择0-2000mg/m3。
量程选择图表
VOC气体传感器量程选择图表
量程(mg/m3)
精度 (mg/m3 )
0-10
0.01
0-50
0.1
0-500
0.1
0-1000
1
0-2500
1
0-5000
1
其他特殊量程
电话咨询技术工程师
进口电化学/PID光离子传感器具有良好的抗干扰性能,适用寿命8年。
‚采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
ƒ检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
■ 智能化EC传感器,采用本质安全技术,可支持多气体、多量程检测,并可根据用户需求提供定制化产品,无需工具 可实现传感器互换、离线标定和零点自校准
■ 智能的温度和零点补偿算法,使仪器具有更加优良的性能具有很好的选择性,避免了其他气体对被检测气体的干扰
■ 多种信号输出,既可方便接入PLC/DCS 等工控系统,也可以作为单机控制使用
■ 超大点阵LCD 液晶显示,支持中英文界面
■ 免开盖,电化学遥控器操作,单人可维护
■ 本地报警指示,一体化声光报警器(选配)
■ 仪器具有超量程、反极性保护,能避免人为操作不当引起的危险
■ 丰富的电气接口,可供用户选择
■ 通过ATN2O、UL、CSA等认证,具有国际化高端品质
是一款采用模块化设计、具有智能化传感器检测技术、整体隔爆(d)结构、固定安装方式的有毒气体检测仪。标准配置为带点阵LCD 液晶显示、三线制4~20mA 模拟和RS485 数字信号输出,可选配置为可编程开关量输出等模块,根据用户需求提供定制化产品,还支持输出信号微调等功能,方便系统组网及维护。
射洪县睿智商贸有限公司是2014-04-18在四川省遂宁市射洪县注册成立的其他有限责任公司,注册地址位于四川省遂宁市射洪县大榆镇桃木沟村。
射洪县睿智商贸有限公司的统一社会信用代码/注册号是91510922098552996Q,企业法人周兴碧,目前企业处于开业状态。
射洪县睿智商贸有限公司的经营范围是:销售:建筑材料及装饰材料、五金、日用百货、洗涤用品、针纺织品、机械配件、水泥制品、服装鞋帽、工艺美术品(不含象牙及其制品)、电脑软硬件、电脑耗材、通讯器材(不含地面卫星接收设施)、皮革制品、办公用品、照明电器、不锈钢制品、铝合金制品、半导体材料、电子产品、电子材料、塑料制品、消防设备、照相器材、环保设备、卫生洁具、厨房用具、玻璃制品、电线电缆、电子元件、体育用品、工程机械设备及配件、酒店用品、酒店设备、家具、花卉、苗木、电气机械、机械设备及配件、仪器仪表;消防工程;安防工程;水电工程;管道工程;智能化管理系统开发、应用;批发(仅限票据交易)(按许可证核定的方式和有效期从事经营):乙醇(无水)、冰乙酸、氯铂酸、氢化镍、氢氟酸、硝酸、氢氧化钠、氨水、过氧化氢、硝酸铝、乙二醇甲醚、异丙醇、丙酮、盐酸;餐饮服务;物业管理服务;广告设计、制作、代理、发布。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。本省范围内,当前企业的注册资本属于一般。
射洪县睿智商贸有限公司对外投资3家公司,具有0处分支机构。
通过百度企业信用查看射洪县睿智商贸有限公司更多信息和资讯。