化学溶剂A类B类有哪些溶剂
化学溶剂A类B类有烷(CYH)、环己酮(CYC)、二丙酮醇(DAA)、四氢呋喃(THF)、二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、甲基丙烯酸甲酯(MMA)。
有机单品溶剂中文名称简称英文名称,乙酸甲酯MACMethylAcetate,乙酸乙酯EACEthylAcetate,乙酸异丁酯IBACIsobutylacetate,乙酸正丁酯BACButylAcetate。
酯(zhǐ )ester部首:酉 部首笔画:7 部外笔画6 总笔画13 四角号码:1266,羧酸的一类衍生物,由羧酸与醇(酚)反应失水而生成的化合物。广泛存在于自然界,例如乙酸乙酯存在于酒、食醋和某些水果中;乙酸异戊酯存在于香蕉、梨等水果中;苯甲酸甲酯存在于丁香油中;水杨酸甲酯存在于冬青油中。高级和中级脂肪酸的甘油酯是动植物油脂的主要成分;高级脂肪酸和高级醇形成的酯是蜡的主要成分。
分类编辑
单甘酯(GMS)
单甘酯化学名为单十八(烷)酸丙三醇酯(Glycerin monostearate),简称为GMS,分子量358。工业产品通常为无味、无臭、无毒的微黄色蜡样固体或片状,含有少量的二酯及三酯。
产品质量指标:
项目 GMS-A GMS-B
单酯含量(%) 32—38 40—42
色泽 白色或浅黄色 白色或浅黄色
性状 蜡样固体或片状 蜡样固体或片状
碘值(gI2∕100g) ≤3.0 ≤3.0
凝固点(℃) ≥54 ≥54
游离酸(以硬脂酸计%) ≤2.5 ≤2.5
重金属(以Pb计,%) ≤0.0005 ≤0.0005
砷(以As计,%) ≤0.0001 ≤0.0001
铁(以Fe计,%) ≤0.002 ≤0.002
季戊四醇油酸酯
季戊四醇油酸酯(Pentaerythritol Oleate)简称为PETO,分子式为C(CH2OOCC17H33)4。工业产品通常为无色或黄色透明液体。
产品质量指标:
项目 PETO-1A PETO-2A
外观 无色或淡黄色透明油状液体 黄色至棕色透明油状液体
粘度(mm2/s) 40℃ 100℃
酸值(mgKOH/g) ≯5 ≯10
闪点(开口,℃) ≮270 ≮260
倾点(℃) ≯-25 ≯-20
偏苯三酸酯TOTM
偏苯三酸酯(Trimellitate)分子式为C6H3(COOR)3,R为烷基。工业产品通常为无色或黄色透明液体。
邻苯二甲酸酯:
邻苯二甲酸酯(Phthalate)分子式为C6H4(COOR)2,R为烷基。工业产品通常为无色或黄色透明液体
典型数据:
项目:DIOP-A、DIDP-A、DIIDP-A
外观:无色或淡黄色透明油状液体
季戊四醇油酸酯
季戊四醇油酸酯(Pentaerythritol Oleate)简称为PETO,分子式为C(CH2OOCC17H33)4。工业产品通常为无色或黄色透明液体。
产品质量指标:
项目 PETO-1A PETO-2A
外观
无色或淡黄色透明油状液体 黄色至棕色透明油状液体
粘度(mm2/s)40℃ 100℃[1]
(1)低沸点溶剂(沸点在100度以下)这类溶剂的特点是蒸发速度快,易干燥、粘度低,大多数具有芳香气味。属于这类溶剂的一般是活性溶剂或稀释剂。例如:甲醚、甲酸甲酯、丙酮、苯等等
(2)中沸点溶剂(沸点在100~150度)这类溶剂用于硝基喷漆,流平性好。例如:丁醇、甲苯、环己酮等等
(3)高沸点溶剂(沸点在150~200度)这类溶剂的特点是蒸发速度慢,溶解能力强,作涂料用时涂膜流动性好,可以防止沉淀合涂膜发白。例如:乳酸乙酯、糠醇等
(4)增塑剂合软化剂(沸点在300度左右)这类溶剂的特点是形成的薄膜粘度强合韧性好。例如:硝化纤维素用的樟脑
2、按蒸发速度分类
(1)快速蒸发溶剂 蒸发速度为乙酸丁酯的3倍以上者
(2)中速蒸发溶剂 蒸发速度为乙酸丁酯的1.5倍以上者
(3)慢速蒸发溶剂 蒸发速度比工业戊醇快,比乙酸仲丁酯慢
(4)特慢蒸发溶剂 蒸发速度比比工业戊醇慢
3、按极性分类
(1)极性溶剂
(2)非极性溶剂
4、按化学组成分类
(1)有机溶剂
(2)无机溶剂
中午好,应该是做有机化学相关的催化吧,ACE一般是丙酮「acetone」的缩写,多用于烷基化反应中和乙酸甲酯、二甲苯相似的转移作用,比如碘甲烷和钠汞齐制备二甲基汞的反应中默认冷态是不反应的,但是在加入丙酮或者乙酸甲酯后反应会明显增速,请酌情参考。常用的四大烷基(格式,比如Et-MgCl2)催化剂分别是丙酮、二甲苯、四氢呋喃和乙酸甲酯。
第一类溶剂
是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:
苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂
是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下:
2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。
第三类溶剂
