过时的苗条
2026-01-31 19:47:03
烧碱与二甲苯不能互溶,氢氧化钠水溶液会与二甲苯出现分层(二甲苯在上层),如果你想去掉它,粗略的方法就是分液将下层(氢氧化钠水溶液)放掉即可。
氢氧化钠,化学式为NaOH,俗称烧碱、火碱、苛性钠,为一种具有很强腐蚀性的强碱,一般为片状或颗粒形态,易溶于水(溶于水时放热)并形成碱性溶液,另有潮解性,易吸取空气中的水蒸气和二氧化碳。NaOH是化学实验室其中一种必备的化学品,亦为常见的化工品之一。纯品是无色透明的晶体。密度2.130g/cm³。熔点318.4℃。沸点1390℃。工业品含有少量的氯化钠和碳酸钠,是白色不透明的晶体。有块状,片状,粒状和棒状等。式量40.01
氢氧化钠在水处理中可作为碱性清洗剂,溶于乙醇和甘油;不溶于丙醇、乙醚。在高温下对碳钠也有腐蚀作用。与氯、溴、碘等卤素发生歧化反应。与酸类起中和作用而生成盐和水。
二甲苯为无色透明液体。有芳香烃的特殊气味。系由45%~70%的间二甲苯、15%~25%的对二甲苯和10%~15%邻二甲苯三种异构体所组成的混合物。易流动。能 与无水乙醇、乙醚和其他许多有机溶剂安全措施:
贮于低温通风处,远离火种、热源。避免与氧化剂等共储混运。禁止使用易产生火花的工具。
灭火:泡沫、二氧化碳、干粉、砂土。
沉静的小土豆
2026-01-31 19:47:03
氢氧化钠(NaOH)俗称烧碱、火碱、苛性钠温种白色晶体具强腐蚀性易溶于水其水溶液呈强碱性能使酚酞变红氢氧化钠种极用碱化实验室必备药品氢氧化钠空气易吸收水蒸气其必须密封保存且要用橡胶瓶塞溶液用作洗涤液
二甲苯用途比较广应该解
二甲苯具毒性主神经系统麻醉作用皮肤刺激作业易挥发燃点低环境造影响
二甲苯源于溶剂、杀虫剂、聚酯纤维、胶带、粘合剂、墙纸、油漆、湿处理影印机、压板制品毯等
二甲苯包括邻位、间位位三种异构体间位比例达 60%~70% 位含量低二甲苯经呼吸道、皮肤及消化道吸收其蒸气经呼吸道进入体部经呼吸道排吸收二甲苯体内布脂肪组织肾腺依骨髓、脑、血液、肾肝工业用二甲苯三种异构体毒性略差异均属低毒类据报告三名工吸入浓度 43.1 g / m 3 二甲苯 18.5 名死亡尸检见肺淤血脑血另两名工丧失知觉达 19~24 伴记忆丧失肾功能改变外吸入高浓度二甲苯使食欲丧失、恶、呕吐腹痛引起肝肾逆性损伤同二甲苯种麻醉剂期接触使神经系统功能紊乱其外期接触二甲笨育负面影响
害怕的毛豆
2026-01-31 19:47:03
目前是没有甲苯酸的,只有苯甲酸
苯甲酸与氢氧化钠化学方程式
C6H5COOH + NaOH = C6H5COONa + H2O
苯甲酸为具有苯或甲醛的气味的鳞片状或针状结晶。熔点122.13℃,沸点249℃,相对密度1.2659(15/4℃)。在100℃时迅速升华,它的蒸气有很强的刺激性,吸入后易引起咳嗽。微溶于水,易溶于乙醇、乙醚等有机溶剂。苯甲酸是弱酸,比脂肪酸强。它们的化学性质相似,都能形成盐、酯、酰卤、酰胺、酸酐等,都不易被氧化。苯甲酸的苯环上可发生亲电取代反应,主要得到间位取代产物。
物质结构
羧基直接与苯环碳原子相连接的最简单的芳香酸。化学式C6H5COOH。又称安息香酸。
理化性质
物理性质
外观与性状:鳞片状或针状结晶,具有苯或甲醛的臭味。
水中溶解度:0.21g(17.5℃)、0.35g(25℃)、2.2g(75℃)、2.7g(80℃)、5.9g(100℃)。
化学性质
苯甲酸的反应可以分为羧基上的反应和苯环上的反应两大类。
1.酸性
