与肝脏息息相关的酶有哪些?
转氨酶是一组参与细胞内蛋白质代谢的氨基转移酶 几乎存在于人体的所有器官和组织细胞中 但肝脏是人体含酶最丰富的脏器 酶蛋白含量约占肝总蛋白含量的2/3 人体内转氨酶有20多种 临床用于血清学诊断的主要为丙氨酸酸氨基转移酶(ALT)和天门冬酸氨基转移酶
(AST)
ALT旧称谷氨酸丙酮酸转移酶(俗称 谷丙 GPT) 现经世界卫生组织(WHO)统一命名为丙氨酸氨基转移酶 此酶主要存在于肝细胞浆中 因肝内该酶活性较血清约高100倍 故只要有1%的肝细胞坏死 即可使血清中的ALT增加一倍 因此它是最敏感的肝功能检测指标之一
AST 旧称谷氨酸草酰乙酸转移酶(俗称 谷草 GOT)现经WHO统一命名为天门冬酸氨基转移酶 此酶在心肌中含量最高 肝脏为第二位 在肝损害时 其漏出量也较ALT为低
一般在肝脏有实质性损伤时 有些酶从受损的肝细胞中大量逸出 有些酶因肝功能不良而滞留在血液中 因而这类酶在血清中的活性便升高 另有一些酶在肝细胞病变时生成减少 因此 血清酶的活性变化能反应肝脏的病理状态
草酰乙酸是柠檬酸循环的中间物:草酰乙酸借由柠檬酸合酶的催化与乙酰辅酶A合成柠檬酸。此外草酰乙酸也参与了糖质新生、尿素循环、乙醛酸循环、氨基酸合成和脂肪酸合成,同时它也是琥珀酸脱氢酶的抑制物。
糖质新生
糖质新生是一条由一连串11个酵素参与的代谢路径,能将非碳水化合物的基质转化为葡萄糖。糖质新生的反应由线粒体的基质开始。在此,丙酮酸受到丙酮酸羧化酶催化形成草酰乙酸。接着,草酰乙酸被NADH还原成苹果酸后再将苹果酸由线粒体移往细胞质。当苹果酸被移至细胞质后,苹果酸会被NAD+氧化回草酰乙酸。接下来草酰乙酸被磷酸烯醇丙酮酸羧化激酶去羧酸并以GTP为磷酸根的来源磷酸化形成2-磷酸烯醇丙酮酸。最后合成葡萄糖。
尿素循环
尿素循环是利用两个铵分子及一个碳酸氢盐分子合成尿素的代谢途径,通常在肝脏的肝细胞中进行。与尿素循环相关的反应可以经由两种途径制造NADH,其中一种会用到草酰乙酸:在细胞质中,反丁烯二酸会被延胡索酸水合酶催化形成苹果酸。接着,苹果酸经过苹果酸脱氢酶转化为草酰乙酸并制造一分子的NADH。最后,草酰乙酸会经由循环转化出天冬氨酸作为转氨酶,维持氮原子在细胞中的流动性。
乙醛酸循环
乙醛酸循环是柠檬酸循环的一种变型:植物以及微生物利用异柠檬酸裂合酶和苹果酸合酶进行同化作用。乙醛酸循环在中间步骤与柠檬酸循环略有差异,但是草酰乙酸在其中扮演了相同的角色。这意味着草酰乙酸在此循环中同时是初级反应物也是最终产物,事实上草酰乙酸即为此循环的净产物(由循环中的两分子乙酰辅酶A合成)。
合成脂肪酸
首先,乙酰辅酶A被预先转化为柠檬酸由线粒体移往脂肪酸合酶所在的细胞质中。此反应通常会启动柠檬酸循环产生能量,但是当细胞没有能量的需求时,会在细胞质中将柠檬酸再次裂解为乙酰辅酶A以及草酰乙酸,并以乙酰辅酶A为原料合成脂肪酸。而脂肪酸合成的另一部分需要NADPH,这样的还原能力由草酰乙酸返回线粒体穿越内膜时提供:首先草酰乙酸被NADH还原成为苹果酸。接着将苹果酸脱羧形成丙酮酸后进入线粒体,在此借由丙酮酸羧化酶将丙酮酸转化形成草酰乙酸。如此一来,乙酰辅酶A由线粒体移往细胞质的过程会形成一分子的NADH。整体看来,此反应为自发性反应,简化如下:
HCO3−+ ATP + acetyl-CoA → ADP + Pi + malonyl-CoA
合成氨基酸