是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括:
戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。
除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。
资料来源http://www.lovetcm.com/data/2006/0831/article_770.htm
常用溶剂的沸点、溶解性和毒性
常用溶剂的沸点、溶解性和毒性
溶剂名称 沸点(101.3kPa) 溶解性 毒性
液氨 -33.35℃ 特殊溶解性:能溶解碱金属和碱土金属 剧毒性、腐蚀性
液态二氧化硫 -10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶 剧毒
甲胺 -6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯 中等毒性,易燃
二甲胺 7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂 强烈刺激性
石油醚 不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶 与低级烷相似
乙醚 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶 麻醉性
戊烷 36.1 与乙醇、乙醚等多数有机溶剂混溶 低毒性
二氯甲烷 39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶 低毒,麻醉性强
二硫化碳 46.23 微溶与水,与多种有机溶剂混溶 麻醉性,强刺激性
溶剂石油脑 与乙醇、丙酮、戊醇混溶 较其他石油系溶剂大
丙酮 56.12 与水、醇、醚、烃混溶 低毒,类乙醇,但较大
1,1-二氯乙烷 57.28 与醇、醚等大多数有机溶剂混溶 低毒、局部刺激性
氯仿 61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶 中等毒性,强麻醉性
甲醇 64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶 中等毒性,麻醉性,
四氢呋喃 66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃 吸入微毒,经口低毒
己烷 68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶 低毒。麻醉性,刺激性
三氟代乙酸 71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物
1,1,1-三氯乙烷 74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶 低毒类溶剂
四氯化碳 76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶 氯代甲烷中,毒性最强
乙酸乙酯 77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐 低毒,麻醉性
乙醇 78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶 微毒类,麻醉性
丁酮 79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶 低毒,毒性强于丙酮
苯 80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶 强烈毒性
环己烷 80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶 低毒,中枢抑制作用
乙睛 81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶 中等毒性,大量吸入蒸气,引起急性中毒
异丙醇 82.40 与乙醇、乙醚、氯仿、水混溶 微毒,类似乙醇
1,2-二氯乙烷 83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶 高毒性、致癌
乙二醇二甲醚 85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂 吸入和经口低毒
三氯乙烯 87.19 不溶于水,与乙醇.乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶 有机有毒品
三乙胺 89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、乙醚 易爆,皮肤黏膜刺激性强
丙睛 97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物 高毒性,与氢氰酸相似