苯甲酸在水中电离常数Ka= 6.4×10-5(25℃),苯甲酸的酸性稍强于环己烷甲酸,这是由于苯环上的sp2杂化碳原子电负性较大,给电子作用较弱。
2.羧酸衍生物的生成
苯甲酸可以与对应试剂反应,生成酯、酰卤、酰胺、酸酐等羧酸衍生物。
例如,苯甲酸与甲醇在酸的催化下,依循加成—消除机理生成苯甲酸甲酯。
酯化反应
又如,苯甲酸与苯胺在180~190℃的温度下反应,生成苯甲酰苯胺(N-苯甲酰替苯胺),该反应的产率约为84%。
3.脱羧反应
苯甲酸可以在加热条件下,脱去羧基并生成二氧化碳,即发生脱羧反应,反应温度约为150~170℃。
4.与金属有机化合物的反应
苯甲酸可以与格林试剂、甲基锂等金属有机化合物发生反应,生成对应的金属有机化合物。其中,苯甲酸与甲基锂反应是制备酮的一般方法。
5.还原反应
苯甲酸可以催化还原得到苯甲醇,常用的催化剂有ZrO2、CeO2、ZnO、Mo的氧化物。
6.亲电取代反应
苯甲酸的苯环上可发生亲电取代反应,反应主要得到间位取代产物。
例如,苯甲酸与硝酸钠在浓硫酸的催化下,生成间硝基苯甲酸,在85℃、浓硫酸与硝酸钠质量比为5:1的条件下,产率约为81.0%。
落后的糖豆
2026-01-31 19:47:03
甲醇钠有着比较广泛的用途,主要用于生产磺胺类药物等 ,甲醇钠也是一种有机合成的催化剂,用于农药生产和油脂加工工业。
供业中甲醇钠产品有两种形式:固体和液体,固体是甲醇钠纯品,液体是甲醇钠的甲醇溶液,甲醇钠含量 27.5~31% 。
用作有机合成中的碱性缩合剂及催化剂,用于香料、染料等的合成,是维生素B1、A及磺胺嘧啶的原料。
用作医药、农药的原料,是磺胺咪啶、新诺明、磺胺增效剂等药物合成的重要原料
也用作处理食用脂肪和食用油(特别是处理猪油)的催化剂,以改变脂肪结构,使适用于人造奶油等,在最终食品中必须除去。主要用作缩合剂、强碱性催化剂以及甲氧基化剂,用于制取维生素B1及A、磺胺嘧啶等药物,少量用于农药生产。
还用作分析试剂广泛用于香料、染料等工业中。
折叠化学性质
分子量:54.0237
分子式:CH3ONa
EINECS号:204-699-5
英文名称:Sodium methoxide
英文别名:sodium methylateSodium methoxide titrantmethanol sodium salt (1:1)
白色无定形易流动粉末,无臭,溶于乙醇和甲醇。
对空气与湿气敏感,遇水迅速分解成甲醇和氢氧化钠,在126.6℃以上的空气中分解。
甲醇钠甲醇溶液为无色或微黄色粘稠性液体,对氧气敏感,易燃,易爆。极易吸潮。
不溶于苯和甲苯。有较强的刺激性和腐蚀性。
商品形态也有溶液化合物的形式。也有溶剂化合物的形态。
危险标记:20(碱性腐蚀品)36(自燃物品)
储存条件:库房通风低温干燥。
甜蜜的铃铛
2026-01-31 19:47:03
对硝基甲苯溶于氢氧化钠。
硝基苯是否溶于NaOH:实验室制硝基苯由于溶有硝酸分解产生的二氧化氮而有颜色,可加氢氧化钠溶液后分液除去),可知硝基苯不溶于NaOH。制备硝基苯的时候,反应液还用氢氧化钠处理,洗去多余的酸。
性质
氢氧化钠具有强碱性和有很强的吸湿性。易溶于水,溶解时放热,水溶液呈碱性,有滑腻感;腐蚀性极强,对纤维、皮肤、玻璃、陶瓷等有腐蚀作用。与金属铝和锌、非金属硼和硅等反应放出氢;与氯、溴、碘等卤素发生歧化反应;与酸类起中和作用而生成盐和水。
魁梧的汽车
2026-01-31 19:47:03
两个都对.
