制动液有什么要求
制动液的要求:
(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。
(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。
(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。
(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。
(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。
制动液的主要性能
1)良好的粘温性能和低温性能 制动过程中,由于摩擦发热可使蹄片温度高达250°C。其热量有一部分传给制动液,使其工作温度达70~90°C,在下长坡等路况行驶需频繁制动时,其工作温度可达成110°C,大型载货汽车的制动液,有时可高达成150°C,而在冬季某些地区的制动液温度又可低至-40°C以下,因此要求制动液有良好的粘温性能和低温流动性能。适宜的高温粘度、较低的凝点和低温粘度。
2)适当的润滑性 为了保持制动缸和橡皮碗能很好地滑动,要求制动液有适当的润滑性,这可通过台架试验根据活塞和缸的摩擦状态最后判断。
3)保证制动安全可靠不产生气阻 在现代高速汽车中,行驶时经常制动而产生大量的摩擦热,使制动系统温度升高,如使用沸点低、易于蒸发的制动液,则在高温时会由于制动液的蒸发,使局部制动系统的管道内充满蒸气,产生气阻,引起制动失灵。因此新型汽车多要求制动液应具有较高的沸点,较低的蒸发性,以避免减少气阻的产生。
4)较好的防腐蚀性 制动液应对制动器各种金属零部件有较好的防腐蚀性。
5)良好的化学安定性 制动液长期在高湿作用下使用,因此要求制动液不产生热分解和重合,而使油品增粘,也不允许生成油泥沉积物。同时要求互溶性好,当与另一种制动液混合时,不能产生分层或沉淀,影响使用。
6)良好的与橡胶的适应性 在制动系统中有许多橡胶密封件与皮碗等,用以保持制动系统完全密闭,因此制动液应具有良好的与橡胶密封的适应性,防止橡胶密封件与皮碗因液油而膨胀、机械强度降低。
2.制动液的分类
汽车制动液一般分为如下3类:醇型、矿油型、合成型。
1)醇型制动液
醇型制动液的基本组成是蓖麻油45%~55%和醇55%~45(百分数指质量分数)进行调配,产品润滑性好,原料易得,低温粘度大,工艺简单,但低温性能差,平衡回流沸点低,易产生气阻,与水互溶性差,使用过程中易氧化变质,不能保证安全行车。
2)矿油型制动液
矿油制动液是以精制的柴油馏分经深度脱腊后的组分做为基础油,加入增粘剂、抗氧化剂、防锈剂、染色剂等调合而成。这类制动液的温度适应范围宽、低温性能好,对金属无腐蚀作用。但不能与水及合成制动液混溶,进入少量水后在高温下水气化而产生气阻,影响制动效果,对天然橡胶有溶胀作用,必须使用耐油橡胶密封件。
3)合成型制动液
合成型制动液是目前使用最多的制动液,可分为3类:醇醚型、酯型和硅型。
(1)醇醚型制动液 由润滑剂、稀释剂和添加剂组成,常用的润滑剂有乙二醇、聚丙二醇、环氧乙烷加成物、环氧丙烷的聚合物等,常用的衡释剂有二甘醇醚、三甘醇醚,四甘醇醚等。常用的添加剂有抗氧剂、抗腐蚀剂、防锈剂、抗磨剂、PH值调整剂等。产品性能较为稳定,成本较低,用量最大。其缺点是平衡回流沸点不大高,及湿性强,低温性能差,而且在湿热气候条件下使用时,制动器部件易锈蚀。
(2)酯型制动液 其基础液为羧酸酯与硼酸酯,加入量(质量分数)大约为总量的20%~50%,常用的衡释剂为聚乙二醇的单烷基醚等,常用的添加剂有抗氧化剂、抗腐蚀剂、PH值调整剂等。性能比前者有很大改善。
(3)硅型制动液 一般为烷撑聚醚硅酸酯如聚烷撑乙二醇硅酸酯等,并加有橡胶抗溶胀剂和其他添加剂。这类制动液性能较好,但价格昂贵。
现在我们用的一般都是合成型的制动液,具体型号在车辆的使用手册上面,在车的制动液加注口上面或傍边也会有明显的标注。一定要按标注的型号购买和使用,不得随意提高或降低标准,因为涉及到和活塞皮碗的性能匹配问题。刹车油的型号就是以DOT3、DOT4、DOT5、DOT6等等分类的。
汽车制动液是液压制动系统和液压式离合器操纵机构传递能量的工作介质,必须具有多种适应现代汽车的性能要求,以保证行驶安全。
(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。
(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。
(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。
(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。
(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。
