PET回收造粒发黄!
发黄应该是PET分解才会出现的颜色,但190-230的温度一点都不高啊
原因可能有
1.150度干燥4小时,可能升温需要一两个小时呢,真正150的时间不够,靠成水份没烘干
2.产量太低,停留时间太久
3.温度设定值与实际温度有没太大偏差
4.加些稳定剂或润滑剂也许有点效果
5.想透明度,添加成核剂也许不错
PET再生料就是回收PET塑料,熔融,造粒。可加入到新料中降低成本。
1、PET塑料分子结构高度对称,具有一定的结晶取向能力,故而具有较高的成膜性和成性。PET塑料具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性。另外PET塑料具有优良的耐磨耗摩擦性和尺寸稳定性及电绝缘性。PET做成的瓶具有强度大、透明性好、无毒、防渗透、质量轻、生产效率高等因而受到了广泛的应用。PBT与PET分子链结构相似,大部分性质也是一样的,只是分子主链由两个亚甲基变成了四个,所以分子更加柔顺,加工性能更加优良。
2、PET是乳白色或浅黄色高度结晶性的聚合物,表面平滑而有光泽。耐蠕变、抗疲劳性、耐摩擦性好,磨耗小而硬度高,具有热塑性塑料中最大的韧性;电绝缘性能好,受温度影响小,但耐电晕性较差。无毒、耐气候性、抗化学药品稳定性好,吸湿性高,成型前的干燥是必须的。耐弱酸和有机溶剂,但不耐热水浸泡,不耐碱。
PE料分为好几种:LDPE、LLDPE的强度比较低,比较柔软,HDPE的强度比较高,比较硬
PP料透明度也较聚乙烯好,比聚乙烯刚硬,最大特点是脆性太高,所以从外观上看不出来,如果折的话,很容易折断
PVC不管是粒状,还是板状等,摸上去都有一种蜡质感,乳白色的不透明,其实PE也不透明的
PET是透明的,一般的矿泉水瓶,饮料瓶用的是这种材料
EPS(可发性聚苯乙烯)是一种树脂与物理性发泡剂和其它添加剂的混合物,可发性PS可被加工成低密度的泡沫塑料剂品,最常见的可发性聚苯乙烯是含有作为发泡剂的戊烷的透明PS粒料
ABS是丙烯腈-丁二烯-苯乙烯共聚物,ABS工程塑料一般是不透明的,外观呈浅象牙色、无毒、无味,兼有韧、硬、刚的特性,燃烧缓慢,火焰呈黄色,有黑烟,燃烧后塑料软化、烧焦,发出特殊的肉桂气味,但无熔融滴落现象。
其实对于后面几种,都是工程用的塑料,日常生活中很难见到
(1)瓶坯成型时的全部表面白化和再加热时全部表面结晶白化的原因基本如同3.1.1中所说,只是白化的结晶度比发暗的结晶度更高。但对于瓶坯表面的局部结晶块的工艺成因却不尽相同。当模具的冷却效果很好时,可能形成规则或不规则的抛物线状的雾状结晶。这主要是由于各型腔注塑速度、压力、温度协调不一致的结果。高速、高压注射时,熔料与浇口发生剪切,产生热量,熔体流动好,迅速注满型腔,并迅速得到冷却。如果因为注塑压力小、注塑速度低,一级注射未能注满型腔,则一级注射的料流前锋会因为与模壁接触不好而使温度降不到玻璃化温度以下,从而形成大量晶核;在与二级注射的料流会合时,会吸收二级注射料流的热量而结晶雾化,形状为规则的或不规则的抛物面,且抛物面的厚度有大有小,由于成型温度低而形成这种抛物面形状的雾化现象,适当提高温度是可以消除的,但重复实验证明,这种说法不妥。如果一级注射的行程小到某一临界值,提高温度直到材料分解也无法消除这种抛物面形状的雾化。
(2)如果在上述情况下未白化,则在再加热阶段PET瓶坯在相应部位易生成块状结晶。另外由于瓶坯再加热时内外温升不一样,外高内低,易使表面温度过高而结晶成雾状白化。
(3)在拉伸吹塑阶段,由于拉伸太快或冷拉伸,而形成拉伸结晶白化(有资料称这种发雾为“珠光”)。实际生产中,在注塑瓶坯阶段,调节一、二级注射速度,适当提高熔料温度,可消除抛物线(或面)形状的白化。在再加热阶段,采用能使内外温升相差不大的加热方法,如用质量较好的远红外加热管、石英管,必要时可用射频加热,并尽可能缩短加热时间,可降低结晶白化的可能性。对由拉伸引起的结晶可适当降低拉伸速度来避免。