有六种必需氨基酸和三种非必需氨基酸的合成需要草酰乙酸以及丙酮酸。天冬氨酸以及丙氨酸是由草酰乙酸以及丙酮酸所形成,而天冬氨酸和丙氨酸又可以借由谷氨酸转胺基形成天冬酰胺、甲硫胺酸、赖氨酸以及苏氨酸,如果没有草酰乙酸的参与,将不会有上述几种氨基酸被合成出来。
cycle)是需氧生物体内普遍存在的环状代谢途径。因为此代谢途径中有几个中间代谢物具有三个羧基,故称三羧酸循环。又因此循环由柠檬酸开始,故也称柠檬酸循环,也可用发现者的名字命名为Krebs循环。此途径在真核细胞的线粒体中进行,催化每一步反应的酶均位于线粒体内。循环的第一步反应是乙酰辅酶A的乙酰基(2碳化合物)与草酰乙酸(4碳化合物)缩合生成柠檬酸(6碳化合物),后者经异构化并脱氢、脱羧生成α-酮戊二酸(5碳化合物),再脱氢、脱羧生成琥珀酸(4碳化合物)。琥珀酸进一步经两次脱氢、一次水化又重新生成草酰乙酸。草酰乙酸又可和另1分子乙酰辅酶A作用再生成柠檬酸,这样就形成了一个循环(见图)。通过三羧酸循环的反应过程,可以看出三羧酸循环具有如下特点:⑴在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗。循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。⑵在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。⑶乙酰辅酶A不仅来自糖的分解,也可由脂肪酸和氨基酸的分解代谢中产生,都进入三羧酸循环彻底氧化。并且,凡是能转变成三羧酸循环中任何一种中间代谢物的物质都能通过三羧酸循环而被氧化。所以三羧酸循环实际是糖、脂、蛋白质等有机物在生物体内末端氧化的共同途径。⑷三羧酸循环?是分解代谢途径,但又为一些物质的生物合成提供了前体分子。如草酰乙酸是合成天冬氨酸的前体,α-酮戊二酸是合成谷氨酸的前体。一些氨基酸还可通过此途径转化成糖。因而三羧酸循环构成了对合成代谢和分解代谢都可以通行的中心途径,故也称中心代谢途径。
是植物光合作用卡尔文循环中的产生的中间产物,有两种,固定完CO2的叫3-磷酸甘油酸,还原以后的叫3-磷酸甘油醛。每进行一次卡尔文循环,就能产生1分子的3-磷酸甘油醛,用来合成糖。
C4:草酰乙酸
“普通生物化学第三版郑期陈钧辉:科学出版社
生物化学现代生物学精要概览中国社会科学出版社翻译王J, />“生物化学简明指南的第三版高等教育的社会聂剑初EDS
三羧酸循环介绍
柠檬酸的周期(tricarboxylicacidcycle):也被称为柠檬酸循环(tricarboxylicacidcycle,TCA),Krebs循环。是对循环系统,在循环的第一步骤中的缩合形成的乙酰CoA,草酰乙酸柠檬酸乙酰基氧化成乙酰-CoA在酶促反应的CO2。在克雷布斯循环,葡萄糖或脂肪酸转化为乙酰辅助A(乙酰-CoA)的反应物。这种“活化的醋酸”(分子型辅酶和链接的乙酰基)在循环中,将被分解以产生最终产品的二氧化碳,和脱氢,质子将被传递给辅酶 - 烟酰胺腺嘌呤二核苷酸(NAD +)和黄素腺嘌呤二(FAD),使得NADH + H +和FADH2。 NADH + H +和FADH2将继续在呼吸链中被氧化成NAD +和FAD,并生成水。 “燃烧”这一调整将产生ATP提供能量。
真核细胞的线粒体和原核生物的细胞质是三羧酸循环的地方。它是需氧生物呼吸过程中,首先发生在呼吸链中的一个步骤。厌氧生物首先,按照相同的方式,以分解的高能量的有机化合物,如糖酵解,但然后不进行柠檬酸循环的,但并不需要在发酵过程中的氧气参与。 />周期<br