当制动防抱死系统(ABS)出现故障时,维修人员往往只注重系统中电控系统、执行元件及有关部件的检修,往往忽略了对系统中制动液的检查和更换。由于ABS的工作速度较快,系统增压、减压、保压工作过程速度很高,使车轮产生10~40次/秒的抱死和滚动转换过程。与普通油压制动过程相比,它制动压力高,制动液温度高,因此对制动液的性能要求更加严格。
1.制动液应具备的性能指标
1.1 沸点要高
ABS使用的制动液,首先应保证在炎热夏季和制动频繁的情况下不降低使用性能和不产生气阻。美国各汽车公司使用的制动液DOT3,最低沸点在205℃以上,而现在使用的DOT4沸点则在260℃以上;日本各汽车公司使用的制动液要求最低也在252℃以上。欧洲的波许公司现在也推荐使用DOT4,要求也在260℃以上。因此ABS使用和更换制动液,应保持其沸点在260℃以上为佳。
1.2腐蚀性要低
因为制动液对橡胶件和金属制品件的腐蚀较大,为保证制动系统制动主缸(总泵)、轮缸(分泵)中的皮碗、油封或垫圈、活塞、制动管路不被腐蚀损坏,应采用腐蚀性较低的制动液。
1.3低温流动性要好
ABS制动性能好坏,制动器反应是否良好是关键。因此,ABS使用的制动液的黏度应该低些,即低温流动性要好,以防止冬季使用被冻结而影响制动器的工作。
1.4 理化稳定性要好
制动液在使用过程中,受到加热、冷却和吸湿性后,应保持其化学性能的稳定,以防变质而影响制动系统的制动效能,所以要求定期更换制动液。
1.5吸湿沸点要高
ABS 工作时,制动液温度易升高,因此应选用吸湿沸点较高的制动液。若选用吸湿沸点低的制动液,制动管路容易发生气阻,造成制动效能不良。
常见ABS所用制动液的规格如表1所列。
2.制动液的选用
因为ABS结构复杂,管路较长,所以应选用DOT3或DOT4的醇基型制动液,注意不要使用DOT5硅酮型制动液。
3.ABS制动液的更换周期
因为制动液具有较强的吸湿性。实验证明,当制动液的吸湿率达到3%时,制动液的理化性能降低,即会恶化和变质(见图1),将使制动总泵、分泵、压力调节器、密封件等受到不同程度损伤,也易产生气阻。所以当制动液吸湿率达到3%时,必须更换制动液,一般换油周期规定如表2所列。
4.ABS中空气的排放
ABS更换油液后,必须进行空气的排放,如果ABS中有空气,会严重干扰制动压力的调节,而使ABS功能丧失。对液压调节器中的空气一般要用专用仪器按照特殊的规程将空气排出,有的需要扫描仪顺序使液压调节器中的电磁阀通电工作以排出空气。
以达科(VI)ABS放气为例:达科(VI)ABS的放气需用ETCH-1或T-100专用设备将液压调节器的电动机定位,以使单项阀顶在开通位置,让空气完全释放,具体步骤如下
a.找到液压调节器上前轮放气螺钉;
b.在前轮放气螺丝上安一泄油管;
c.慢慢地拧松放气螺钉1/2~3/4圈(图2);
d.制动液流出,没有气泡时就可关闭;
e.按a~d的步骤再进行后轮放气螺钉上的排气操作;
f.最后按普通制动系统四轮放气的程序放气,放气顺序是右后轮(RR)→左后轮(LR)→右前轮(RF)→左前轮(LF)。
都是捕食者系列的,死神是由捕食者发展而来的。
两款无人机是一个系列,捕食者的改进型就是MQ-9“死神”(Reaper)。MQ-9于2007年开始装备部队,美军正逐步增购其改进型号。
1.捕食者:美军用于为战区指挥官及合成部队指挥官进行决策提供情报支持的中空长航时无人侦察机。机长8.13米,翼展14.85米,最大活动半径3700公里,最大飞行时速240公里,在目标上空留空时间24小时,最大续航时间60小时。
2.MQ-9“死神”(Reaper):MQ-9“死神”(Reaper)无人机是一种极具杀伤力的新型无人作战飞机,并可以执行情报、监视与侦察(ISR)任务。美国空军在其作战试验刚刚结束后,就决定将其投入实战,并于2007年3月组建了“死神”无人机攻击中队,即内华达州克里奇空军基地第42航空攻击机中队,还成立了专门的“死神”无人机工作组,开始研究战术、训练机组人员和进行实战演练。
DOT最低沸点标准数据
刹车油种类
(醇基)
干沸点
DOT3
205
°C
DOT4
230°C
DOT5.1
~270
°C
湿沸点
DOT3
140
°C
DOT4
155°C
DOT5.1
~190
°C
测试标准注解:
1、干沸点指刚从密封容器中加入刹车系统后的沸点;
2、湿沸点是指经过2年使用后含水3.5%的沸点
建议更换刹车油的条件:
绝对标准:沸点抵于180°C就必须更换——LUCAS提供一个货号为YWB
211的brake
fluid
boiling
point
tester刹车油沸点测试器
一般标准:一般汽车厂家的维修资料都建议2年更换
除非你进行沸点测试,否则很难说绝对的更换时机,比如将车轮没入水中刹车分泵完全在水中浸泡,即使密闭良好的刹车系统,全新的醇基刹车油7天后含水量就会超过3%,35天后含水就高达7%!
