建材秒知道
登录
建材号 > 乙醇 > 正文

乙醇钠为什么会变成这个颜色

拼搏的枫叶
懵懂的机器猫
2022-12-22 10:08:03

乙醇钠为什么会变成这个颜色

最佳答案
舒服的水壶
可爱的背包
2026-02-03 06:50:45

被空气中的氧气氧化了

,乙醇中加强碱溶液久置了也会变色。

以前研究过,不过没有找到可靠的文献,只是有这么一个认为。认为是乙醇在强碱条件下被氧气氧化成乙醛,然后醛以烯醇式的结构与乙醇缩合。因为烯醇式存在的原因使得出现黄棕色。这里的情况类似。算是提供一个参考吧。。

最新回答
感性的期待
丰富的红酒
2026-02-03 06:50:45

乙醇稳定,而乙醇钠容易变色。

是因为乙醇的强碱性。乙醇是中性的,而乙醇钠是强碱性的,强碱性是非常强的催化剂,乙醇钠里边总归有杂质,杂质在乙醇钠的催化下,容易发生氧化反应,形成有颜色的物质,就变色了。

英勇的玫瑰
幽默的雨
2026-02-03 06:50:45
乙醇与氢氧化钠反应生成乙醇钠!

极少量的乙醇钠与水。由钠与乙醇的反应便可知,乙醇也有和水类似的自偶电离(极微弱),产物为CH3CH2O+与H+,氢氧化钠在乙醇当中的电离也是可逆的,而H+与OH-结合产生乙醇钠与水。

乙醇钠为白色或淡黄色吸湿性粉末。在空气中贮存时分解变黑。

遇水分解成氢氧化钠和乙醇。溶于无水乙醇而不分解。

动人的冬天
粗犷的诺言
2026-02-03 06:50:45
红色溶液我并不知道是什么,因为你的试剂来源不明,说不定混有别的东西。

可以猜测是苯酚氧化之后形成的苯醌。

原因是97.5%纯度的乙醇是用苯作共沸物制备的,时间长了往往会有微量苯酚形成,强碱作用下变色很快。

还有可能就是本来就有少量酚酞之类的东西。

白色固体有氢氧化钠,可能有乙醇钠,不溶于水说明试剂有别的杂质,也有可能是碳酸钠在碱浓度较高时不溶。

凝胶的话,由于红色液体中有碱,发生水解形成乙酸钠,乙酸钠在饱和氢氧化钠溶液中沉淀析出了。

我只能提出猜想,希望你自己再设计方法检验了。

强健的电话
繁荣的芝麻
2026-02-03 06:50:45
-OH(羟基)一般是在苯酚和醇里,检验的方法一般有2种:

1、用金属钠检验。金属纳和苯酚反反应,放出气泡(氢气)。和酒精甲醇等东西也反应,效果同样。2C6H6O+2Na==△==H2↑+2C6H5ONa(苯酚钠)

乙醇与钠反应生成乙醇钠和氢气

2CH3CH2OH+2Na---2CH3CH2ONa+H2↑

2、用Br2水检验。Br2和苯酚反应,变,然后Br2的棕色退去。和酒精等物也反应,置换出-OH,颜色也退去

C6H5OH

+

3Br2

===2,4,6三溴苯酚+3HBr

CH3CH2OH+HBr

=

CH3CH2Br

+

H2O

老迟到的寒风
粗暴的秀发
2026-02-03 06:50:45

由2-氨基吡啶经重氮化后,与2-萘酚偶合而得。将无水乙醇与金属钠反应生成乙醇钠,然后加入2-氨基吡啶的乙醇溶液,通入亚硝酸乙酯蒸气于45-50℃反应。

能毕,保温8小时,过滤出重氮盐用乙醚洗涤。将重氮盐加入2-萘酚的乙醇溶液中,在45-50℃通入二氧化碳进行偶合反应,6小时后过滤出结晶,用蒸馏水洗涤后再用乙醇重结晶,干燥即为成品。

按理论量在α- 氨基吡啶的乙醇溶液中,加入由无水乙醇和金属钠反应得到的乙醇钠,然后再通入亚硝酸乙酯蒸气,并控制反应温度在45~50℃,蒸气通入结束后保温8h,滤出的重氮盐结晶用乙醚洗涤;

