三价铬钝化的三价铬钝化工艺要点
在实验室里,基本上确定了三价铬彩色钝化工艺配方:硝酸铬,20~30g/L;氧化剂,4~5mL/L;pH调整剂,4~6mL/L;pH,1.5~2.0。
根据上述三价铬钝化工艺确定了pH范围,pH低于1.0时钝化膜层发雾,反应较快:pH高于2.5时钝化膜层色泽不均匀。 根据配方氧化剂的质量浓度在3~8mL/L范围,氧化剂质量浓度低钝化膜层易发雾,氧化剂质量浓度高时钝化膜层色泽艳丽,但易脱膜。
鉴于零件的特性,试验确定的三价铬钝化配方一为:硝酸铬,20~30g/L;氧化剂,3~8mL/L;pH调整剂,4~6mL/L;pH,1.5~2.0;t,30s~1min;θ,35~45℃。
该三价铬彩色钝化工艺形成的彩色钝化膜色泽鲜艳、均匀,操作条件范围广泛,适宜大批量、自动化生产。 三价铬钝化膜中没有可渗出的六价铬,所以膜层没有自修复能力,当钝化膜损时很容易发生腐蚀。为了弥补此缺陷,可采用封闭处理。
根据不同零件所在使用条件的不同,其耐蚀性能要求不一致,为此对封闭剂需要进行调整。所采用的封闭剂质量分数从4%~20%,以满足类零件的耐蚀性能及耐热性能的要求。 配方1:硝酸铬15 g/L,硝酸钠10 g/L,草酸10g/L,pH值(用氢氧化钠调)2,工作温度 30℃,钝化
配方2:三价铬化合物10~ 30g/L,硫酸铝20~40g/L,钨酸盐2~5g/L,无机酸5~ 10 g/L,少许表面活性剂。
配方3:10g/L硫酸铬,硫酸铝钾 30g/L,偏钒酸铵 2.5g/L,盐酸5g/L,温度为室温,时间为40s。
配方4:0.2~0.6g/L, 0.1~0.2g/L, 0.1~0.2g/L,温度为 18~25℃,时间为 20~60s得到蓝色钝化膜。
最硬的金属—铬(Cr)
铬是1797年由法国沃奎林(L.N.Vauquelin)在“西伯利亚红铅矿”(即铬酸铅矿)中发现的。由于铬的化合物有黄(如铬酸镁、铬酸铅)、绿(氧化铬、硫酸铬)、桔红(重铬酸钾)、猩红(铬酸)、蓝紫色(含水硫酸铬又名铬矾)等多种多样的颜色,法国化学家伏克劳(A.F.de Fourcroy)和霍伊(R.J.Haü y)将其取名为Chromium(铬),来源于希腊语Chroma,意为“颜色”。铬在地壳中的丰度为122ppm,主要以铬铁矿存在,绿宝石和红宝石中的颜色就是其中铬盐的颜色。工业上主要通过焦炭还原铬铁矿及铝或硅还原三氧化二铬,再通过精炼得到。
金属铬具有银白色光泽,是最坚硬的金属。用铬和其他金属组成的合金可大大提高金属的硬度,延长使用寿命,如用高铬铸钢作为轧钢导板材料寿命比铸铁导板长500倍。铬还具有优异的抗腐蚀能力。1913年,英国科学家布里尔利采用铬和铁等金属制备合金,但对成品的一项指标并不满意,于是将它扔进了废品堆。然而过了很长时间后,废品堆中许多金属都已锈迹斑斑,而该合金却仍然光亮如新。于是他进行了重新研究,制得了材料新秀—不锈钢。目前,不锈钢在日常生活、医疗器械及汽车、造船工业等各方面都得到了广泛的应用,现在的不锈钢虽然各种各样,但仍以铬为主要添加元素。铬还常用于电镀,金属表面镀铬后可增加硬度,防止腐蚀。在我国秦始皇兵马俑出土的秦俑佩戴的兵刃和剑上就镀有金属铬,这说明我国人民2000年前就掌握了镀铬技术。铬的化合物也用于各行各业。重铬酸钾广泛用于造革工业和纺织工业;也常溶解于浓流酸或浓硝酸中制成洗液,清洗玻璃仪器上的油迹和污斑;在分析化学中以重铬酸钾作氧化剂,来测定铁矿中铁的含量,俗称“重铬酸钾法”。铬酸锌是合成甲醇的催化剂。三氧化二铬是乙烯聚合反应的催化剂。铬绿(即氧化铬)和铬黄(即铬酸铅)是重要的颜料。