乙酰基辅酶A进入循环系统所构成的一系列的反应,氧化H? O和CO?由于这个循环开始的反应的乙酰CoA,草酰乙酸(oxaloaceticacid),柠檬酸含有三个羧基的缩合产生的,并因此被称为柠檬酸循环的或柠檬酸的周期(citratecycle)的。柠檬酸合成酶催化的反应是在克雷布斯循环的一个关键步骤,草酰乙酸的供货周期有利于顺利进行。的详细过程如下:
1,乙酰-CoA进入三羧酸循环
乙酰-CoA硫酯键,乙酰基,有足够的能量,草酰乙酸的羧基醛醇型缩合。 H +作为一种碱和乙酰-CoA,乙酰-CoA,甲基柠檬酸合酶生成负碳离子生成柠檬酰基-CoA中间体草酰乙酸的羰基碳的亲核进攻的作用在第一组氨酸残基丢失,那么,高能源硫酯键水解,释放的自由柠檬酸,反应不可逆地向右。该反应是由柠檬酸合酶(citratesynthase)高度放能反应。草酰乙酸和乙酰-CoA合成柠檬酸的柠檬酸循环的调节是很重要的一点,柠檬酸合酶是一种变构酶,ATP是一个变构的柠檬酸合酶的抑制剂,此外,α-酮戊二酸,NADH可以变构抑制其活性,长链脂酰辅酶A也抑制其活性,AMP可以对激活的ATP抑制天空。
2,异柠檬酸形成
柠檬酸叔醇基于不容易被氧化成异柠檬酸离开叔醇成仲醇,它是易被氧化,乌头酸酶催化该反应是一个可逆反应。
3,第一氧化物脱酸?
异柠檬酸脱氢酶,异柠檬酸的仲醇被氧化成羰基,生成草酸的琥珀酸(oxalosuccinicacid)中间产物后,产生的表面中的相同的酶,快速的脱羧反应的α-酮戊二酸(α?酮戊二酸),NADH和二氧化碳,该反应中的β-氧化脱羧,这种酶的Mg毫米2 +作为活化剂的需要。此反应是不可逆的,是在三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶活化剂,ATP,NADH,是这种酶的抑制剂。
4,
第二氧化脱羧作用下的α-酮戊二酸脱氢酶,α-酮戊二酸,生成琥珀酰-CoA,NADH氧化脱羧? H +和CO?反应的方法,是完全类似的丙酮酸脱氢酶催化的氧化脱羧,属于α?氧化脱羧,存储在高能量的琥珀酰CoA的硫酯键的氧化物产生的能量的一部分。三种酶(α-酮戊二酸脱羧酶硫辛酸琥珀酰基转移酶,二氢硫辛酸脱氢酶)和五个辅酶(TPP,硫辛酸,hscoa,NAD +,FAD)的α-酮戊二酸脱氢酶。这种反应是不可逆的。 α-酮戊二酸脱氢酶复合体由ATP,GTP,NADH和琥珀酰-CoA和磷酸化/去磷酸化调节抑制。
5星,基板的磷酸化生成ATP
琥珀酸硫的激酶(succinatethiokinase),的作用下,琥珀酰-CoA硫酯键水解,释放的自由能用于合成的GTP,在细菌和高等生物可以直接生成的ATP,在哺乳动物中,先生成的GTP,并且然后生成的ATP,在这一点上,琥珀酰-CoA生成琥珀酸,和辅酶A
6,琥珀酸的脱氢
的的琥珀脱氢酶(succinatedehydrogenase)催化琥珀酸氧化富马酸。内线粒体膜结合的酶,和其他三羧酸循环的酶,存在已在线粒体基质中,这种含酶的铁 - 硫中心和共价结合的FAD电子从琥珀酸和铁 - 硫中心昙花一现,然后成的电子传递链的O?,丙二酸,琥珀酸类似物,三羧酸循环,它可以被阻止的琥珀酸脱氢酶很强的竞争性抑制剂。
7,延胡索酸酶的水化
只延胡索酸酶的反丁烯二酸反式双键的工作,没有催化作用的马来酸(马来酸),因此具有高立体有择的。
8,草酰乙酸再生
(malicdehydrogenase)的苹果酸脱氢酶的作用下,氧化成羰基的仲醇的苹果酸的脱氢反应,生成草酰乙酸(oxalocetate),NAD +是脱氢酶的辅酶接受氢成为NADH? H +(图4-5)。的