所以汽车厂家的更换标准之外,还要看你的使用环境,如果是刹车油才用了1年碰上水淹车,我想为安全起见,都得马上换刹车油
DOT5.1可以显著增加更换周期,一般正常平均更换周期可以到5年左右,由于使用的MTG硼酸酯和DOT4的基本相同,因此可以兼容DOT4,(个人认为叫SUPER
DOT4更合适。和DOT5完全是两种材质,容易混淆),目前主要用于赛车、军用车辆上
塑料百年历史 精彩瞬间面面观(一)
伦敦科学博物馆5月22日开始的纪念合成塑料问世百年的展览取名为“可塑性”。早在1926年3月,美国《塑料》杂志对塑料也这样定义:“一种物质的性质,使它可以形成任何想要的形状,而不像非塑性物质那样需要切凿。”
其实伦敦科学博物馆早在1934年就举办过盛况空前的塑料展,展品中甚至有一个完全用塑料建成,并摆满了塑料用品的房间。
2007年的展览呈现了400件经典塑料制品,既有1938年用酚醛塑料制成的棺材、塑料外壳的Ekco收音机、装饰艺术风格的壁钟、精致的烟盒,也有60年代的聚氯乙烯雨衣和靴子、1968年荷兰建筑师马蒂·祖诺伦设计的太空风格“未来住房”,还有聚亚安酯制成的2006年世界杯足球、极轻的高弹性滑雪服、可生物降解的汽车,以及能制作三维塑料模型的打印机。
科学博物馆馆长苏珊·莫斯曼说:“塑料的故事是过去百年材料世界的核心线索之一。有了塑料,才有消费革命,收音机、电视、计算机、合成纤维、一次性用具才得以大量生产。”
●塑料时代的开始
第一种完全合成的塑料出自美籍比利时人列奥·亨德里克·贝克兰,100年前的1907年7月14日,他注册了酚醛塑料的专利。
贝克兰是鞋匠和女仆的儿子,1863年生于比利时根特。1884年,21岁的贝克兰获得根特大学博士学位,24岁时就成为比利时布鲁日高等师范学院的物理和化学教授。1889年,刚刚娶了大学导师的女儿,贝克兰又获得一笔旅行奖学金,到美国从事化学研究。
在哥伦比亚大学的查尔斯·钱德勒教授鼓励下,贝克兰留在美国,为纽约一家摄影供应商工作。这使他几年后发明了Velox照相纸,这种相纸可以在灯光下而不是必须在阳光下才能显影。1893年,贝克兰辞职创办了Nepera化学公司。
在新产品冲击下,摄影器材商伊士曼·柯达吃不消了。1898年,经过两次谈判,柯达方以75万美元(相当于现在1500万美元)的价格购得Velox照相纸的专利权。不过柯达很快发现配方不灵,贝克兰的回答是:这很正常,发明家在专利文件里都会省略一两步,以防被侵权使用。柯达被告知:他们买的是专利,但不是全部知识。又付了10万美元,柯达方知秘密在一种溶液里。
塑料百年历史 精彩瞬间面面观(二)
--------------------------------------------------------------------------------
掘得第一桶金,贝克兰买下了纽约附近扬克斯的一座俯瞰哈德逊河的豪宅,将一个谷仓改成设备齐全的私人实验室,还与人合作在布鲁克林建起试验工厂。当时刚刚萌芽的电力工业蕴藏着绝缘材料的巨大市场。贝克兰嗅到的第一个诱惑是天然的绝缘材料虫胶价格的飞涨,几个世纪以来,这种材料一直依靠南亚的家庭手工业生产。经过考察,贝克兰把寻找虫胶的替代品作为第一个商业目标。当时,化学家已经开始认识到很多可用作涂料、黏合剂和织物的天然树脂和纤维都是聚合物,即结构重复的大分子,开始寻找能合成聚合物的成分和方法。
早在1872年,德国化学家阿道夫·冯·拜尔就发现:苯酚和甲醛反应后,玻璃管底部有些顽固的残留物。不过拜尔的眼光在合成染料上,而不是绝缘材料上,对他来说,这种黏糊糊的不溶解物质是条死胡同。对贝克兰等人来说,这种东西却是光明的路标。从1904年开始,贝克兰开始研究这种反应。最初得到的是一种液体——苯酚-甲醛虫胶,称为Novolak,但市场并不成功。3年后,他得到一种糊状的黏性物,模压后成为半透明的硬塑料——酚醛塑料。
不同的是,赛璐珞来自化学处理过的绵以及其他含纤维素的植物材料,而酚醛塑料是世界第一种完全合成的塑料。贝克兰将它用自己的名字命名为“贝克莱特”(Bakelite)。他很幸运,英国同行詹姆斯·斯温伯恩爵士只比他晚一天提交专利申请,否则英文里酚醛塑料可能要叫“斯温伯莱特”。1909年2月8日,贝克兰在美国化学协会纽约分会的一次会议上公开了这种塑料。
酚醛塑料绝缘、稳定、耐热、耐腐蚀、不可燃,贝克兰自称为“千用材料”。特别是在迅速发展的汽车、无线电和电力工业中,它被制成插头、插座、收音机和电话外壳、螺旋桨、阀门、齿轮、管道。在家庭中,它出现在台球、把手、按钮、刀柄、桌面、烟斗、保温瓶、电热水瓶、钢笔和人造珠宝上。这是20世纪的炼金术,从煤焦油那样的廉价产物中,得到用途如此广泛的材料。1924年《时代》周刊的一则封面故事称:那些熟悉酚醛塑料潜力的人表示,数年后它将出现在现代文明的每一种机械设备里。1940年5月20日的《时代》周刊则将他称为“塑料之父”。当然,酚醛塑料也有缺点,它受热会变暗,只有深褐、黑或暗绿3种颜色,而且容易摔碎。