铬是人体必需的微量元素。铬是胰岛素不可缺少的辅助成份,通过参与糖的代谢过程,促进脂肪和蛋白质的合成,进而促进生长发育。糖尿病人的血液和头发中含铬量低,心血管疾病也与体内铬含量低有关。现在还有人认为近视眼与人体缺铬有关。当人体缺铬时,胰岛素作用降低使糖的利用发生障碍,结果血内脂肪和类脂,特别是胆固醇含量增加,出现动脉硬化—糖尿病的综合缺铬症。若出现高血糖、糖尿、血管硬化时,血糖增高引起渗透压降低,造成眼睛晶状体和房水渗透压改变,促使晶状体变凸,屈光度增加,形成近视。一般来讲,儿童10岁以下时体内铬含量较高,但10到30岁体内铬会突然降低,因此这一阶段最易发生近视,应注意摄取含铬高的食物。动物肝脏、牛肉、胡椒、小麦、面粉、红糖等含铬较多,但食品经过加工铬含量会大大降低,如白糖比红糖铬含量少5/6,小麦加工后也减少约5/6左右。三价铬基本无毒,但六价铬毒性很强,铬酸盐和重铬酸盐毒性更大。若经常吸入含重铬酸盐的空气,会引起鼻中隔穿孔、眼结膜炎和咽喉溃疡。如果不慎口服了重铬酸盐则会引起呕吐、腹泻、肾炎、尿毒症甚至死亡。长期吸入六价铬的粉尘会引起肺癌。
由于铬极为广泛的使用,特别是电镀行业的废水废渣中含有大量的六价铬,很容易造成环境污染。处理含铬废渣主要采用亚铁还原法,将六价铬还原为无毒的三价;也可采用钡固定法,使六价铬生成不溶性的铬酸钡,用于建材。
则溶液中硫酸铬的质量m=705X0.4=282g
这个原溶液的硫酸铬浓度为=564g/L
要配置1000 mL浓度为1000 mg/L的溶液需要硫酸铬质量1g
所以只要量取1.77ml的原溶液,用1L的容量瓶定容即可
望采纳,谢谢
配置1000ml溶质的质量分数为5%的稀硫酸(密度为1.07g/ml),它的质量=1000mlX1.07g/cm^3=1070克
(2)需要98%的浓硫酸各多少克。
配置1000ml溶质的质量分数为5%的稀硫酸(密度为1.07g/ml),需要纯硫酸的质量:
1000mlx1.07g/cm^3x5%=53.5克
需要98%的浓硫酸的质量=53.5g÷98%=54.6g
水的质量=1070g-54.6g=1015.4克
V浓硫酸=54.6g÷1.84g/cm^3=29.6ml
V水=1015.4g÷1g/cm^3=1015.4ml
变成灰绿色。
反应的原理实际上是重铬酸钾被酒精还原成硫酸铬(灰绿色)。
方程式为:3CH3CH2OH+2K2Cr2O7+8H2SO4=3CH3C0OH+2Cr2(SO4)3(灰绿色)+2K2SO4+11H2O
重铬酸钾是一种有毒且有致癌性的强氧化剂,它被国际癌症研究机构划归为第一类致癌物质,而且是强氧化剂,在实验室和工业中都有很广泛的应用。用于制铬矾、火柴、铬颜料、并供鞣革、电镀、有机合成等。
扩展资料:
代谢和降解:六价铬和三价铬可以互相转换,在环境中六价铬可以被还原性物质如亚铁离子及有机物还原成三价铬,而三价铬由于遇到自然界中的氧化物如二氧化锰和大气或水中的氧,被氧化成六价铬。