周期,最初草酰乙酸消耗,参与反应的,但循环后的再生。因此,每循环一次,净结果是由两个脱羧乙酰基被消耗。有机脱羧在循环中产生的二氧化碳,二氧化碳在体内的主要来源。在三羧酸循环,共4次的脱氢反应,脱下的氢原子进入呼吸链NADH + H +和FADH2形式,并最终产生的氧的水传递,在此过程中所释放的能量可合成的三磷酸腺苷。乙酰辅酶A不仅是从糖的分解,也可能会产生的脂肪酸和氨基酸的分解代谢,并且已经进入三羧酸循环完全氧化。另外,任何能转化为物质的任何一个在三羧酸循环中的中间代谢产物通过三羧酸循环可以被氧化。因此,在克雷布斯循环实际上是一种常用的糖,脂肪,蛋白质等有机物质在体内氧化年底。三羧酸循环是两个分解代谢途径提供的前体分子,但对于生物合成的物质中的一些。如草酰乙酸盐,天门冬氨酸和α-酮戊二酸的前体的合成的前体的合成的谷氨酸。有些氨基酸也可以通过这条路线,放入白糖。
周期结束
乙酰辅酶A + NAD + + FAD + GDP +丕→2CO2 +3 NADH + FADH2 + GTP +2 H + +辅酶A-SH
1,产生的CO?循环两次脱羧反应(反应3和反应4)两个脱氢两次,但不同的机制的作用,催化的异柠檬酸脱氢酶β?氧化脱羧辅酶NAD +,底物脱氢草酰琥珀酸,然后锰+和Mg2 +的协同脱羧生成α-酮戊二酸。提醒α氧化脱羧催化的α-酮戊二酸脱氢酶,所述丙酮酸脱氢酶的反应基本上相同。 ?应当指出,所产生的CO脱羧?,身体会产生CO?普遍规律,可以看出,身体会产生CO?体外燃烧过程中产生二氧化碳的不同。
2,脱氢四个三羧酸循环,3对氢原子成NAD +被氢,对FAD作为氢供体,减少以形成NADH + H +和FADH2。氢系统由线粒体,它们还转交通最终和氧结合以形成水,在此过程中,释放出的能量,使ADP和Pi结合的ATP生成NADH + H +参与氢输送系统,其中,每个2H的H的一部分的氧化了吗? ò生成3个分子的ATP,而FADH2参与氢输送系统生成2分子的ATP,一旦底物磷酸化ATP加柠檬酸循环的一部分,然后在三羧酸循环中的柠檬酸分子参与,直到周期末端生成12分子ATP 。
3,进入循环中的乙酰-CoA和乙酰-CoA的乙酰基的碳原子的4 - 碳的草酰乙酸缩合形成六个碳柠檬酸,柠檬酸循环的,受体分子,二次脱羧生成的CO 2分子的碳原子,并输入的两个碳乙酰基的数目相等的循环,但是,碳不丢失以Co2从乙酰基的两个碳原子,但是从草酰乙酸。
4,柠檬酸循环的中间体,在理论上,可以回收没有被消耗,但由于循环的某些组件也可参与其它物质的合成,和其他物质也可以继续通过各种不同的方式生成的中间产物,所以,三羧酸循环组合物不断??地被更新。
如草楚酸乙酸 - →天门冬氨酸
α-酮戊二酸 - →谷氨酸
草酰乙酸 - →丙酮酸 - →丙氨酸
其中反应的丙酮酸羧化酶催化草酰乙酸最重要的。直接影响到速度的周期,因为它的内容是多少,它不断地补充草酰乙酸草酰乙酸的关键柠檬酸循环光滑。三羧酸循环中产生的苹果酸,草酰乙酸也可以脱羧丙酮酸,然后参与许多其他物质的合成,或进一步氧化。的生理意义
1,在克雷布斯循环是身体获得能量的主要方式。 1分子葡萄糖无氧酵解仅净生成2分子ATP的有氧氧化净额38 ATP生成,其中的柠檬酸循环生成24个ATP,在正常的生理条件下,许多组织是由糖的有氧氧化获得能量。糖的有氧氧化能量释放,高效率,并逐步释放能量,并逐步储存在ATP分子,能量利用率也很高。