经过洗涤的重氮盐加到相同物质量的2-萘酚的乙醇溶液中,控制温度在45~50℃,然后通入二氧化碳进行偶合,6h后滤出结晶,用蒸馏水洗涤后,用7倍量的乙醇重结晶,并于80℃以下干燥,即得精制的1-(2-吡啶偶氮)-2-萘酚。

过程反应式为:

扩展资料

指示剂是化学试剂中的一类。在一定介质条件下,其颜色能发生变化、能产生浑浊或沉淀,以及有荧光现象等。常用它检验溶液的酸碱性;滴定分析中用来指示滴定终点;环境检测中检验有害物。一般分为酸碱指示剂、氧化还原指示剂、金属指示剂、吸附指示剂等。

用以指示滴定终点的试剂。在各类滴定过程中,随着滴定剂的加入,被滴定物质和滴定剂的浓度都在不断变化,在等当点附近,离子浓度会发生较大变化,能够对这种离子浓度变化作出显示(如改变溶液颜色,生成沉淀等)的试剂就叫指示剂。

如果滴定剂或被滴定物质是有色的,它们本身就具有指示剂的作用,如高锰酸钾。不同的指示剂在不同的酸碱环境下呈现不同的颜色。

参考资料:百度百科-指示剂

参考资料:百度百科-1-(2-吡啶偶氮)-2-萘酚

朴实的小松鼠
年轻的糖豆
2026-02-03 06:50:45
由烃基和羧基相连构成的有机化合物称为羧酸。饱和一元羧酸的沸点甚至比相对分子质量相似的醇还高。

化学描述

在羧酸分子中,羧基碳原子以sp2杂化轨道分别与烃基和两个氧原子形成3个σ键,这3个σ键在同一个平面上,剩余的一个p电子与氧原子形成π键,构成了羧基中C=O的π键,但羧基中的-OH部分上的氧有一对未共用电子,可与π键形成p-π共轭体系。由于p-π共轭,-OH基上的氧原子上的电子云向羰基移动,O-H间的电子云更靠近氧原子,使得O-H键的极性增强,有利于H原子的离解。所以羧酸的酸性强于醇。当羧酸离解出H后,p-π共轭更加完全,键长发生平均化,-COOˉ基团上的负电荷不再集中在一个氧原子上,而是平均分配在两个氧原子上。

反应类型

⑴羧酸是弱酸,可以跟碱反应生成盐和水。如:CH3COOH+NaOH→CH3COONa+H2O

⑵羧基上的OH的取代反应。如:

①酯化反应:R-COOH+R′OH→RCOOR′+H2O

②成酰卤反应:3RCOOH+PCl3→3RCOCl+H3PO3

③成酸酐反应:RCOOH+RCOOH (加热)→R-COOCO-R+H2O

④成酰胺反应:CH3COOH+NH3→CH3COONH4 ;

CH3COONH4(加热)→CH3CONH2+H2O

⑤与金属反应:2CH3COOH+2Na→2CH3COONa+H2↑

2CH3COOH+Mg→(CH3COO)2Mg+H2↑

⑶脱羧反应:除甲酸外,乙酸的同系物直接加热都不容易脱去羧基(失去CO2),但在特殊条件下也可以发生脱羧反应,如:无水醋酸钠与碱石灰混合强热生成甲烷:CH3COONa+NaOH(热熔)→CH4↑+Na2CO3(CaO做催化剂)

HOOC-COOH(加热)→HCOOH+CO2↑

注:脱羧反应是一类重要的缩短碳链的反应。

(4)还原反应

RCOOH→(LiAlH4) RCH2OH

醇,有机化合物的一大类,是脂肪烃、脂环烃或芳香烃侧链中的氢原子被羟基取代而成的化合物。

醇的酸性和碱性

醇羟基的氧上有两对孤对电子,氧能利用孤对电子与质子结合。所以醇具有碱性。在醇羟基中,由于氧的电负性大于氢的电负性,因此氧和氢共用的电子对偏向于氧,氢表现出一定的活性,所以醇也具有酸性。醇的酸性和碱性与和氧相连的烃基的电子效应相关,烃基的吸电子能力越强,醇的碱性越弱,酸性越强。相反,烃基的给电子能力越强,醇的碱性越强,酸性越弱。烃基的空间位阻对醇的酸碱性也有影响,因此分析烃基的电子效应和空间位阻影响是十分重要的。[1]

烃基的电子效应

在气相下研究一系列醇的酸性次序,其排列情况如下:

(CH3)3CCH2OH >(CH3)3COH >(CH3)2CHOH >C2H5OH >CH3OH >H2O

这说明烷基是吸电子基团。醇在气态时,分子处于隔离状态。因此烷基吸电子反映了分子内在的本质。

烃基的空间效应

在液相中测定的醇的酸性次序与电子效应方面正好相反:

CH3OH >RCH2OH >R2CHOH >R3COH

这是因为在液相中有溶剂化作用,R3CO-由于R3C体积增大,溶剂化作用小,负电荷不易被分散,稳定性差,因此R3COH中的质子不易解离,酸性小。而RCH2O-体积小,溶剂化作用大。因此RCH2OH中的质子易于解离,酸性大。一般pKa值是在液相测定的,很多反应也是在液相中进行的。因此根据液相中各类醇的酸性的大小顺序,认为烷基是给电子的。

各类醇的共轭酸在水中酸性的强弱,也由它们的共轭酸在水中的稳定性来决定,共轭酸的空间位阻小,与水形成氢键而溶剂化的程度愈大,酸性就愈低。如空间位阻大,溶剂化作用小,质子易离去,酸性强。[1]

醇羟基中氢的反应

由于醇羟基中的氢具有一定的活性,因此醇可以和金属钠反应,氢氧键断裂,形成醇钠(CH3CH2ONa)和放出氢气。

由于在液相中,水的酸性比醇强,所以醇与金属钠的反应没有水和金属钠的反应强烈。若将醇钠放入水中,醇钠会全部水解,生成醇和氢氧化钠。虽然如此,在工业上制甲醇钠或乙醇钠还是用醇与氢氧化钠反应,然后设法把水除去,使平衡有利于醇钠一方。常用的方法是利用形成共沸混合物将水带走转移平衡。所沸共合物是指几种沸点不同而又完全互溶的液体混合物,由于分子间的作用力,它们在蒸馏过程中因气相和液相组成相同而不能分开,得到具最低沸点(比所有组分沸点都低)或最高沸点(比所有组分沸点都高)的馏出物。这些馏出物的组成与溶液的组成相同,直到蒸完沸点一直恒定,如乙醇一苯一水组成三元共沸混合物,其沸点为64.9℃(乙醇18. 5%,苯74%,水7.5%),苯一乙醇组成二元共沸混合物,其沸点为68.3℃(乙醇32.4%,苯67. 6%)。由于乙醇一水形成共沸混合物,其沸点为78℃(乙醇95. 57%,水4. 43%),所以乙醇中含有少量的水不能通过蒸馏方法除去,可计算加入比形成乙醇苯一水三元共沸混合物稍过量的苯,先将水除去,然后过量苯与乙醇形成二元共沸混合物除去,剩下为无水乙醇。醇钠的醇溶液,可通过上述去水方法得到。醇钠及其类似物在有机合成中是一类重要的试剂,并常作为碱使用。[1]

醇与含氧无机酸的反应

醇与含氧无机酸反应失去一分子水,生成无机酸酯。

醇与硝酸的反应过程如下:醇分子作为亲核试剂进攻酸或其衍生物的带正电荷部分,氮氧双键打开,而后醇分子的氢氧键断裂,硝酸部分失去一分子水重新形成氮氧双键。

该类反应主要用于无机酸一级醇酯的制备。无机酸三级醇酯的制备不宜用此法,因为三级醇与无机酸反应时易发生消除反应。

醇与含氧无机酸的酰氯和酸酐反应,也能生成无机酸酯。

含氧无机酸酯有许多用途。乙二醇二硝酸酯和甘油三硝酸酯(俗称硝化甘油)都是烈性炸药。硝化甘油还能用于血管舒张、治疗心绞痛和胆绞痛。科学家发现:硝化甘油能治疗心脏病的原因是它能释放出信使分子“NO”,并阐明了“NO”在生命活动中的作用机理。为此,他们荣获了1998年诺贝尔生理学和医学奖。

生命体的核苷酸中有磷酸酯,例如甘油磷酸酯与钙离子的反应可用来控制体内钙离子的浓度,如果这个反应失调,会导致佝偻病。[1]

醇羟基的取代反应

醇中,碳氧键是极性共价键,由于氧的电负性大于碳,所以其共用电子对偏向于氧,当亲核试剂进攻正性碳时,碳氧键异裂,羟基被亲核试剂取代。其中最重要的一个亲核取代反应是羟基被卤原子取代。常采用的方法如下:

1.与氢卤酸的反应

(1)一般情况

氢卤酸与醇反应生成卤代烷,反应中醇羟基被卤原子取代。

ROH+HX——>RX+H20

醇羟基不是一个好的离去基团,需要酸的帮助,使羟基质子化后以水的形式离去。各种醇的反应性为3°>2°>1°,三级醇易反应,只需浓盐酸在室温振荡即可反应,氢溴酸在低温也能与三级醇进行反应。如用氯化氢、溴化氢气体在0℃通过三级醇,反应在几分钟内就可完成,这是制三级卤代烷的常用方法。

在氢卤酸中,氢碘酸酸性最强,氢溴酸其次,浓盐酸相对最弱,而卤离子的亲核能力又是I->Br->Cl-,故氢卤酸的反应性为HI>HBr>HCl。若用一级醇分别与这三种氢卤酸反应,氢碘酸可直接反应,氢溴酸需用硫酸来增强酸性,而浓盐酸需与无水氯化锌混合使用,才能发生反应。氯化锌是强的路易斯酸,在反应中的作用与质子酸类似。

羟基直接和苯的sp2杂化碳原子相连的分子称为酚,这种结构与脂肪烯醇有相似之处,故也会发生互变异构,称为酚式结构互变。

酚(phenol),通式为ArOH,是芳香烃环上的氢被羟基(—OH)取代的一类芳香族化合物。最简单的酚为苯酚。酚类化合物是指芳香烃中苯环上的氢原子被羟基取代所生成的化合物,根据其分子所含的羟基数目可分为一元酚和多元酚

酚的羟基直接与苯环的sp2杂化的碳原子相连,这与脂肪族化合物中的烯醇很相似。另外,由于

酚的羟基氧原子的未共用电子对与苯环的共轭作用,不但使苯酚成稳定化合物,而且也有利苯酚的离解。值得注意的是,酚的羟基氧原子杂化类型为不等性sp2杂化,不同于醇羟基氧原子的不等性sp3杂化。

弱酸性

酸性比较:碳酸>苯酚>碳酸氢根>水。

酚比醇的酸性强,是由于酚式羟基的O-H键易断裂,生成的苯氧基负离子比较稳定,使苯酚的离解平衡趋向右侧,而表现弱酸性。酚式羟基的氢除能被金属取代外,还能与强碱溶液生成盐(如酚钠)和水。

若在苯酚钠的水溶液中通入二氧化碳,即有游离苯酚析出。这是因为苯酚酸性比碳酸弱,所以酚盐能被碳酸所分解。

C6H5ONa+CO2+H2O→C6H5OH+NaHCO3

由于酚的酸性弱于碳酸,所以酚只能溶于氢氧化钠而不溶于碳酸氢钠。实验室里常根据酚的这一特性,而与既溶于氢氧化钠又能溶于碳酸氢钠的羧酸相区别。此方法也可用于中草药中酚类成分与羧酸类成分的分离。

傅-克反应

苯酚也容易发生傅 -

克酰基化和烷基化反应。但是,酚羟基要三氯化铝作用形成铝盐,因此需要用较多的三氯化铝来催化反应,得到对和邻酰基苯酚。邻酰基酚中酚羟基的氢与酰基氧原子之间可以形成氢键,这使它在非极性溶液中的溶解度较大,利用该特性采用重结晶的方法能分离这个异构体。