1910年,贝克兰创办了通用酚醛塑料公司,在新泽西的工厂开始生产。很快有了竞争对手,特别是Redmanol和Condensite两种牢固的塑料,爱迪生曾试图用它们制成留声机唱片控制市场,但未成功。假冒酚醛塑料的出现还使贝克兰很早就在产品上采用了类似今天“Intel Inside”的真品标签。1926年专利保护到期,大批同类产品涌入市场。经过谈判,贝克兰与对手合并,拥有了一个真正的酚醛塑料帝国。
作为科学家,贝克兰可谓名利双收,他拥有超过100项专利,荣誉职位数不胜数,死后也位居科学和商界两类名人堂。他身上既有科学家少有的商业精明,又有科学家太多的生活迟钝。除了电影和汽车,他最大的爱好是穿着衬衫、短裤流连于游艇“离子号”上。不过据说他只有一套正装,而且总是穿一双旧运动鞋。为了让他换套行头,身为艺术家的妻子在服装店挑了一件125美元的英国蓝斜纹哔叽套装,预付了店主100美元,要他把这套衣服陈列在橱窗里,挂上一个25美元的标签。当晚,贝克兰从妻子口中获悉这等价廉物美的好事,第二天就买了下来。回家路上碰到邻居、律师萨缪尔·昂特迈耶,贝克兰的新衣服立刻被对方以75美元买走,成为他向妻子显示精明的得意事例。
1939年,贝克兰退休时,儿子乔治·华盛顿·贝克兰无意从商,公司以1650万美元(相当于今天2亿美元)出售给联合碳化物公司。1945年,贝克兰死后一年,美国的塑料年产量就超过40万吨,1979年又超过了工业时代的代表——钢。在今年伦敦科学博物馆的展览上,贝克兰的曾孙休·卡拉克一手执一个30年代的尿素甲醛塑料电话,一手展示着一个用生物可降解塑料制成的手机。
塑料百年历史 精彩瞬间面面观(三)
--------------------------------------------------------------------------------
●尼龙丝袜革命
塑料的早期发展是经验主义的,长达60年的时间里,人们并不了解聚合物的形成和结构。直到德国有机化学家霍尔曼·施陶丁格在20世纪20年代提出大分子的概念。就在贝克兰金盆洗手之前不久,塑料历史上的另一个里程碑带着另一种偶然性出现了。1926年,美国杜邦公司的研究主管查尔斯·斯泰恩建议开展一些基础研究。
对斯泰恩而言,化学发现就如同在一次家庭聚会中将所有的陌生人聚拢起来。第二年,公司决定每年为此拨出25万美元经费。1928年,年仅32岁的华莱士·卡罗瑟斯博士受聘为基础化学研究所有机化学部负责人。斯泰恩的要求是:“只探求有关各种物质特质与性能的客观现象,不在乎发现的现象有什么具体用途。”
卡罗瑟斯是伊利诺伊大学有机化学博士,这位性格内向的天才患有急性抑郁症,加入杜邦可以使他逃离受罪一般的哈佛大学讲台,又可以证明正值激烈争论的施陶丁格高分子理论是否正确,因此他将高分子作为有机化学部的主攻方向。
1930年,在用乙二醇和癸二酸缩合制取聚酯的实验中,卡罗瑟斯的同事朱利安·希尔出于一种本能的好奇,将一支玻璃棒放入烧瓶中,轻轻搅拌瓶底的熔化物。当他慢慢提起玻璃棒时,惊奇地发现一个有趣现象:聚酯能像棉花糖那样抽出丝来,即使冷却后也不会变硬或断裂,长度可达原来的几倍,强度和弹性也大大增加。他们预感到,这种特性可以纺制纤维,但前提是必须解决易水解、熔点低、易溶于有机溶剂等缺点。
即使在大萧条中,杜邦的基础研究项目也没有解散,这实在是幸运,但艰难时世也给卡罗瑟斯的实验室带来了更大的压力。他们必须研究出一种适销的超聚合纤维,代替已显过时的嫘萦(即人造丝)。卡罗瑟斯的团队已经提交了约60件专利申请,但正如新任研究主管埃尔默·博尔顿喜欢说的,这其中没有一项让他听到“现金出纳机的叮当声”。其实1931年末,焦虑不安的卡罗瑟斯就给希尔看过挂在表链上的氰化物胶囊。
1935年初,卡罗瑟斯用戊二胺和癸二酸合成出的聚酰胺纤维强度和弹性超过了蚕丝,而且不易吸水,很难溶解,只是熔点较低,原料昂贵。2月28日,卡罗瑟斯又用各含6个碳原子的己二胺和己二酸合成出聚酰胺66,这种聚合物拉制的纤维外观和光泽不亚于天然丝,耐磨性和强度超过当时任何一种纤维,而且原料价格便宜。
1938年7月,杜邦公司首次生产出聚酰胺纤维。同月,以聚酰胺66做刷毛的牙刷投放市场,还取了个不同凡响的名字——“奇迹丛”。10月27日,杜邦公司正式宣布世界第一种合成纤维诞生,命名为尼龙,这个词后来成为聚酰胺类合成纤维的通用商品名称。
从杜邦公司没有明确应用目的的基础研究开始,11年的时间,2200万美元的投资和230名科学家的努力,奠定了合成纤维工业的基础。遗憾的是,卡罗瑟斯没能看到这一成果。1936年4月,刚刚入选国家科学院的卡罗瑟斯被送往医院治疗严重抑郁症。1937年4月29日,这位41岁的化学家在费城一家饭店吞下了氰化钾药丸。他的助手保罗·弗洛里总结了聚酰胺理论,1974年获得诺贝尔化学奖。