2,克雷布斯循环是一种常见的糖,脂肪和蛋白质代谢途径是三个主要的有机物质在体内完全氧化不仅糖的氧化分解产物,乙酰-CoA,柠檬酸循环的起始原料,它也可以甘油脂肪,脂肪酸,和从蛋白质氨基酸代谢,三羧酸循环实际上是三种主要能源的共同通路在体内氧化的有机化合物,它估计,人体三分之二的有机质的是,通过三羧酸循环分解。
3,三羧酸循环体内三大有机物的互变异构体接触体,由于糖和甘油可产生在体内代谢的三羧酸循环的中间产物α-酮戊二酸,草酰乙酸,这些中间体可以转化成一定的氨基酸一些氨基酸,而且还通过各种渠道进入α-酮戊二酸,草酰乙酸通过糖异生途径生成糖分解成甘油,因此在克雷布斯循环不仅是三种主要类型的有机物质的分解代谢的最终共同通路,但他们的互变的联络机构。
草酸是生物体的一种代谢产物,广泛分布于植物、动物和真菌体中,并在不同的生命体中发挥不同的功能。 研究发现百多种植物富含草酸,尤以菠菜、苋菜、甜菜、马齿苋、芋头、甘薯和大黄等植物中含量最高,由于草酸可降低矿质元素的生物利用率,在人体中容易与钙离子形成草酸钙导致肾结石,所以草酸往往被认为是一种矿质元素吸收利用的拮抗物。
无色单斜片状或棱柱体结晶或白色粉末、氧化法草酸无气味、合成法草酸有味。150~160℃升华。在高热干燥空气中能风化。1g溶于7ml水、2ml沸水、2.5ml乙醇、1.8ml沸乙醇、100ml乙醚、5.5ml甘油,不溶于苯、氯仿和石油醚。0.1mol/L溶液的pH值为1.3。相对密度(d18.54)1.653。熔点101~102℃(187℃,无水)。低毒,半数致死量(兔,经皮)2000mg/kg。
NAD++2H(2H++2e)NADH+H+
NADP++2H(2H++2e)NADPH+H+
黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2)。NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用。琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸。FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少。铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心。其作用是通过铁的变价传递电子:Fe3++eFe2+。这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物。在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关。辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌。其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用。细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+。目前,发现的细胞色素有 b、c、c1、aa3等多种
固态:糖、碗、勺子、味精
液态:醋、酱油 、水蒸气
物质特点:
糖是人体所必需的一种营养素,经人体吸收之后马上转化为碳水化合物,以供人体能量。主要分为单糖和双糖。单糖——葡萄糖,分子式为C6单分子链,人体可以直接吸收再转化为人体之所需。双糖——食用糖,如白糖、红糖及食物中转化的糖。分子式为C12,人体不能直接吸收,须经胰蛋白酶转化为单糖再被人体吸收利用。