庚烷 98.4 与己烷类似 低毒,刺激性、麻醉性
水 100 略 略
硝基甲烷 101.2 与醇、醚、四氯化碳、DMF、等混溶 麻醉性,刺激性
1,4-二氧六环 101.32 能与水及多数有机溶剂混溶,仍溶解能力很强 微毒,强于乙醚2~3倍
甲苯 110.63 不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶 低毒类,麻醉作用
硝基乙烷 114.0 与醇、醚、氯仿混溶,溶解多种树脂和纤维素衍生物 局部刺激性较强
吡啶 115.3 与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物 低毒,皮肤黏膜刺激性
4-甲基-2-戊酮 115.9 能与乙醇、乙醚、苯等大多数有机溶剂和动植物油相混溶 毒性和局部刺激性较强
乙二胺 117.26 溶于水、乙醇、苯和乙醚,微溶于庚烷 刺激皮肤、眼睛
丁醇 117.7 与醇、醚、苯混溶 低毒,大于乙醇3倍
乙酸 118.1 与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃 低毒,浓溶液毒性强
乙二醇一甲醚 124.6 与水、醛、醚、苯、乙二醇、丙酮、四氯化碳、DMF等混溶 低毒类
辛烷 125.67 几乎不溶于水,微溶于乙醇,与醚、丙酮、石油醚、苯、氯仿、汽油混溶 低毒性,麻醉性
乙酸丁酯 126.11 优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂 一般条件毒性不大
吗啉 128.94 溶解能力强,超过二氧六环、苯、和吡啶,与水混溶,溶解丙酮、苯、乙醚、甲醇、乙醇、乙二醇、2-己酮、蓖麻油、松节油、松脂等 腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变
氯苯 131.69 能与醇、醚、脂肪烃、芳香烃、和有机氯化物等多种有机溶剂混溶 低于苯,损害中枢系统,
乙二醇一乙醚 135.6 与乙二醇一甲醚相似,但是极性小,与水、醇、醚、四氯化碳、丙酮混溶 低毒类,二级易燃液体
对二甲苯 138.35 不溶于水,与醇、醚和其他有机溶剂混溶 一级易燃液体
二甲苯 138.5~141.5 不溶于水,与乙醇、乙醚、苯、烃等有机溶剂混溶,乙二醇、甲醇、2-氯乙醇等极性溶剂部分溶解 一级易燃液体,低毒类
间二甲苯 139.10 不溶于水,与醇、醚、氯仿混溶,室温下溶解乙睛、DMF等 一级易燃液体
醋酸酐 140.0
邻二甲苯 144.41 不溶于水,与乙醇、乙醚、氯仿等混溶 一级易燃液体
N,N-二甲基甲酰胺 153.0 与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强 低毒
环己酮 155.65 与甲醇、乙醇、苯、丙酮、己烷、乙醚、硝基苯、石油脑、二甲苯、乙二醇、乙酸异戊酯、二乙胺及其他多种有机溶剂混溶 低毒类,有麻醉性,中毒几率比较小
环己醇 161 与醇、醚、二硫化碳、丙酮、氯仿、苯、脂肪烃、芳香烃、卤代烃混溶 低毒,无血液毒性,刺激性
N,N-二甲基乙酰胺 166.1 溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶 微毒类
糠醛 161.8 与醇、醚、氯仿、丙酮、苯等混溶,部分溶解低沸点脂肪烃,无机物一般不溶 有毒品,刺激眼睛,催泪
N-甲基甲酰胺 180~185 与苯混溶,溶于水和醇,不溶于醚 一级易燃液体
苯酚(石炭酸) 181.2 溶于乙醇、乙醚、乙酸、甘油、氯仿、二硫化碳和苯等,难溶于烃类溶剂,65.3℃以上与水混溶,65.3℃以下分层 高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒
1,2-丙二醇 187.3 与水、乙醇、乙醚、氯仿、丙酮等多种有机溶剂混溶 低毒,吸湿,不宜静注
二甲亚砜 189.0 与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、芳烃混溶 微毒,对眼有刺激性
邻甲酚 190.95 微溶于水,能与乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 参照甲酚
N,N-二甲基苯胺 193 微溶于水,能随水蒸气挥发,与醇、醚、氯仿、苯等混溶,能溶解多种有机物 抑制中枢和循环系统,经皮肤吸收中毒
乙二醇 197.85 与水、乙醇、丙酮、乙酸、甘油、吡啶混溶,与氯仿、乙醚、苯、二硫化碳等男溶,对烃类、卤代烃不溶,溶解食盐、氯化锌等无机物 低毒类,可经皮肤吸收中毒
对甲酚 201.88 参照甲酚 参照甲酚
N-甲基吡咯烷酮 202 与水混溶,除低级脂肪烃可以溶解大多无机,有机物,极性气体,高分子化合物 毒性低,不可内服
间甲酚 202.7 参照甲酚 与甲酚相似,参照甲酚
苄醇 205.45 与乙醇、乙醚、氯仿混溶,20℃在水中溶解3.8%(wt) 低毒,黏膜刺激性