1938年10月,美国制造的第一双尼龙丝袜参加了纽约世界博览会。这种丝袜透明、高弹力、轻盈结实、耐穿、易干、摩擦系数低、不受真菌和昆虫侵扰,杜邦公司的广告词称其为“像蛛网一样精细,像钢一样牢固,弹性超过任何普通天然纤维”。次年10月,杜邦公司在总部所在地威明顿的百货商店首次销售尼龙丝袜,要求每人限买3双,还要提供当地住址,为此来自全国的时尚女性必须首先抢订城内的旅馆。1940年5月15日,杜邦在全美首次发售,尽管每人限购1双,500万双还是当天告罄。7个月内尼龙丝袜带来300万美元的利润。买不到的女人很多在裸腿上画纹路冒充丝袜。在一次民意调查中,尼龙丝袜是2/3的女人最想要的东西。
到1940年5月,尼龙纤维织品开始遍及美国各地,工业上尼龙也用做齿轮、轴承和医用缝合线。不过两年后太平洋战争爆发,尼龙立刻从民用市场消失,主要用于生产降落伞、军用帐篷、飞机轮胎帘子布、军服等军工产品。战后最初10年,尼龙产量猛增25倍,到1964年占到合成纤维的一半以上。至今,聚酰胺纤维仍是三大合成纤维之一。
尼龙合成成功,有力地证明了高分子的存在,施陶丁格直到1953年才因1926年的研究获诺贝尔化学奖。高分子化学一旦真正建立起来,人造纤维、玻璃纸、聚氯乙烯和聚乙烯等新材料很快接踵而至。
塑料百年历史 精彩瞬间面面观(四)
--------------------------------------------------------------------------------
●塑料文化
在英语里,塑料同时也是个有感情色彩的形容词,不幸的是往往也是指易变化、不真实和不自然,暗指某种虚伪或欺骗。作为现代生活无处不在的一部分,塑料的用处早已视而不见。相反,作为复杂的化学处理的产物,它被视为不如木材和金属等传统材料真实,难以处理更加恶化了它的形象。
塑料遭受指责的根源在于它总是使奢侈品变成大众消费品。任何产品一旦人人拥有,廉价和普通的感觉也随之而来。19世纪下半叶,穿带赛璐珞领口的廉价套装似乎为英国贫民窟的穷人提供了装扮成中产阶级的机遇,有人评论:“但他最好的套装的工艺看着还是像个打扮入时的工匠,没人会把他认成中产阶级。”时间一长,赛璐珞领会卷曲、发黄,发出异味,仍然活脱脱一个阶级差别的标志。美国作家J.B.普列斯特利在1937年的小说《沙漠午夜》中说:“在一个酚醛塑料的屋子里,盘子倒是打不碎,但心会碎。”1957年英国大众文化学者理查德·霍格特这样描写工薪阶层家庭的变化:“连锁店的现代主义,全是劣质的胶合板喷上着色漆,正在代替桃花心木老家具,多彩的塑料和镀铬饼干桶正悄然潜入。”
实际上,塑料的身份认同危机始终存在,但并非塑料假冒贵族。法国学者罗兰·巴特在1957年的小说《神话》中写道:塑料可以制成桶,也可以制成珠宝。1940年,当纽约世博会出现全套尼龙服装时,一本书也曾这样展望塑料时代:“一个远离虫蛀和生锈,充满色彩的世界,一个主要由合成材料建成的世界,它们主要来自分布普遍的原料。当硝烟散去,开始重建,科学将带着新的力量和资源回到创新使命上来。我们将看到一个明亮、洁净和美丽的新世界。”
1999年3月,《时代》周刊的文章揭开了我们面对塑料的矛盾心理:“他们喜欢便宜而容易清洁的福米卡塑料贴面厨房台面,又羡慕大理石和木材真实的触感。”“每次超市店员问你‘纸袋还是塑料袋’,新和旧、自然还是合成、可生物降解还是不可降解,这些问题就会悄然在每个购物者心中回旋。”英国作家格拉汉姆·斯威福特在1992年的小说《从此》中问道:“一个塑料杯不如一个瓷杯真实吗?尼龙袜不如丝袜真实吗?更重要的是,塑料比一场舞台表演或一首诗更具欺骗性吗?”
还是设计史学家彼得·多默说的好:“如果你日常生活中接触的就是塑料板、仿木材、印花棉布帘子、工业印染的织物、旅馆大堂式的假豪华,你怎么会想象或关心别人所说的好品位——包豪斯的现代主义的自然秩序、德国彼德迈式的装饰、英格兰乔治王时代的古典主义。如果你没有意识到这些,就不要想了,不管怎样,对你现在拥有的感到快乐,就是完美。”
●贵贱塑料
塑料与低级、廉价有关的名声好像由来已久,罗兰·巴特说:“塑料显露最多的是空洞平板的声响,它的噪音就是它的毁灭,它的色彩也一样,它只能保留最平庸无奇的化学外貌。”
塑料是一种人工合成物,因为本身的可热熔性能够注塑成型,也就擅长模仿原先木头、钢铁或者其他什么昂贵材料。1866年,美国人海亚特使用赛璐珞的初衷据说是为了替代几乎让大象毁灭的象牙桌球,当时一颗象牙只能制造5个桌球。当然,塑料的模仿仅仅是出于实用,使用价值淹没了美学价值,所以,它无法赢得高贵的身份。
贝克兰在1907年的酚醛塑料(Bakelite)发明最初是作为20世纪的“炼金术”被用到上千种产品中,他的专利一开始解放了无线电的设计,利用这种胶木或者说电木,英国依柯公司请加拿大建筑师韦尔斯·科特斯(Wells Coates)设计出了经典的圆形Ekco AD65收音机,三个调节开关围绕着扬声器呈圆弧状排列在下方。1931年,又是贝克兰这位可敬的美籍比利时化学家研制出黑色胶木配方,瑞典爱立信公司也在同一年推出了带转盘的黑色胶木电话机,来代替过去的金属机身,并最早形成了规模化、标准化生产。