PET饮料瓶回收方法有化学回收和物理回收两种。化学回收法是将PET废瓶在一定反应条件下解聚生成有用化学品的方法,如生产低档燃料汽油。物理回收法是将废PET瓶经过分离、破碎、洗涤及干燥处理进行再造粒方法。物理回收法主要有以下两种:一是将废PET瓶切碎成片,从PET中分出HDPE、铝、纸和粘合剂,PET碎片再经洗涤、干燥、造粒;二是先将废PET瓶上非PET的瓶盖、座底、标签等杂志用机械方法分离,在经洗涤、破碎、造粒。
前一种工艺流程:用人工方法先除去石块、木料及其它塑料制品以及有色PET瓶。再生PET中不得含有PVC杂质,因为其存在是影响PET色泽的关键因素。当PVC混入量较少时可在传送带上用人工方法分离,即受扭力作用时PVC与PET瓶在受力部分产生不同的物理现象,PVC瓶出现不透明痕迹,PET瓶没有,即可进行分离。亦有些公司利用PVC与PET不同熔点将破碎PET和PVC碎片通过装有加热器控制一定温度的传送带,PVC被熔化后粘附在传送带上,这样可与PET分离开。
铁的分离采用铁磁分离器。
PET瓶破碎有的只进行一次破碎,有的先进行粗破碎后再细分破碎,最终成为1.0-1.5cm大小的碎片。破碎机出口处安装有一个孔径为1.0-1.5cm的筛子以控制碎片的尺寸。
洗净及杂质分离技术是获得高质量再生PET的关键。饮料瓶通常使用塑料PE或指标签,纸标签可用粘接剂,也可在瓶子吹塑过程中粘上去,当PET瓶破碎后,部分标签被破碎成碎片,有的仍然粘附在PET碎片上,破随后的PET通常采用鼓风机和旋风分离机组合分离装置,可以除去约98%疏松标签碎片,也可采用抽气塔分离装置分离,破碎的PET碎片垂直从分离塔顶部加入,碎片与上升气流形成逆流,利用PET与标签碎片比重差异,标签被抽去,PET从分离器底部出来,为了保证标签分离效率,在生产中可采用两套以上的分离装置。
洗涤的目的是除去粘接剂、灰和原瓶中的残留物。洗涤采用80- 100oC热水来软化或溶解粘贴标签和底座的EVA粘接剂或其他类型粘接剂,为防止脱落的粘接剂再粘附PET碎片,需在水中加入添加剂,如碱、乳化剂或其它专用化学剂,清洗液一般由工厂根据废瓶来源和粘接特性来确定其配方组成和含量,清洗液可滤去杂质重新加热后循环使用,洗涤可在装有搅拌器的特别清选罐内进行,为保证清洗的效果,洗涤可采用二级洗涤工艺。
底座的分离是利用底座HDPE密度与PET密度不同的特性将其分离。分离在腐洗罐中进行,HDPE碎片从罐顶部溢出,下沉的PET碎片从罐底部出去。有的则采用水力旋流器分离代替浮选罐,其分离效果更好。
PET碎片通常采用离心脱水机使碎片含水量降至2%,再经带式或管式干燥机干燥,使水份含量降至0.5%。
PET中不能含有铝杂质,即使微量铝杂质都会影响再生PET的透明性,因此再生PET中铝含量应低于50×10-6,分离铝的最简单方法是在破碎前人工拆除铝盖、铝环或采用静电分离法使铝含量降低至100×10-6,这种分离可在输送带上进行;若PET碎片再通过金属检测分离系统进一步净化,铝含量可低于5×10-6。
再生PET挤出造粒与原生PET挤出造粒除进料有所区别外其它方面区别不大。挤出造粒可采用单螺杆或双螺杆挤出机,但在设计时必须考虑传统挤出机的进料压力太大,改用进料部分尺寸较大的螺杆,若用双螺杆挤出机效果更佳。
后一种工艺流程:该回收方法是先把PET瓶中的非PET成份分离,然后再破碎回收。它是先采用人工方法将石块、木料及其它塑料制品以及有色饮料瓶分离。 PVC瓶的分离可采用人工挑选方法或PVC分离设备进行。金属铁的分离可采用磁铁分离器进行分离。饮料瓶通过输送机后进入清理机,瓶子垂直进入加工生产线,通过除环机和除盖机将瓶盖和拉环拆除,并经称重确保瓶盖已拆除,检测发现某个瓶子重量超过标准将其从生产线上分离出去。
然后向每个废PET瓶子注入100ml开水,溶解瓶内残余饮料,同时将瓶夹紧挂起,瓶外用高压水刷洗,用热水使粘接剂软化,这样底座自行脱落,塑料或纸质标签脱出。经过洗涤后将瓶底部切除,放出瓶内的水。破碎如同第一种工艺方法中的设备即可,经过连续干燥器将PET瓶碎片干燥至水份含量低于0.05%。挤出造粒与底]一种回收方法相同。