平常所说的糖主要包括:甘蔗糖、甜菜糖等。
多糖——由10个以上单糖通过糖苷键连接而成的线性或分支的聚合物
糖还可根据结构单元数目多少分为
1:单糖(monosaccharide):不能被水解成更小分子的糖。
2:寡糖(disaccharide):2-6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。
3:多糖(polysaccharide):均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖)不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)。
4:结合糖(复合糖,糖缀合物,glycoconjugate):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等。
5:糖的衍生物:糖醇、糖酸、糖胺、糖苷eshiwei其化学式为C6H12O6。
碗可以用来装物质 勺子可以用来舀物质
味精
味精是调味料的一种,主要成分为谷氨酸钠。味精的主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。
味精又称味素,是调味料的一种,主要成分为谷氨酸钠。要注意的是如果在100℃以上的高温中使用味精,经科学家证明,味精在100℃时加热半小时,只有0.3%的谷氨酸钠生成焦谷氨酸钠,对人体影响甚微。文献报道,焦谷氨酸钠对人体无害。还有如果在碱性环境中,味精会起化学反应产生一种叫谷氨酸二钠的物质。所以要适当地使用和存放。谷氨酸钠是一种氨基酸的钠盐。是一种无臭无色的晶体,在232°C时解体熔化。谷氨酸钠的水溶性很好,溶解度为74克谷氨酸钠。
醋,是由古代酿酒大师杜康的儿子黒塔发明而来,因黒塔学会酿酒技术后,觉得酒糟扔掉可惜,由此不经意酿成了“醋”。我国著名的醋有山西老陈醋、镇江香醋、保宁醋及红曲米醋。经常喝醋能够起到消除疲劳、软化血管等作用
来源】以米、麦、高粱、甜高粱或酒、酒糟等酿成的含乙酸的液体。
【化学成分】醋是乙酸的3%~5%(质量分数)的水溶液。除乙酸外,一般含有其他的一些微量物质。具体物质有乙酸的钾、钙、钠、亚铁盐,氨基酸,乳酸(2-羟基丙酸,丙醇酸CH3CHOHCOOH),丙酮酸(乙酰甲酸CH3COCOOH),甲酸(蚁酸HCOOH),山梨酸(2,4-己二烯酸)苹果酸(羟基丁二酸),柠檬酸(2-羟基丙三羧酸),琥珀酸酸(丁二酸HOOCCH2CH2COOH),草酸(乙二酸HOOCCOOH),草酰乙酸,葡萄糖,果糖,麦芽糖,乙醇,乙酸乙酯,乳酸乙酯,高级醇类,3-羟基丁酮,二羟基丙酮,酪醇,乙醛,甲醛,乙缩醛,维生素B1、B2、C等。
【乙酸】acetic acid CH3COOH,又名醋酸,无色澄清液体,有强烈的刺激性气味。Mr60.05,mp16.7℃,bp118℃,相对密度1.049。
【现代汉语词典字意】1.调味用的有酸味的液体。2.比喻嫉妒(多指在男女关系上)。醋劲儿:嫉妒的情绪。醋坛子:比喻在男女关系上嫉妒心很强的人。醋意:嫉妒心(多指在男女关系上)。
醋是调味品中常用的一个品类,醋又称为 食醋、醯、苦酒等,是烹饪中常用的一种液体酸味调味料。
醋的成分通常含有百分之三到五的醋酸,有的还有少量的酒石酸、柠檬酸等。理论上讲,几乎任何含有糖分的液体都可以发酵酿醋。今天,按食醋生产方法,食醋可分为酿造醋和人工合成醋。酿造醋,是以粮食、糖、乙醇为原料,通过微生物发酵酿造而成。人工合成醋是以食用醋酸,添加水、酸味剂、调味料,香辛料、食用色素勾兑而成。