在低廉的标签之前,塑料曾作为制造人造宝石的材料而享有声望,早期的Art Deco艺术家也曾把它和宝石、铂金或人造水晶一起用在首饰设计上。1956年,德国布劳恩牌(Braun)的超级留声机“白雪公主棺材”是一个用白色塑料和浅色木头做成的长方形箱子,上面盖一个有机玻璃(Perspex)的盖子,当时这种透明合成树脂材料可是“现代工业的宝石”。
60年代以后,飞利浦、索尼、布劳恩这些大公司经常把一些“优良设计”的典范放置在黑色的塑料方盒子之中,外观细节减少到最低限度,在这之前像电视音响等电器一直是沿袭木制家具的风格,这种“无名性”的理性设计从那时起改变了许多家用电器产品的形式,它的影响一直延续到现在。
真正对塑料感到欢天喜地的是欧洲那些波普设计、激进设计或者反设计的设计师们,他们不在乎这种材料被认为是廉价的、平庸的还是没有品位的,塑料家具前所未有的光滑表面、有机造型以及艳丽的色彩才能更好地表达他们的创意。1969年,英国人艾伦·琼斯(Allen Jones)让手足匍匐在地的塑料裸女用背部托起玻璃桌面的茶几,这当然是一个色情迷恋的恶俗设计,但是,像Blow吹气椅子、绿色泡沫塑料仙人掌挂衣架或者一根柔软透明的塑料管子里面放置了许多小灯泡的Boalum灯具,现在已经是意大利设计史上的经典。
很早就把塑料用到家具设计上的是意大利人,从此,所有可能造型的椅子和桌子都能在机器的简单击打下便宜地制作。把廉价的塑料卖出天价的也是意大利人,像Alessi的好多厨房用品都是由塑料制成,带有大量拉伯雷式的幽默,偶尔也带点黄色笑话的成分。
从第一代iMac桌面电脑诞生时起,全世界都对塑料在IT产品设计中的运用有了新的感受,在苹果公司之前,斯沃琪是另外一个廉价的塑料拯救了整个贵重的瑞士钟表工业的故事。现在,我们生活里差不多每一种消费品都要仰仗塑料,至少是某个外壳或者部件。就像手机的“金属”外壳一样,轻飘飘的塑料表面经常要被喷涂成金属、水晶之类的质感,来获得一点关于贵重的视觉幻想。
菲利浦·斯塔克倒是曾把塑料描述成“一种有贵族气质的材料”,他的观点是“塑料是当今唯一真正的生态材料,不可能把一棵树伐倒,再换上你这个傻瓜站立在那里”。如果把塑料应用在耐久性的产品上,循环利用确实可能对生态有利。
塑料百年历史 精彩瞬间面面观(五)
--------------------------------------------------------------------------------
●反塑料,需要理由吗?
一场厌烦塑料的群体情绪,崇尚自然材料的倾向正在从单纯的设计思维向大众消费者转移。
2005年初,有位网名叫ZapWizard的加拿大人,将自己手工改造的红木外壳iPod贴上flickr相册,一夜之间成为快速消费品和设计界办公室内传递的热门连接,很多人惊奇于ZapWizard厌恶iPod流水线身份的态度,更体察到新世纪的消费者对于塑料身份的反感,当时最引人瞩目的论坛标题无疑是《塑料让位木头,复古还是新机会》。至少ZapWizard改装的木头iPod,在抛光打蜡之后,外观效果和使用手感并不输于工程塑料,而塑料易掉漆,金属外壳则磁性干扰,皮革易污,且容易引起动物保护者的心理抵触。在ZapWizard现象的背后,实际上是一场厌烦塑料的群体情绪,崇尚自然材料的倾向正在从单纯的设计思维向大众消费者转移。
20世纪末一份有关塑料袋无法在自然环境降解、造成全球性生态危机的调查报告,直接将塑料制品的公众形象从简便易用,拖入了环保公害行列,聚氯乙烯和聚碳酸酯的成分让所有塑料品种都背负上了坏名声,甚至直接被医生们与诸多疾病挂上了钩。塑料确实让很多物质产品变得廉价,让普通人可以消费得起,与塑料相伴的流水线文化,让每个产品的塑料外观都一个样,即便那些首席营销官们拼命创造个性化理念,用花纹和各种颜色修饰塑料本身,可塑料制品依旧是一个模子刻出来的。全球每年接近1亿吨的塑料制品产量,依旧在以每年10%的速度递增,这不单单直接造成了自然环境的危害,更是让传统时代摆弄木头、瓷器、金属、皮革这些自然材质的手工制造者彻底走向了稀有的工匠之列。
纯粹的设计界早已经对塑料进行过反思,曾经在上世纪80年代复制Quasar Khahn可充气扶手椅的著名设计人孟菲斯感慨道:“塑料也许可以创造出千奇百怪的设计形象,并且可以在流水线上疯狂地批量生产,但却让体验变得廉价,这不是富人与穷人之间的问题,这是塑料产品设计成本的问题。”实际上,在采访全球诸多消费电子巨头的设计中心时,注塑机肯定很随意地被扔在墙角。对于各式各样的设计师们,塑料产品设计更接近造型构思和化学勾兑,精雕细刻变得极为奢侈,磨具决定一切成为工业时代的设计铁律。