海水中含铬量较低,浓度往往在1μg/L以下,六价铬与三价铬并存,但水越深则三价铬的浓度越高,这是由于六价铬被深水中有机物还原的结果。相同的理由是在受污染河流的底泥中,往往三价铬的浓度比六价铬显著偏高。泥沙对三价铬的吸附能力很强,而对六价铬基本不吸附也是底泥中三价铬含量偏高的原因。
参考资料来源:百度百科-重铬酸钾
(1)毒性低,废水处理容易。据报道三价铬的毒性只有六价铬的1/100,而且在电镀过程中不产生六价铬酸雾。镀液浓度低,只有六价铬镀液的1/7左右,因而带出镀液量少,废水处理也容易。
(2)镀液的电流密度范围宽,可在0.5~100A/dm宽广的阴极电流范围内获得合格的镀层。
(3)镀液分散能力和覆盖能力优于六价铬镀液。
(4)镀液的电流效率高,可达25%左右。
(5)镀液可不必加温,在常温条件下工作,从而节约了能源。
(6)镀层耐蚀性佳,可直接镀取微观不连续的铬镀层。
(7)电镀时,即使电流中断也不影响结合力。
但早期的三价铬镀层的缺点是比较突出的,主要有如下几点。
(1)色泽不像六价铬镀液中取出的呈青白色,而是带有不锈钢的黄白色,因而难以使用户接受。
(2)镀层的厚度只能达到3μm,不能再增厚,因此不适合镀硬铬。
(3)镀液稳定性差。
(4)镀层的硬度低。
通过电镀工作者不懈的努力,上述存在的四个问题目前已基本被突破。
(1)现在已能镀取较青白色接近六价铬镀液中镀取的色泽。
(2)镀层厚度也可达到数十微米甚至可达数百微米。
(3)镀液的稳定性也大有提高。
(4)镀层的镀态硬度虽较低(HV600~900),但若经一定的温度热处理后,硬度可达到HVl200~1800,耐磨性也大大增强。我们知道,这一硬度值已经大大超过了六价铬镀铬层。
配方主盐用硫酸铬钾,作为配位体的有甲酸、草酸和醋酸铵,作为缓冲剂和导电添加剂的有硼酸、硫酸铝、硫酸钠和硫酸铵。,三价铬镀液中三价铬离子在阴极上放电是分步进行的。含有相对稳定的二价铬络离子的化合物,其放电速率明显加快。研究还表明,某些有机硫化合物对二价铬离子放电有催化作用,如添加0.05g/L的硫代甲酰胺到草酸镀液中,电流效率可增加8%~12%。
三价铬镀液也是用的硫酸盐,以草酸作为三价铬的配位络合剂,以硼酸作为缓冲剂。含有10个结晶水硫酸铬的浓度为100g/L,以铂或钛一铂作阳极。在草酸溶液的三价铬镀液中未发现六价铬离子,而且获取的是具有塑性和没有裂纹的铬镀层。镀液的覆盖能力极佳,电流效率可达30%~35%。如果加入氟离子,则电流效率还会进一步提高,可达43%;沉积速率达1.5~2μm/min。作为硬铬镀层,厚度可达到50μm。从该三价铬镀液中获取的铬镀层光亮,外观较青白,已接近六价铬镀液中镀取的色泽。
由于三价铬镀铬一些难以解决的问题已基本得到了解决,因此近几年国外投入工业化生产也日渐多起来,尤其在北美洲,三价铬电镀工艺应用最多,已发展到100多家电镀公司在采用该工艺,镀液的体积已达到近3×105L。
在英国的一家私营企业里面采用了3价铬镀铬工艺,取得了不错的经济效益。目前国内在这方面的进展不容乐观,主要是我们的相关大学没有正确的心态来研究,往往急功近利,更没有西方环保主义者的责任感。
这是一项很有环保价值的工艺,希望大家多研究关注。
铬是金属中最大的金属。化学符号Cr,单质为钢灰色金属。元素名来自于希腊文,原意为“颜色”,因为铬的化合物都有颜色。