醋由于在自然环境中可以自行生成,古代人类在世界各地从很早起就开始食用醋。一般而言,东方国家以谷物酿造醋,西方国家以水果和葡萄酒酿醋。在中国,通常认为醋在西周时开始被酿造,但也有人认为醋起于商朝或更早。汉朝时醯被称为醋。在西方,古埃及时期就已出现了醋。由于都是通过发酵酿造获得,在一定程度上,可以认为酒醋同源,凡是能够酿酒的古文明,一般都具有酿醋的能力。
由于原料,工艺,饮食习惯的不同,各地的醋的口味相差很大。在中国北方,最著名的醋种当属明朝时发明的山西老陈醋。山西人以爱好食用醋而全国闻名,有“缴枪不缴醋”的笑谈。在中国南方,影响最大的有镇江香醋等。此外较为有名的醋还有四川保宁醋,浙江米醋等。
醋在中国菜的烹饪中有举足轻重的地位,常用于溜菜、凉拌菜等,西餐中常用于配制沙拉的调味酱或浸制酸菜,日本料理中常用于制作寿司用的饭。另外有人相信它还具有保健、药用、医用等多种功用。
醋是日常生活中的必需品,醋的用途很多,通常用作调味品,但有时也以道具的身份出现,用于整蛊、惩罚、预防流感以及在某些场合被某些人吃~
中医之醋以米、麦、高粱或酒糟等酿成的酸性调味品。又称苦酒、醋酒、淳酢、酢、米醋。全国各地均有酿造。山西老陈醋、镇江香醋、锦竹双头醋等均为其中名、优产品。
[性能]味酸、甘,性平。能消食开胃,散瘀血,收敛止泻,解毒。
[参考]含乙酸(醋酸)、琥珀酸、柠檬酸、山梨糖、维生素B1、B2和烟酸、高级醇类、3-羟基丁酮、二羟基丙酮、酪醇、乙醛等成分。
能促进消化,增进食欲,有防腐杀菌作用。将醋蒸熏对流感病毒有杀灭作用,对甲型链球菌、卡化球菌、肺炎双球菌、白色葡萄球菌、流感杆菌也有较强的抑制作用。
[用途]用于油腻食积,消化不良,喜食酸物,或腹泻;衄血,吐血,便血;咽喉肿痛;食鱼肉菜蕈引起的肠胃不适;病毒性肝炎。
[用法]入汤剂,稀释后饮用,入菜肴。
[注意]脾虚湿盛不宜,多食损齿伤胃。
[附方]
苦酒煎:鸡蛋1个,敲破一端,去蛋黄、留蛋清;醋适量,倾入蛋壳内,并放入半夏6g,置火上烤沸3~5分钟,除去半夏,趁热下蛋清,搅匀,少少含咽。
源于《伤寒论》。方中鸡蛋清能解毒利咽;半夏,《神农本草经》主“喉咽肿痛”,取其能散结消肿;醋则取其有收敛、解毒作用。用于咽喉肿痛不能语言,声音不出。
醋的营养营养
醋热量(千卡):30.00
胆固醇(毫克):0.00
膳食纤维(克):0.00
蛋白质(克):2.10
脂肪(克):0.30
碳水化合物(克):4.90
矿物质有;
钙(毫克):17.00 铁(毫克):6.00 磷(毫克):96.00 钾(毫克):351.00 钠(毫克):262.10 铜(毫克):0.04 镁(毫克):13.00 锌(毫克):1.25 硒(微克):2.43
酱油俗称豉油,主要由大豆、淀粉、小麦、食盐经过制油、发酵等程序酿制而成的。酱油的成分比较复杂,除食盐的成分外,还有多种氨基酸、糖类、有机酸、色素及香料等成分。以咸味为主,亦有鲜味、香味等。它能增加和改善菜肴的口味,还能增添或改变菜肴的色泽。我国人民在数千年前就已经掌握酿制工艺了。酱油一般有老抽和生抽两种:生抽较淡,用于提鲜;老抽较咸,用于提色。
水蒸气就是水
途径:
当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化.但是糖酵解中有三步反应,是不可逆反应.在糖异生时必须绕过这三步反应,代价是更多的能量消耗.