第一个反应物生成盐酸,而 HCl+NaOH = NaCl + H2O .两个方程式加在一起,就得到你说的第二种方程式了
所以说,两个都对.
稀土冶炼方法有两种,即湿法冶金和火法冶金。湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是产业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法出产成品应用面广阔。火法冶金工艺过程简朴,出产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。火法冶金的共同特点是在高温前提下出产。 1.稀土精矿的分解稀土精矿中的稀土,一般呈难溶于水的碳酸盐、氟化物、磷酸盐、氧化物或硅酸盐等形态。必需通过各种化学变化将稀土转化为溶于水或无机酸的化合物,经由溶解、分离、净化、浓缩或灼烧等工序,制成各种混合稀土化合物如混合稀土氯化物,作为产品或分离单一稀土的原料,这样的过程称为稀土精矿分解也称为前处理。 分解稀土精矿有良多方法,总的来说可分为三类,即酸法、碱法和氯化分解。酸法分解又分为盐酸分解、硫酸分解和氢氟酸分解法等。碱法分解又分为氢氧化钠分解或氢氧化钠熔融或苏打焙烧法等。一般根据精矿的类型、品位特点、产品方案、便于非稀土元素的回收与综合利用、利于劳动卫生与环境保护、经济公道等原则选择相宜的工艺流程。碳酸稀土和氯化稀土的出产:这是稀土产业中最主要的两种低级产品,一般地说,目前有两个主要工艺出产这两种产品。一个工艺是浓硫酸焙烧工艺,即把稀土精矿与硫酸混合在回转窑中焙烧。经由焙烧的矿用水浸出,则可溶性的稀土硫酸盐就进入水溶液,称之为浸出液。然后往浸出液中加入碳酸氢铵,则稀土呈碳酸盐沉淀下来,过滤后即得碳酸稀土。另一种工艺叫烧碱法工艺,简称碱法工艺。一般是将60%的稀土精矿与浓碱液搅匀,在高温下熔融反应,稀土精矿即被分解,稀土变为氢氧化稀土,把碱饼经水洗除去钠盐和多余的碱,然后把水洗过的氢氧化稀土再用盐酸溶解,稀土被溶解为氯化稀土溶液,调酸度除去杂质,过滤后的氯化稀土溶液经浓缩结晶即制得固体的氯化稀土。 2.稀土元素的分离目前,除Pm以外的16个稀土元素都可提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提掏出单一纯稀土元素,在化学工艺上是比较复杂和难题的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是不乱的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为难题。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必需考虑稀土元素同伴生的杂质元素之间的分离。 现在稀土出产中采用的分离方法(湿法出产工艺)有:(1)分步法(分级结晶法、分级沉淀法和氧化还原法);(2)离子交换法;(3)溶剂萃取法。(1)分步法从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有自然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操纵程序是:将含有两种稀土元素的化合物先以相宜的溶剂溶解后,加热浓缩,溶液中一部门元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。由于稀土元素之间的溶解度差别很小,必需重复操纵多次才能将这两种稀土元素分离开来,因而这是一件非常难题的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操纵竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量出产单一稀土。