1797年法国化学家沃克兰 (L.N.Vauquelin)在西伯利亚红铅矿(铬铅矿)中发现一种新矿物,次年用碳还原得到。铬在地壳中的含量为0.01%,居第17位。自然界不存在游离状态的铬,主要存在于铬铅矿中 。
在元素周期表中属 ⅥB族, 铬的原子序数24,原子量51.9961,体心立方晶体,常见化合价为+2、+3和+6。氧化数为6, 5, 4, 3, 2, 1, −1, −2, −4
扩展资料:
铬的作用:
1、铬可用于制不锈钢。红、绿宝石的色彩也来自于铬。
2、铬是人体必需的微量元素。三价的铬是对人体有益的元素,六价铬是有毒的。人体对无机铬的吸收利用率极低,不到1%;人体对有机铬的利用率可达10-25%。确切地说,铬的生理功能是与其它控制代谢的物质一起配合起作用,如激素、胰岛素、各种酶类、细胞的基因物质。
六价铬对人体具体危害:
1、铬性皮肤溃疡(铬疮):铬化合物并不损伤完整的皮肤,但当皮肤擦伤而接触铬化合物时即可发生伤害作用。铬性皮肤溃疡的发病率偶然性较高,主要与接触时间长短,皮肤的过敏性及个人卫生习惯有关。
2、铬性皮炎及湿疹:接触六价铬也可发生铬性皮炎及湿疹,患处皮肤搔痒并形成水泡,皮肤过敏者接触铬污染物数天后即可发生皮炎,铬过敏期长达3—6月,湿疹常发生于手及前臂等暴露部份,偶尔也发生在足及踝部,甚至脸部、背部等。
3、铬性鼻炎:接触铬盐常见的呼吸道职业病是铬性鼻炎,该病早期症状为鼻粘膜充血,肿胀、鼻腔干燥、搔痒、出血,嗅觉减退,粘液分泌增多,常打喷嚏等,继而发生鼻中隔溃疹,溃疹部位一般在鼻中隔软骨前下端1.5cm处,无明显疼痛感。
4、对眼及耳:眼皮及角膜接触铬化合物可能引起刺激及溃疡,症状为眼球结膜充血、有异物感、流泪刺痛、视力减弱,严重时可导致角膜上皮脱落。
5、对肠胃道误食入六价铬化合物可引起口腔粘膜增厚,水肿形成黄色痂皮,反胃呕吐,有时带血,剧烈腹痛,肝肿大,严重时使循环衰竭,失去知觉,甚至死亡。
参考资料来源:百度百科-铬
文档序号:23395248发布日期:2020-12-22 14:03阅读:891来源:国知局
导航: X技术>最新专利>无机化学及其化合物制造及其合成,应用技术
本发明涉及冶金化工技术领域,尤其是涉及一种易溶氢氧化铬的制备方法。
背景技术:
近年来,三价铬在电镀和金属表面处理方面的应用蓬勃发展,三价铬电镀浴和金属表面处理池的三价铬源主要使用易溶三价铬盐,如氯化铬、硫酸铬、氨基磺酸铬等。但是,使用中随着铬以金属铬或氧化铬形式在基体上沉积成膜,cl-或so42-等阴离子将留在浴池液中;补充相当于已消耗铬量的铬源继续电镀后,阴离子在浴池中继续累积,使浴池液组成无法保持稳定,需全部更换成新浴池液,并对废液进行处置。虽然可使用氢氧化铬或碳酸铬作为补充铬源,但因传统方法所制氢氧化铬或碳酸铬不溶于水,在通常使用的酸性水溶液中溶解性低,配制浴池液时,必须长时间加热搅拌,存在电镀时或金属表面处理时因配制镀液或池液而中断作业的问题。
传统生产氢氧化铬或碳酸铬的加料方式,是将质量、体积较小的无机碱溶液加到质量、体积较大的氯化铬或硫酸铬水溶液中,极度过量的cr3+遇到oh-或co32-便形成过多的沉淀中心,致使析出的一级粒子过小,静电引力过强,容易聚集成过大的聚集体,吸附较多的杂质和水分,难以过滤,且难溶于酸性溶液中,从而限制了其应用。基于以上问题,开发出易溶解的三价铬镀浴和金属表面处理池用三价铬源及补充铬源尤为重要。