这三步反应都是强放热反应,它们分别是:
1 葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5 kJ/mol
2 6磷酸果糖经磷酸果糖激酶催化生成1,6二磷酸果糖 ΔG= -22.2 kJ/mol
3 磷酸烯醇式丙酮酸经丙酮酸激酶生成丙酮酸 ΔG= -16.7 kJ/mol
这三步反应会这样被绕过
1 葡萄糖6磷酸酶催化6磷酸葡萄糖生成葡萄糖
2 果糖1,6二磷酸酶催化1,6二磷酸果糖生成6磷酸果糖.
3 丙酮酸在一元羧酸转运酶的帮助下进入线粒体,在丙酮酸羧化酶的催化下,消耗一分子ATP,生成草酰乙酸.草酰乙酸不能通过线粒体膜.在苹果酸-天冬氨酸循环里草酰乙酸通过了线粒体膜之后,在磷酸烯醇式丙酮酸羧化激酶的帮助下成为磷酸烯醇式丙酮酸.反应消耗一分子GTP.
能量消耗
从两分子丙酮酸开始,最终合成一分子葡萄糖,需要消耗6分子ATP/GTP.相比糖酵解过程能净产生2ATP,糖异生是耗能的过程.
这六分子ATP/GTP是在三步反应里面被消耗的,而生成一分子六碳化合物要重复这过程一次,所以总的能量消耗是3×2=6:
1 丙酮酸在丙酮酸羧化酶的催化下,消耗一分子ATP,生成草酰乙酸.
2 草酰乙酸在磷酸烯醇式丙酮酸羧化激酶的帮助下成为磷酸烯醇式丙酮酸.反应消耗一分子GTP.
3 3磷酸甘油醛在磷酸甘油醛激酶的帮助下,消耗一分子ATP生成1,3二磷酸甘油酸.注意,这一反应是可逆的.
糖异生作用的重要意义:
在于补充糖供应的不足,以维持血糖水平的稳定.另外,糖异生作用可消除肌肉中乳酸的积累.剧烈运动后,骨骼肌中产生大
量的乳酸,经血液循环运至肝脏,在肝脏通过糖异生作用再次生成葡萄糖被利用.
三、糖异生途径的前体
1、凡是能生成丙酮酸的物质都可以变成葡萄糖.例如三羧酸循环的中间物,柠檬酸、异柠檬酸、α-酮戊二酸、琥珀酸、延胡索酸和苹果酸都可以转变成草酰乙酸而进入糖异生途径.
2、大多数氨基酸是生糖氨基酸如丙氨酸、谷氨酸、天冬氨酸、丝氨酸、半胱氨酸、甘氨酸、精氨酸、组氨酸、苏氨酸、脯氨酸、谷胺酰胺、天冬酰胺、甲硫氨酸、缬氨酸等,它们可转化成丙酮酸、α-酮戊二酸、草酰乙酸等三羧酸循环中间物参加糖异生途径.
3、Cori循环:剧烈运动时产生的大量乳酸会迅速扩散到血液,随血流流至肝脏,先氧化成丙酮酸,再经过糖异生作用转变为葡萄糖,进而补充血糖,也可重新合成肌糖原被贮存起来.这一乳酸——葡萄糖的循环过程称为Cori循环.
4、反刍动物糖异生途径十分活跃,牛胃中的细菌分解纤维素成为乙酸、丙酸、丁酸等奇数脂肪酸可转变成为琥珀酰CoA参加糖异生途径合成葡萄糖.