而塑料制品的廉价,更在100年间让人们买了太多自己并不需要的东西,仅仅是因为价格便宜,塑料的,用坏了就扔,这种没有节制的消费观念伴随塑料工艺的不断改良而愈演愈烈。AC尼尔森在2002年做过一次有关塑料手表使用率的调查,全球15到25岁的女孩,平均每人拥有2.7块手表,至少有1.2块是斯沃琪,并且73.6%的姑娘平时根本就不戴这块斯沃琪,宁愿让这块平均售价65美元的塑料块躺在抽屉里浪费电池。另一个例子来自于饮料界,可口可乐曾经在上世纪70年代宣称玻璃瓶是最好的包装材料,只有玻璃瓶才能真正保持温度与气泡间的平衡,可90年代铝罐成本狂涨,玻璃瓶回收又让可口可乐难以全球化,于是塑料瓶被抬到了前台,当时《商业周刊》将此列为全球化的100个细节之一。而啤酒业却将此称为与饮料界彻底分道扬镳的标志,当时喜力啤酒的掌门人弗雷迪嘲讽道:“只有玻璃瓶和铝罐才能真正保证饮料中二氧化碳的压力,那些使用塑料瓶的饮料公司都暗地里降低了二氧化碳浓度,这也是为什么没有啤酒厂商会用塑料瓶的原因,造糖水的家伙们只希望孩子们随身带着他们的饮料,拼命地猛喝,随手扔掉瓶子,因为瓶子很不值钱,然后街头自动售货机中再买一瓶。消费者仅仅是糖水商们的提款机,而不是饮用愉快的享受者。”
纯棉:
① 吸湿性:
棉纤维具有较好的吸湿性,在正常的情况下,纤维可向周围的大气中吸收水分,其含水率为8-10%,所以它接触人的皮肤,使人感到柔软而不僵硬。如果棉布湿度增大,周围温度较高,纤维中含的水分量会全部蒸发散去,使织物保持水平衡状态,使人感觉舒适。
② 保温性:
由于棉纤维是热和电的不良导体,热传导系数极低,又因棉纤维本身具有多孔性,弹性高优点,纤维之间能积存大量空气,空气又是热和电的不良导体,所以,纯棉纤维纺织品具有良好的保温性,穿着纯棉织品服装使人感觉到温暖。
③ 耐热性:
纯棉织品耐热能良好,在摄氏110℃以下时,只会引起织物上水分蒸发,不会损伤纤维,所以纯棉织物在常温下,穿着使用,洗涤印染等对织品都无影响,由此对提高了纯棉织品耐洗耐穿服用性能。
④ 耐碱性:
棉纤维对碱的抵抗能力较大,棉纤维在碱溶液中,纤维不发生破坏现象,该性能有利于服用后对污染的洗涤,消毒除杂质,同时也可以对纯棉纺织品进行染色、印花及各种工艺加工,以产生更多棉织新品种。
⑤ 卫生性:
棉纤维是天然纤维,其主要成分是纤维素,含有少量的蜡状物质和含氮物与果胶质。纯棉织物经多方面查验和实践,织品与肌肤接触无任何刺激,无副作用,久穿对人体有益无害,卫生性能良好。
再生纤维的生产是受了蚕吐丝的启发,用纤维素和蛋白质等天然高分子化合物为原料,经化学加工制成高分子浓溶液,再经纺丝和后处理而制得的纺织纤维。
1.再生纤维素纤维 用天然纤维素为原料的再生纤维,由于它的化学组成和天然纤维素相同而物理结构已经改变,所以称再生纤维素纤维。
粘胶纤维是以天然棉短绒、木材为原料制成的,它具有以下几个突出的优点。
(1)手感柔软光泽好,粘胶纤维像棉纤维一样柔软,丝纤维一样光滑。
(2)吸湿性、透气性良好,粘胶纤维的基本化学成份与棉纤维相同,因此,它的一些性能和棉纤维接近,不同的是它的吸湿性与透气性比棉纤维好,可以说它是所有化学纤维中吸湿性与透气性最好的一种。
(3)染色性能好,由于粘胶纤维吸湿性较强,所以粘胶纤维比棉纤维更容易上色,色彩纯正、艳丽,色谱也最齐全。
粘胶纤维最大的缺点是湿牢度差,弹性也较差,织物易折皱且不易恢复;耐酸、耐碱性也不如棉纤维。
2.富强纤维 俗称虎木棉、强力人造棉。它是变性的粘胶纤维。
富强纤维同普通粘胶纤维(即人造棉、人造毛、人造丝)比较起来,有以下几个主要特点:
(1)强度大,也就是说富强纤维织物比粘胶纤维织物结实耐穿。
(2)缩水率小,富强纤维的缩水率是粘胶纤维的一半。
(3)弹性好,用富强纤维制做的衣服比较板整,耐折皱性比粘胶纤维好。
(4)耐碱性好,由于富强纤维的耐碱性比粘胶纤维好,因此富强纤维织物在洗涤中对肥皂等洗涤剂的选择就不像粘胶纤维那样严格。
(二)合成纤维
合成纤维是由合成的高分子化合物制成的,常用的合成纤维有涤纶、锦纶、腈纶、氯纶、维纶、氨纶、聚烯烃弹力丝等
1.涤纶 涤纶的学名叫聚对苯二甲酸乙二酯,简称聚酯纤维。涤纶是中国的商品名称,国外有称“大可纶”,“特利纶”,“帝特纶”等。
涤纶由于原料易得、性能优异、用途广泛、发展非常迅速,产量已居化学纤维的首位。涤纶的最大特点是质量稳定、强度和耐磨性较好,由它制造的面料挺括、不易变形,涤纶的耐热性也是较强的;具有较好的化学稳定性,在正常温度下,都不会与弱酸、弱碱、氧化剂发生作用。
缺点是吸湿性极差,由它纺织的面料穿在身上发闷、不透气。另外,由于纤维表面光滑,纤维之间的抱合力差,经常摩擦之处易起毛、结球。
2.锦纶 锦纶是中国的商品名称,它的学名叫聚酰胺纤维;有锦纶-66,锦纶-1010,锦纶-6等不同品种。锦纶在国外的商品名又称“尼龙”,“耐纶”,“卡普纶”,“阿米纶”等。锦纶是世界上最早的合成纤维品种,由于性能优良,原料资源丰富,因此一度是合成纤维产量最高的品种。直到1970年以后,由于聚酯纤维的迅速发展,才退居合成纤维的第二位。
锦纶的最大特点是强度高、耐磨性好。