以上两种回收技术均有工厂采用。其工艺各有特点。第一种回收方法较易形成大规模生产,但分离技术比较复杂,分离设备较多,投资较大。第二种方法产品纯度较高,使用设备较少,投资较省,但仅适用于无破损的完整的饮料瓶,被压扁或有破损的饮料瓶需分离出去,用其它的方法另行回收。实际上废塑料瓶从运输的经济合理性考虑,应压扁包扎后才可运输。其次切割出的瓶底座回收基本按照第一种方法进行,因此第二种回收法局限性较大。
国内用回收的PET制造有色农药瓶,替代玻璃瓶以减少产品破损。国外用回收PET制造PET包装。澳大利亚用回收的PET作为三层包装瓶的中间层原料,再生PET广泛用于生产3-17dtex短纤维,用作非织布。美国还应用再生PET来生产6.6-9.9dtex中空纤维,用作絮棉填充料。再生PET还可用于服装用纤维,例如美国Dyersburg织物厂用100%废PET瓶再生PET切片生产绒面布,美国WellmanFiber 公司开发室外用面料,再生PET纤维与其它纤维混纺,混纺率可达89%,该公司还与其它公司合作,以废PET饮料为原料生产衣用涤纶短纤维。美国巴塔哥尼亚公司用再生PET纤维与其它纤维混纺生产运动衣,混纺率达80%。
日本的帝人公司最近也开发了一种从废PET瓶中DMT(对苯二甲酸二甲脂)和EG(乙二醇)的循环方法,先把废PET瓶压碎并清洗,然后溶解于EG中,在EG的沸点温度和0.1Mpa的压力下,把PET进行解聚,生成双 -对苯二甲酸羟乙酯(BHET)。再经过滤,除去滤渣和添加剂,使BHET与甲醇起反应,在甲醇的沸点温度和0.1Mpa的压力下,经过酯交换反应生成 DMT和EG。再经过蒸馏,把DMT和EG进行分离,然后通过重结晶过程,把DMT精制;通过蒸馏把EG纯化,甲醇可循环使用。回收的DMT和EG的纯度都达到99.99%,生产成本与通用的DMT和EG法的成本不相上下。DMT可以转化成纯TPA(对苯二甲酸),用于制造瓶级PET树脂。循环装置可以生成10%左右的该公司生产树脂用的原料。
PET专用单螺杆塑料挤出机
型号螺杆直径,mm长径比L/D螺杆转速,r/min电机功率kw产量,kg/h
SJP-14014025:162-7055210-330
SJP-15015025:162-7075250-400
by Pack.QMark.com.cn 国家包装产品质检网 - 质量信息 - 行业动态 - 废PET塑料饮料瓶的回收利用技术展望
你应该直接选色粉,.很多卖色毋,色粉的商家都会帮客户调色的,他们会帮你搞掂.
如果想自己配,要有很准的天平,很细心才行.
经过预结晶处理后的PET碎片,再于更高温度下加热干燥,除去残留的水份。例如在150℃的干燥箱中再干燥6个小时以上,使碎片中的含水量低于0.05%以下,以避免在后续的挤出造粒过程中,PET高温水解而导致分子量的急剧下降,粘度急剧下降
EVA(中文名:聚乙―乙酸乙脂):感官鉴别:表面柔软;伸拉韧性强于LDPE
,手感发粘(但表面无胶);白色透明,透明度高,感观和手感与PVC膜很相似应注意区分。
燃烧鉴别:燃烧时与LDPE相同有石蜡的气味略带酸味;燃烧火焰上黄下蓝;燃烧时无烟。熔融滴落,易拉丝。注:本品为PE种类中的一种,价格同与LDPE
,可用于再生造粒,质量要求与PE相同。
PP(聚丙烯):感官鉴别:本品为白色透明与LDPE相比透明度较高,揉搓时有声响。
燃烧鉴别:燃烧时火焰上黄下蓝,气味似石油,熔融滴落,燃烧时无黑烟。PET膜(聚脂)感官鉴别:本品为白色透明,手感较硬,揉搓时有声响。外观似PP。
燃烧鉴别:燃烧时有黑烟,火焰有跳火现象,燃烧后材料表面黑色炭化,手指揉搓燃烧后的黑色炭化物,碳化物呈粉末状。
PVC膜(聚氯乙烯)感官鉴别:外观极似EVA但有弹性。
燃烧鉴别:燃烧时冒黑烟,离火即灭,燃烧表面呈黑色,无熔融滴落现象。