现有技术公开了一种将含cr3+的水溶液添加到无机碱溶液中进行反应,使反应液中cr3+始终处于低浓度状态,同时将溶液浓度、反应温度、加料速度、搅拌速度控制在特定范围内,致使得到的氢氧化铬一级粒子大、聚集体小,在酸性水溶液中易溶,称为易溶氢氧化铬。将此氢氧化铬悬浮于纯水制成浆液,作为补充三价铬源直接加到浴池中(渡浴和金属表面处理池的溶液均呈酸性)。浴池溶液中原有的酸性能在数分钟内(无机酸)或数十分钟内(有机酸)将易溶氢氧化铬悬浮液完全溶解。
现有技术还公开了一种通过控制溶液浓度、反应温度、加料速度、搅拌速度,将无机碱溶液及三价铬盐水溶液同时加到水介质中反应,亦能得到一级粒子大、聚集体小的氢氧化铬,将其制成的悬浮液在酸性溶液中亦易溶解。
以上两种通过改变加料方式、控制反应条件,制得的氢氧化铬的一级粒子均较大,静电引力较弱,聚集体粒度较小,不仅易溶于酸性水溶液,而且沉淀过程中对杂质的包藏、吸附作用也较小,纯度较高。用此氢氧化铬生产三价铬化合物,不仅生产效率高,且制得铬化合物的质量也好,是某些三价铬化合物特别是有机酸铬的优良铬源。然而,这两种方法需要将溶液浓度、反应温度、加料速度、搅拌速度等控制在特定范围,反应条件较为苛刻。
非专利文献《氢氧化铬的基础及应用研究》中提到,以氨水作为沉淀剂常温下制备的氢氧化铬均为晶态,溶解性能优异,低温时制备的结晶稍微优于常温状态;以氢氧化钠作为沉淀剂制备氢氧化铬时,温度对氢氧化铬结晶影响很大,温度控制在15℃以下,可以得到结晶较好的氢氧化铬。晶态氢氧化铬在低温条件下非常稳定,不会发生结构的改变。该文献中提到的制备易溶氢氧化铬的方法,均是在室温及以下的条件下实现的,以氨水作为沉淀剂制备易溶氢氧化铬,成本较高,作业环境较差,而采用氢氧化钠作为沉淀剂时,则需要控制在低温条件下(<15℃),条件较为苛刻。
基于此,现有技术仍然有待改进。
技术实现要素:
为解决上述技术问题,本发明实施例提出一种易溶氢氧化铬的制备方法,以解决现有技术的易溶氢氧化铬的制备方法反应条件苛刻的技术问题。
一方面,本发明实施例所公开的一种易溶氢氧化铬的制备方法,包括如下步骤:
步骤一向三价铬溶液中加入铵盐并溶解,得到第一混合溶液;
步骤二在预定反应条件下,向所述第一混合溶液中加入碱,得到氢氧化铬沉淀;
步骤三将所述氢氧化铬沉淀过滤、洗涤,得到易溶氢氧化铬。
进一步地,所述铵盐为水溶性且ph值不大于7。
进一步地,所述铵盐为硫酸铵、硫酸氢氨、氯化铵、硝酸铵、醋酸铵中的一种。
进一步地,所述铵盐的阴离子与三价铬溶液中的阴离子相同。
进一步地,步骤一中,所述铵盐的用量为:以摩尔比计,铵盐的铵离子与三价铬溶液中的铬离子的比值范围为0.6~2.0。
进一步地,步骤二中,所述预定反应条件为:反应温度20-60℃,搅拌速度为200-500r/min。
进一步地,步骤二中,所述碱为氢氧化钠、碳酸钠、碳酸氢钠、碳酸铵、碳酸氢铵中的一种或多种。
进一步地,步骤二中,加碱至ph值为6.0-9.0时,停止加碱并继续搅拌。
进一步地,所述继续搅拌的搅拌时间为5-60min,优选地,搅拌时间为15~30min。