(2)离子交换法因为分步法不能大量出产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原枪弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发展,因稀土元素和铀、钍等放射性元素性质相似,为尽快推进原子能的研究,就将稀土作为其代用品加以利用。而且,为了分析原子核裂变产物中含有的稀土元素,并除去铀、钍中的稀土元素,研究成功了离子交换色层分析法(离子交换法),进而用于稀土元素的分离。离子交换色层法的原理是:首先将阳离子交换树脂填充于柱子内,再将待分离的混合稀土吸附在柱子进口处的那一端,然后让淋洗液从上到下流经柱子。形成了络合物的稀土就脱离离子交换树脂而随淋洗液一起向下活动。活动的过程中稀土络合物分解,再吸附于树脂上。就这样,稀土离子一边吸附、脱离树脂,一边跟着淋洗液向柱子的出口端活动。因为稀土离子与络合剂形成的络合物的不乱性不同,因此各种稀土离子向下移动的速度不一样,亲和力大的稀土向下活动快,结果先到达出口端。 离子交换法的长处是一次操纵可以将多个元素加以分离。而且还能得到高纯度的产品。这种方法的缺点是不能连续处理,一次操纵周期花费时间长,还有树脂的再生、交换等所耗本钱高,因此,这种曾经是分离大量稀土的主要方法已从主流分离方法上退下来,而被溶剂萃取法取代。但因为离子交换色层法具有获得高纯度单一稀土产品的凸起特点,目前,为制取超高纯单一稀土产品以及一些重稀土元素的分离,还需用离子交换色层法分离制取。 (3)溶剂萃取法利用有机溶剂从与其不相混溶的水溶液中把被萃取物提取分离出来的方法称之为有机溶剂液—液液萃取法,简称溶剂萃取法,它是一种把物质从一个液相转移到另一个液相的传质过程。溶剂萃取法在石油化工、有机化学、药物化学和分析化学方面应用较早。但近四十年来,因为原子能科学技术的发展,超纯物质及稀有元素出产的需要,溶剂萃取法在核燃料产业、稀有冶金等产业方面,得到了很大的发展。我国在萃取理论的研究、新型萃取剂的合成与应用和稀土元素分离的萃取工艺流程等方面,均达到了很高的水平。溶剂萃取法其萃取过程与分级沉淀、分级结晶、离子交换等分离方法比拟,具有分离效果好、出产能力大、便于快速连续出产、易于实现自动控制等一系列长处,因而逐渐变成分离大量稀土的主要方法。溶剂萃取法的分离设备有混合澄清槽、离心萃取器等,提纯稀土所用的萃取剂有:以酸性磷酸酯为代表的阳离子萃取剂如P204、P507,以胺为代表的阴离子交换液N1923和以TBP、P350等中性磷酸酯为代表的溶剂萃取剂三种。这些萃取剂的粘度与比重都很高,与水不易分离。通常用煤油等溶剂将其稀释再用。萃取工艺过程一般可分为三个主要阶段:萃取、洗涤、反萃取。【所以稀土冶炼需要用到液碱,碳酸氢铵,苏打,硫酸等等】
帅气的大叔
2026-01-31 19:47:03
首先是稀盐酸,而铁锈中有二氧化三铁,铁等,但无二价铁。那有有几钟情况。1。当酸的量不购溶解二氧化三铁时。只有氯化铁产生,那么就只有褐色溶液。2。当酸的量刚刚好溶解二氧化三铁时。那么先是产生了氯化铁褐色溶液。然后是铁与氯化铁反应,产生了氯化亚铁。溶液由褐色京变为淡绿色。3。当酸只能溶解部分铁时,先是溶解了二氧化三铁,然后酸与铁就有氢气和氯化亚铁产生。然后铁与氯化亚铁反应,溶液就由褐色变绿色。4 。当酸刚刚好溶解完铁时。那么就是有氯化铁和氢气和氯化亚铁产生。但氯化亚铁会慢慢水解。最后溶液 还是褐色。5。当酸过量时。那么就是有氯化铁和氢气和氯化亚铁产生,溶液不水解。