尼龙共聚料(LDPE+尼龙):感官鉴别:本品感观与LDPE极为相似。
燃烧鉴别:燃烧火焰上黄下蓝,燃烧时无烟,有石蜡的气味,熔融滴落,易拉丝但与LDPE不同的是然烧时有毛发燃烧的气味,燃烧后呈淡黄色。注意:尼龙共聚料中不可用于再生造粒,要与LDPE严格区分还要严格控制在大件中的含量。PE+PP共聚料感官鉴别:本品与LDPE相比较,透明度远远高于LDPE
,手感与LDPE无差异,撕裂试验极象PP膜,才质为透明纯白色。
燃烧鉴别:本品燃烧时火焰为全黄色,熔融滴落,无黑烟,气味似石油。PP+PET共聚料感官鉴别:外观似PP
,透明度极高,揉搓时声响大于PP。
燃烧鉴别:燃烧时有黑烟,火焰有跳火现象,燃烧表面呈黑色炭化。
PE+PET复合膜感官鉴别:材料表面一面光滑一面不光滑,白色透明。
燃烧鉴别:燃烧时似PET,
1材料比较杂
2材料多次加工降解
3材料中小分子材料的分解。
4有时水份并有的材料起很强的加速降解作用。以上多注意,加工温度不可太高。
大运举例说明,
PET瓶装饮用水的异味问题产生原因浅析
PET
瓶装饮用水的异味问题逐渐引起了消费者的注意,尽管它不会影响卫生与健康,但仍然需要生产制造企业、物流和销售终端企业的足够重视。
PET
瓶装水是由水、PET
瓶和塑料盖组成。水,无色无味,稍有些异味的成分溶解其中,饮用时就会产生不适口味。
PET
瓶,使用食用级的PET
料制造。PET料,学名叫聚对苯二甲酸乙醇酯,无色,常温下无味,大量使用在饮料、食品、食用油领域。
塑料盖,通常使用食用级的HDPE
料制造。学名叫高密度聚乙烯,无色,常温下无味,大量使用在饮料、食品、食用油领域。
那么,水中的异味是哪里来的?经过大量的研究与测试,人们得出结论:水的异味是从包装材料中来的,主要的表现在:
包装材料的自身味道尽管包装材料在常温下无味,但在长时间高于38℃的情况下,包装材料中的小分子物质易于挥发气味,迁移到水中,产生异味。
由高分子组成的PET
料和HDPE料,对温度很敏感,通常,温度越高,气味越大。由于高分子中残留了部分的中低分子的物质,在高温下,它挥发的气味比高分子的更大。避免在高温条件下运输和储存,有效地避免气味的产生。
在紫外线的照射下,部分低分子的物质会被分解,产生异味。
包装材料已经加入了抗紫外线的物质,但在暴晒的条件下,高分子中残留了部分中低分子链端的基团物质,很容易被激活,产生微量的降解物,溶于水中,产生气味,如果在加上高温,异味更加明显。应避免阳光直射,在适合的温度下运输和储存,能有效地避免气味的产生。
瓶盖原料中添加剂的降解
加润滑剂主要是为了改善瓶盖的开启性能,方便消费者饮用;加脱模剂,为了制盖时顺利脱离模具;加色母粒,改变盖子的颜色,使产品外观多样化。
这些添加剂中通常含有不饱和脂肪酰胺,其中的双键C=C结构容易被氧化。如果暴露在紫外线下、高温以及臭氧当中,该双键能够被打开,形成降解的混合物:饱和与非饱和脂肪酸、乙醛,羧基酸和氢氧化物等,它们非常容易融入水中,产生不同的口感和异味。
选择与生产工艺相匹配的添加剂,能够有效避免挥发异味的混合物产生。美国的GRACE公司开发的润滑剂Sincera,能够做到在紫外线、臭氧和高温的情况下不降解。目前已在欧美市场商业化应用。
制盖过程产生的异味残留
制盖的所用物料加入了润滑剂等添加剂。制盖包括了加温和高速机械搅拌等工序。由于加工过程会产生的异味,残留在盖子中,最终会迁移到水中。
制盖,通常有两种工艺:注塑与压塑。
注塑工艺:用注塑机制盖,属于传统的方式。必须使用添加剂,温度在240℃280℃,高温下,物料会产生部分化学变化,产生异味。
压塑工艺:用压塑机制盖,是近几年出现的新技术,可以不用(除色母以外的)添加剂,加工温度控制在160℃—170℃,不会使物料产生化学变化。
减少制盖产生异味的有效方法是物料中尽可能少用添加剂,降低加工温度。很多国际知名企业采用压塑工艺制盖,他们认为这是行之有效的好力法。