采用上述技术方案,本发明至少具有如下有益效果:
本发明的一种易溶氢氧化铬的制备方法,通过向三价铬溶液中加入铵盐的方式,在加碱过程中减缓三价铬的沉淀速度,抑制氢氧化铬胶体的生成,制备出一种易溶氢氧化铬;在传统碱沉的基础上,仅需添加单一铵盐,加入量少,成本低,且不引入其它杂质;工艺简单,反应条件温和,可操作性强;氢氧化铬易沉淀,无需静置,易酸溶,可作为三价铬源用于电镀和金属表面处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的一种易溶氢氧化铬的制备方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明实施例进一步详细说明。
需要说明的是,本发明实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本发明实施例的限定,后续实施例对此不再一一说明。
如图1所示,本发明一些实施例公开了一种易溶氢氧化铬的制备方法,包括如下步骤:
步骤一向三价铬溶液中加入铵盐并溶解,得到第一混合溶液;
步骤二在预定反应条件下,向所述第一混合溶液中加入碱,得到氢氧化铬沉淀,沉淀过程中释放出的氨可吸收后回用;
步骤三将所述氢氧化铬沉淀过滤、洗涤,得到易溶氢氧化铬,滤液可直接进入废水处理工序。
其中,所述铵盐为水溶性且ph值不大于7;所述铵盐可为硫酸铵、硫酸氢氨、氯化铵、硝酸铵、醋酸铵中的一种。一些优选的实施例中,所述铵盐的阴离子与三价铬溶液中的阴离子相同。
本发明在不改变传统加料方式的前提下,在沉淀前向三价铬溶液中加入一定量的铵盐(如硫酸铵、氯化铵、硝酸铵等)。由于nh4+离子可与cr3+离子形成稳定配合物cr(nh3)63+,在加碱沉淀时,oh-缓慢取代nh4+,继而减缓了cr3+离子的沉淀速度,加之铵盐属强电解质,可以破坏氢氧化铬胶体的生成,这些现象都有利于氢氧化铬晶体的生长,避免形成粒径过大的聚集体,继而得到易过滤、易溶解的氢氧化铬。
本发明一些优选的实施例所公开的一种易溶氢氧化铬的制备方法,在上述实施例的基础上,步骤一中,所述铵盐的用量为:以摩尔比计,铵盐的铵离子与三价铬溶液中的铬离子的比值范围为0.6~2.0,优选地,铵盐的铵离子与三价铬溶液中的铬离子的比值范围为1.0~1.5;
步骤二中,所述预定反应条件为:反应温度20-60℃,搅拌速度为200-500r/min;所述碱为氢氧化钠、碳酸钠、碳酸氢钠、碳酸铵、碳酸氢铵中的一种或多种。
本发明一些优选的实施例中,对于反应终点的判断,可采用在步骤二中,加碱至ph值为6.0-9.0时,停止加碱并继续搅拌5-60min,优选搅拌15-30min后,认为反应完成。
实施例1
氯化铬溶液1000ml(其中cr3+=10g/l),加入氯化铵6.2g(n(nh4+)∶n(cr3+)=0.6),搅拌溶解;在温度20℃、搅拌速度速200~300r/min下加入碳酸氢钠碱液,控制终点ph为6.0,加碱完毕搅拌反应30min;过滤、洗涤,得到易溶氢氧化铬,滤液进入废水处理工序。将得到的氢氧化铬沉淀物置于0.1mol/lhcl溶液中(1000ml),室温下搅拌溶解,所需时间约3min。
实施例2