甲酚 210 微溶于水,能于乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶 低毒类,腐蚀性,与苯酚相似
甲酰胺 210.5 与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶,几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等 皮肤、黏膜刺激性、惊皮肤吸收
硝基苯 210.9 几乎不溶于水,与醇、醚、苯等有机物混溶,对有机物溶解能力强 剧毒,可经皮肤吸收
乙酰胺 221.15 溶于水、醇、吡啶、氯仿、甘油、热苯、丁酮、丁醇、苄醇,微溶于乙醚 毒性较低
六甲基磷酸三酰胺 233(HMTA) 与水混溶,与氯仿络合,溶于醇、醚、酯、苯、酮、烃、卤代烃等 较大毒性
喹啉 237.10 溶于热水、稀酸、乙醇、乙醚、丙酮、苯、氯仿、二硫化碳等 中等毒性,刺激皮肤和眼
乙二醇碳酸酯 238 与热水,醇,苯,醚,乙酸乙酯,乙酸混溶,干燥醚,四氯化碳,石油醚,CCl4中不溶 毒性低
二甘醇 244.8 与水、乙醇、乙二醇、丙酮、氯仿、糠醛混溶,与乙醚、四氯化碳等不混溶 微毒,经皮吸收,刺激性小
丁二睛 267 溶于水,易溶于乙醇和乙醚,微溶于二硫化碳、己烷 中等毒性
环丁砜 287.3 几乎能与所有有机溶剂混溶,除脂肪烃外能溶解大多数有机物
甘油 290.0 与水、乙醇混溶,不溶于乙醚、氯仿、二硫化碳、苯、四氯化碳、石油醚 食用对人体无毒
资料来源http://drugfocus.net/redirect.php?tid=2927&goto=lastpost
丙二醇甲醚醋酸酯,楼上介绍过。
两种都是酸酯类,不会发生反应。混合起来也挺麻烦的。
古文献中大量的“烟草”并非我们现在说的“烟草”。像唐代黄滔《景阳井赋》有“台城破兮烟草春,旧井湛亏苔藓新”之语;宋代陆游《小园》有“小园烟草接邻家,桑枯阴阴一径斜”之语,举不胜举。但这些“烟草”,都是指烟雾笼罩的草丛,也就是蔓草的意思。明代方以智的《物理小识》使用“烟草”一词,是文献中最早表示今天我们所说的“烟草”这一名称的。
“烟”这个名字,原来在菲律宾等地是没有的。正如《金丝录》的作者汪师韩写的咏烟草的《律诗四首》之一所写:“移根吕宋始何年,芳草从新拜号烟”。据考证,印第安人所流行的烟草都是今天所谓的普通烟草(红花烟草)一个品种。但各地区的称呼却不相同,如西印度群岛叫“约里”,巴西叫“碧冬木”,墨西哥叫“叶特尔”,而古巴则叫“科依瓦”。
由于哥伦布及其跟随者对所见到的这一新鲜事物,最感怪异的在于人吸入烟气这一行为,而不是所点燃的烟草本身,所以给这群人留下印象最深的称呼是印第安人所说的“Tabaco”。其实这是印第安人对他们手中吸入烟气的一种“丫”形植物空管(下面装入烟卷,上面两管对着两个鼻孔吸入烟气),也就是一种烟管或烟杆的称呼,这群冒险家跟着印第安人的发音,把这种烟管与所吸入的烟草都叫成这个名字,这就是西班牙文中“Tabaco”的来由。这样烟草被带回欧洲后,英文就写作“Tabacco(达巴科)”,成为全世界大部分地区对烟草的通称。
那么,为什么汉文化圈都不按世界通行的称呼行事,而将其称为烟呢?这当然是由于吸烟时出来的烟,也是由火出气,是火气的一种。日本就在称其“淡巴姑”的同时,又称为烟,这个文字又由海上传入我国。黎士宏在《仁恕堂笔记》中就很明确地写道:“烟之名始于日本,传于漳州之石马。”烟草、烟叶等名称当然也就由之而起。
今天通常所指的烟,就是卷烟,实际生活中有时也指烟草、烟草业。
据考古学家研究,早在公元前1800至2000年时就有人类吸烟的记载。
1492年哥伦布的两个船员杰雷兹和托瑞斯发现古巴土人点燃干烟并吸其冒出的烟,杰雷兹试着吸了起来,他成为欧州第一吸烟者。
1518年,西班牙探险家发现阿兹台克人和玛雅人用空芦苇吸烟草,西班牙人也学着吸起来,第一支卷烟就这样产生了。
1612年,约翰·罗尔弗在美国弗吉尼亚州种植了第一亩用于商业的烟草。
1843年,法国烟草经营商开始生产西班牙式烟卷,并以法文正式命名为“cigarette”,英文香烟一词由此而来。
1881年,一种日生产120000支烟卷的卷烟机获发明专利,在这之前烟卷都是用手工制作的。
1924年,美国《读者文摘》第一次发表文章,提醒人们注意吸烟有害健康。
1966年,美国香烟包装上开始印有新标志:当心!吸烟有害健康。
香烟业给美国人提供了230万人次就业机会,这批人又给医疗、消防、洗衣、制药等行业带来更多的谋职机遇。
考古学家在美国亚利桑那州的帕罗城发现,在公元650年,印第安人居住的洞穴中,有宽大的烟叶和烟斗并列在一起,并有吸剩的烟灰。这些遗物,经仪器分析,含有烟碱,推断为烟草的叶子。
考古学家也曾在墨西哥马德雷山中一个海拔4000英尺的山洞里,发现一支空心草杆中塞有烟斗,经放射性测量, 证明是700年以前的产物。果真如此,不仅比哥伦布的发现要早200多年,而且真可以称得上是现代卷烟的始祖了。不过,这一历史奇迹还有待于考古学家的进一步考证。