傅 -

克反应需要以硝基苯或二硫化碳为溶剂,若以三氟化硼为催化剂,酚和羧酸也能直接反应得到酰基代酚。

苯酚与邻苯二甲酸酐在浓硫酸或无水氯化锌作用下发生上述的酰基化反应,两分子苯酚与一分子酸酐缩合后得到酚酞这一最为常用的酸碱指示剂。酚酞在

pH 小于 8.5 的溶液中为无色液体,当 pH 大于 9

时,形成电荷离域范围很大的粉红色的共轭双负离子。酚的烷基化反应一般以醇或烯烃在浓硫酸催化下进行,反应不容易控制在单取代阶段。

氧化反应

酚类易被氧化,但产物复杂。纯苯酚系无色结晶,在空气中放置后,就能逐渐氧化变为粉红色、红色或暗红色。苯酚如用酸性重铬酸钾强烈氧化,则生成对苯醌。

邻苯二酚和对苯二酚比苯酚更容易被氧化成相应的醌,但间苯二酚不能被氧化为相应的醌。醌是一般都具有颜色。

显色反应

大多数的酚能与氯化铁的稀水溶液发生显色反应。不同的酚与氯化铁反应呈显不同的颜色。例如,苯酚、间苯二酚、1,3,5-苯三酚与氯化铁溶液作用,均显紫色;甲苯酚呈蓝色;邻苯二酚、对苯二酚呈绿色;1,2,3-苯三酚呈红色,α-萘酚为紫色沉淀,β-萘酚则为绿色沉淀等。此显色反应常用以鉴别酚类的存在。

具有羟基与sp2杂化碳原子相连的结构( —C=C—OH

)结构的化合物能与FeCl3的水溶液显示特殊的颜色一般的醇式羟基无此反应,故也可用来区别醇与烯醇。

清秀的大侠
粗暴的猫咪
2026-02-03 06:50:45
α - 活泼氢的酯在强碱性试剂(如 Na ,NaNH 2 ,NaH ,三苯甲基钠或格氏试剂)存在下,能与另一分子酯发生 Claisen 酯缩合反应,生成β - 羰基酸酯.乙酰乙酸乙酯就是通过这一反应制备的.虽然反应中使用金属钠作缩合试剂,但真正的催化剂是钠与乙酸乙酯中残留的少量乙醇作用产生的乙醇钠.

乙酰乙酸乙酯与其烯醇式是互变异构(或动态异构)现象的一个典型例子,它们是酮式和烯醇式平衡的混合物,在室温时含 92% 的酮式和 8% 的烯醇式.单个异构体具有不同的性质并能分离为纯态,但在微量酸碱催化下,迅速转化为二者的平衡混合物.

三、\x09主要试剂及产品的物理常数:(文献值)

名称\x09分子量\x09性状\x09折光率\x09比重\x09熔点℃\x09沸点℃\x09溶解度:克/100ml溶剂

\x09\x09\x09\x09\x09\x09\x09水\x09醇\x09醚

二甲苯\x09106.16\x09无色液体\x091.0550\x09 \x09-25--23\x09143-145\x09 \x09 \x09

乙酸乙酯\x0988.10\x09无色液体\x091.3727\x090.905\x09-83.6\x0977.3\x0985\x09∞\x09∞

乙酰乙酸乙酯\x09130.14\x09无色液体\x09N20D1.4190\x091.021\x09-43\x09181\x09 \x09 \x09

四、\x09实验装置和主要流程

五、\x09实验步骤

1、熔钠:在干燥的50mL圆底烧瓶中加入0.9g金属钠和5mL二甲苯,装上冷凝管,加热使钠熔融.拆去冷凝管,用磨口玻塞塞紧圆底烧瓶,用力振摇得细粒状钠珠.回收二甲苯.

2、加酯回流:迅速放入10ml乙酸乙酯,反应开始.若慢可温热.回流约2h至钠直至所有金属钠全部作用完为止,得橘红色溶液,有时析出黄白色沉淀(均为烯醇盐).

3、酸 化 :加50%醋酸,至反应液呈弱酸性(固体溶完).

4、分 液:反应液转入分液漏斗,加等体积饱和氯化钠溶液,振摇,静置.

5、干 燥 :分出乙酰乙酸乙酯层,用无水硫酸钠干燥.

6、蒸馏和减压蒸馏.先在沸水浴上蒸去未作用的乙酸乙酯,然后将剩余液移入25mL圆底烧瓶中,用减压蒸馏装置进行减压蒸馏.减压蒸馏时须缓慢加热,待残留的低沸点物质蒸出后,再升高温度,收集乙酰乙酸乙酯.产量约1.5g.

乙酰乙酸乙酯沸点与压力的关系如下表:

压力/mmHg* \x09760 \x0980 \x0960 \x0940 \x0930 \x0920 \x0918 \x0914 \x0912 \x0910 \x095 \x091.0 \x090.1

沸点/℃ \x09181 \x09100 \x0997 \x0992 \x0988 \x0982 \x0978 \x0974 \x0971 \x0967.3 \x0954 \x0928.5 \x095

* 1mmHg= 1 Torr = 133.322Pa

乙酰乙酸乙酯的沸点为180.4℃,折光率 =1.4199.