硫酸铬溶液2000ml(其中cr3+=26g/l),加入硫酸铵132g(n(nh4+)∶n(cr3+)=2.0),搅拌溶解;在温度60℃、搅拌速度速400~500r/min下加入碳酸钠碱液,控制终点ph为7.0,加碱完毕搅拌反应15min;过滤、洗涤,得到易溶氢氧化铬,滤液进入废水处理工序。将得到的氢氧化铬沉淀物置于0.05mol/lh2so4溶液中(2000ml),室温下搅拌溶解,所需时间约5min。
实施例3
硝酸铬溶液500ml(其中cr3+=31g/l),加入硝酸铵31g(n(nh4+)∶n(cr3+)=1.3),搅拌溶解;在温度40℃、搅拌速度速300~400r/min下加入氢氧化钠碱液,控制终点ph为9.0,加碱完毕搅拌反应5min;过滤、洗涤,得到易溶氢氧化铬,滤液进入废水处理工序。将得到的氢氧化铬沉淀物置于0.1mol/lhno3溶液中(500ml),室温下搅拌溶解,所需时间约6min。
实施例4
乙酸铬溶液1500ml(其中cr3+=18g/l),加入乙酸铵40g(n(nh4+)∶n(cr3+)=1.0),搅拌溶解;在温度50℃、搅拌速度速300~400r/min下加入碳酸氢氨碱液,控制终点ph为8.0,加碱完毕搅拌反应20min;过滤、洗涤,得到易溶氢氧化铬,滤液进入废水处理工序。将得到的氢氧化铬沉淀物置于0.2mol/l乙酸溶液中(1500ml),室温下搅拌溶解,所需时间约10min。
实施例5
硝酸铬溶液800ml(其中cr3+=35g/l),加入硝酸铵64.6g(n(nh4+)∶n(cr3+)=1.5),搅拌溶解;在温度30℃、搅拌速度速400~500r/min下加入碳酸铵和碳酸氢铵的混合碱液,控制终点ph为7.5,加碱完毕搅拌反应10min;过滤、洗涤,得到易溶氢氧化铬,滤液进入废水处理工序。将得到的氢氧化铬沉淀物置于0.1mol/lhno3溶液中(800ml),室温下搅拌溶解,所需时间约8min。
需要特别指出的是,上述各个实施例中的各个组件或步骤均可以相互交叉、替换、增加、删减,因此,这些合理的排列组合变换形成的组合也应当属于本发明的保护范围,并且不应将本发明的保护范围局限在所述实施例之上。
以上是本发明公开的示例性实施例,上述本发明实施例公开的顺序仅仅为了描述,不代表实施例的优劣。但是应当注意,以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明实施例公开的范围(包括权利要求)被限于这些例子,在不背离权利要求限定的范围的前提下,可以进行多种改变和修改。根据这里描述的公开实施例的方法权利要求的功能、步骤和/或动作不需以任何特定顺序执行。此外,尽管本发明实施例公开的元素可以以个体形式描述或要求,但除非明确限制为单数,也可以理解为多个。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明实施例公开的范围(包括权利要求)被限于这些例子;在本发明实施例的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。
完整全部详细技术资料下载
当前第1页1 2
该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。
技术研发人员:蒋霖伍珍秀李明伍金树
技术所有人:攀钢集团研究院有限公司