附:乙酰乙酸乙酯的性质:

1、取1滴乙酰乙酸乙酯,加入1滴 FeCl3溶液,观察溶液的颜色(淡黄→红).

2、取1滴乙酰乙酸乙酯,加入1滴2,4-二硝基苯肼试剂,微热后观察现象(澄黄色沉淀折出).

六、\x09实验关键及注意事项

1.本实验要求无水操作;

2.钠的安全使用;

3.钠珠的制作过程中间一定不能停,且要来回振摇,不要转动.

自觉的自行车
含糊的唇膏
2026-02-03 06:50:45
有机物是有机化合物的简称,所有的有机物都含有碳元素。但是并非所有含碳的化合物都是有机化合物,比如CO,CO2。除了碳元素外有机物还可能含有其他几种元素。如H、N、S等。虽然组成有机物的元素就那么几种(碳最重要),但到现在人类却已经发现了超过1000万中有机物。而它们的特性更是千变万化。因此,有机化学是化学中一个相当重要的研究范畴。

有机物即碳氢化合物(烃)及其衍生物,简称有机物。除水和一些无机盐外,生物体的组成成分几乎全是有机物,如淀粉、蔗糖、油脂、蛋白质、核酸以及各种色素。过去误以为只有动植物(有机体)能产生有机物,故取名“有机”。现在不仅许多天然产物可以用人工方法合成,而且可以从动植物、煤、石油、天然气等分离或改造加工制成多种工农业生产和人民生活的必需品,象塑料、合成纤维、农药、人造橡胶等。与无机物相比,有机物的种类众多,一般挥发性较大、熔点和沸点较低,反应较慢(较复杂)。溶于有机溶剂,且能燃烧。碳原子可用共价键彼此连接生成多种结构,组成数量巨大的不同种类的有机分子骨架。按照基本结构,有机物可分成3类:(1)开链化合物,又称脂肪族化合物,因为它最初是在油脂中发现的。其结构特点是碳与碳间连接成不闭口的链。(2)碳环化合物(含有完全由碳原子组成的环),又可分成脂环族化合物(在结构上可看成是开链化合物关环而成的)和芳香族化合物(含有苯环)两个亚类。(3)杂环化合物(含有由碳原子和其他元素组成的环)。在烃分子中,共价连接的碳原子是骨架,碳的其他键则与氢结合。烃骨架非常稳定,因为形成碳-碳单键和双键的碳原子同等享用它们之间的电子对。烃的氢原子可以被不同的功能团(官能团)取代产生不同类的有机物。功能团决定分子的主要性质,所以有机物也常根据其功能团分类。有机生物分子的功能团比其烃骨架在化学上活泼得多,它们能改变邻近原子的几何形状及其上的电子分布,从而改变整个有机分子的化学反应性。从有机分子中的功能团可以分析和推测其化学行为和反应。如酶(细胞的催化剂)可识别生物分子中的特殊功能团并催化其结构发生特征性变化,大多数生物分子是多功能的,含有两种或多种功能团。在这些分子中,每种类型的功能团有其自己的化学特征和反应。如氨基酸具有至少两种功能团——氨基和羧基。丙氨酸的化学性质就基本决定于其氨基和羧基。又如葡萄糖也是多功能的生物分子,其化学性质基本决定于羟基和醛基两种功能团。生物分子的功能团在其生物活性中起着重要的作用。生物分子中某些其他的功能团列于下表中。

例如甲烷

甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂(如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。

甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及甲醛等物质的原料。

413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。

1.物质的理化常数:

国标编号 21007

CAS号 74-82-8

中文名称 甲烷

英文名称 methane;Marsh gas

别名 沼气

分子式 CH4 外观与性状 无色无臭气体

分子量 16.04 蒸汽压 53.32kPa/-168.8℃ 闪点:-188℃

熔点 -182.5℃ 沸点:-161.5℃ 溶解性 微溶于水,溶于醇、乙醚

密度 相对密度(水=1)0.42(-164℃);相对密度(空气=1)0.55 稳定性 稳定

危险标记 4(易燃液体) 主要用途 用作燃料和用于炭黑、氢、乙炔、甲醛等的制造

2.对环境的影响:

一、健康危害

侵入途径:吸入。

健康危害:甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。

二、毒理学资料及环境行为

毒性:属微毒类。允许气体安全地扩散到大气中或当作燃料使用。有单纯性窒息作用,在高浓度时因缺氧窒息而引起中毒。空气中达到25~30%出现头昏、呼吸加速、运动失调。

急性毒性:小鼠吸入42%浓度×60分钟,麻醉作用;兔吸入42%浓度×60分钟,麻醉作用。

危险特性:易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

4.实验室监测方法:

气相色谱法《空气中有害物质的测定方法》(第二版),杭士平编

可燃溶剂所显色法;容量分析法《水和废水标准检验法》第20版(美)

5.环境标准:

前苏联 车间空气中有害物质的最高容许浓度 300mg/m3

美国 车间卫生标准 窒息性气体

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。

二、防护措施

呼吸系统防护:一般不需要特殊防护,但建议特殊情况下,佩带自吸过滤式防毒面具(半面罩)。

眼睛防护:一般不需要特别防护,高浓度接触时可戴安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴一般作业防护手套。

其它:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。

三、急救措施

皮肤接触:若有冻伤,就医治疗。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

第一部分:化学品名称

化学品中文名称:甲烷

化学品英文名称:methane

中文名称2:沼气

英文名称2:Marshgas

技术说明书编码:51

CASNo.:74-82-8

分子式:CH4

分子量:16.04

第二部分:成分/组成信息

有害物成分含量CASNo.

甲烷74-82-8

第三部分:危险性概述

危险性类别:

侵入途径:

健康危害:甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%~30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。

环境危害:

燃爆危险:本品易燃,具窒息性。

第四部分:急救措施

皮肤接触:若有冻伤,就医治疗。

眼睛接触:

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:

第五部分:消防措施

危险特性:易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。

有害燃烧产物:一氧化碳、二氧化碳。

灭火方法:切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

第六部分:泄漏应急处理

应急处理:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。也可以将漏气的容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。

第七部分:操作处置与储存

操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。

第八部分:接触控制/个体防护

职业接触限值

中国MAC(mg/m3):未制定标准

前苏联MAC(mg/m3):300

TLVTN:ACGIH窒息性气体

TLVWN:未制定标准

监测方法:

工程控制:生产过程密闭,全面通风。

呼吸系统防护:一般不需要特殊防护,但建议特殊情况下,佩戴自吸过滤式防毒面具(半面罩)。

眼睛防护:一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴一般作业防护手套。

其他防护:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。

第九部分:理化特性

主要成分:纯品

外观与性状:无色无臭气体。

pH:

熔点(℃):-182.5

沸点(℃):-161.5

相对密度(水=1):0.42(-164℃)

相对蒸气密度(空气=1):0.55

饱和蒸气压(kPa):53.32(-168.8℃)

燃烧热(kJ/mol):889.5

临界温度(℃):-82.6

临界压力(MPa):4.59

辛醇/水分配系数的对数值:无资料

闪点(℃):-188

引燃温度(℃):538

爆炸上限%(V/V):15

爆炸下限%(V/V):5.3

溶解性:微溶于水,溶于醇、乙醚。

主要用途:用作燃料和用于炭黑、氢、乙炔、甲醛等的制造。

其它理化性质:

第十部分:稳定性和反应活性

稳定性:

禁配物:强氧化剂、氟、氯。

避免接触的条件:

聚合危害:

分解产物:

第十一部分:毒理学资料

急性毒性:LD50:无资料

LC50:无资料

亚急性和慢性毒性:

刺激性:

致敏性:

致突变性:

致畸性:

致癌性:

第十二部分:生态学资料

生态毒理毒性:

生物降解性:

非生物降解性:

生物富集或生物积累性:

其它有害作用:该物质对环境可能有危害,对鱼类和水体要给予特别注意。还应特别注意对地表水、土壤、大气和饮用水的污染。

第十三部分:废弃处置

废弃物性质:

废弃处置方法:处置前应参阅国家和地方有关法规。建议用焚烧法处置。

废弃注意事项:

第十四部分:运输信息

危险货物编号:21007

UN编号:1971

包装标志:

包装类别:O52

包装方法:钢质气瓶。

运输注意事项:采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。

第十五部分:法规信息

法规信息化学危险物品安全管理条例(1987年2月17日国务院发布),化学危险物品安全管理条例实施细则(化劳发[1992]677号),工作场所安全使用化学品规定([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志(GB13690-92)将该物质划为第2.1类易燃气体。