锦纶的缺点与涤纶一样,吸湿性和通透性都较差。在干燥环境下,锦纶易产生静电,短纤维织物也易起毛、起球。锦纶的耐热、耐光性都不够好,熨烫承受温度应控制在140℃以下。此外,锦纶的保形性差,用其做成的衣服不如涤纶挺括,易变形。但它可以随身附体,是制做各种体形衫的好材料。
3.腈纶 腈纶是国内的商品名称,其学名为聚丙烯腈纤维。国外又称“奥纶”,“考特尔”,“德拉纶”等。
腈纶的外观呈白色、卷曲、蓬松、手感柔软,酷似羊毛,多用来和羊毛混纺或作为羊毛的代用品,故又被称为“合成羊毛”。腈纶的吸湿性不够好,但润湿性却比羊毛、丝纤维好。它的耐磨性是合成纤维中较差的,腈纶纤维的熨烫承受温度在130℃以下。
4.维纶 维纶的学名为聚乙烯醇缩甲醛纤维。国外又称“维尼纶”,“维纳尔”等。
维纶洁白如雪,柔软似棉,因而常被用作天然棉花的代用品,人称“合成棉花”。维纶的吸湿性能是合成纤维中吸湿性能最好的。另外,维纶的耐磨性、耐光性、耐腐蚀性都较好。
5.氯纶 氯纶的学名为聚氯乙烯纤维。国外有“天美龙”,“罗维尔”之称。
氯纶的优点较多,耐化学腐蚀性强;导热性能比羊毛还差,因此,保温性强;电绝缘性较高,难燃。另外,它还有一个突出的优点,即用它织成的内衣裤可治疗风湿性关节炎或其它伤痛,而对皮肤无刺激性或损伤。
氯纶的缺点也比较突出,即耐热性极差。
6.氨纶 氨纶的学名为聚氨酯弹性纤维,国外又称“莱克拉”,“斯潘齐尔”等。它是一种具有特别的弹性性能的化学纤维,已工业化生产,并成为发展最快的一种弹性纤维。
氨纶弹性优异。而强度比乳胶丝高2~3倍,线密度也更细,并且更耐化学降解。氨纶的耐酸碱性、耐汗、耐海水性、耐干洗性、耐磨性均较好。
氨纶纤维一般不单独使用,而是少量地掺入织物中,如与其它纤维合股或制成包芯纱,用于织制弹力织物。
7. 聚烯烃弹力纤维,聚烯烃弹力纤维是采用热塑性弹性体经熔融纺丝而成的,能耐220℃的高温,具有耐氯漂及强酸强碱处理,具有极强的抗紫外线降解等特性的新型弹力丝。 (1)长丝:化学纤维加工中不切断的纤维。长丝又分为单丝和复丝。
单丝:只有一根丝,透明、均匀、薄。
复丝:几根单丝并合成丝条。
(2)短纤维:化学纤维在纺丝后加工中可以切断成各种长度规格的纤维。
(3)异形纤维:改变喷丝头形状而制得的不同截面或空心的纤维。
①、改变纤维弹性,抱合性与覆盖能力,增加表面积,对光线的反射性增强。
②、特殊光泽。如五叶形、三角形。
③、质轻、保暖、吸湿性好。如中空。
④、减少静电。
⑤、改善起毛、起球性能,提高纤维摩擦系数,改善手感。
(4)复合纤维:将两种或两种以上的聚合体,以熔体或溶液的方式分别输入同一喷丝头,从同一纺丝孔中喷出而形成的纤维。又称为双组分或多组分纤维。复合纤维一般都具有三度空间的立体卷曲,体积高度蓬松,弹性好,抱合好,覆盖能力好。特点是:
①、结构不均匀。
②、组分不均匀。
③、膨胀不均匀。
(5)变形丝:经过变形加工的化纤纱或化纤丝。
①、高弹涤纶丝:利用合纤的热塑性加工,50~300%的伸长率。
②、低弹涤纶丝:伸长率控制在35%以下。
③、腈纶膨体纱;利用腈纶的热弹性。热拉伸——高收缩,收缩可达45~53%,与低收缩纤维混合纺纱,经蒸汽处理。 (1)普通纤维:再生纤维与合成纤维。
(2)特种纤维:耐高温纤维、高强力纤维、高模量纤维、耐辐射纤维。
huɑxue xiɑnwei
化学纤维
chemical fiber
━━━━━━━━━━━━━━━━━━━━━━━━
化学纤维的种类
人造纤维
合成纤维
普通合成纤维
特种纤维
改性纤维
无机纤维
化学纤维的结构
大分子结构
织态结构
序态
结晶形态
侧序分布
取向
表征化学纤维性质的参数
━━━━━━━━━━━━━━━━━━━━━━━━
用天然的或人工合成的高分子物质为原料制成的纤维。常见的纺织品,如粘胶布、 涤纶卡其、 锦纶丝袜、腈纶毛线以及丙纶地毯等,都是用化学纤维制成的。根据原料来源的不同化学纤维可以分为:①人造纤维,以天然高分子物质(如纤维素等)为原料,有粘胶纤维等;②合成纤维,以合成高分子物为原料,有涤纶等;③无机纤维,以无机物为原料,有玻璃纤维等。自从18世纪抽出第一根人工丝以来,化学纤维品种、成纤方法和纺丝工艺技术都有了很大的进展。
化学纤维的种类
人造纤维 中国不仅是饲蚕制丝的发源地,从历史记载看也是人工制造纤维最早的国家(参见中国化学纤维生产史)。人造纤维的主要品种有:①粘胶纤维1848年J.默塞发现棉纤维素被浓碱液浸渍后,化学反应灵敏性增加。此后英国人C.克罗斯和E.贝文用二硫化碳与碱纤维作用获得溶解性纤维素黄酸酯,从而制得粘胶纤维。后来出现了离心罐式绕丝器,使粘胶纤维有了工业化生产的条件。②硝酸酯纤维,又称硝酸人造丝。1855年,英国人将纤维素硝化后溶解成胶液并挤压成丝。1884年,脱硝方法研究成功,硝酸法制造人造丝正式投产。③醋酯纤维,将棉短绒在以冰醋酸为主的试剂中醋化形成纤维素醋酸酯,溶解在三氯甲烷的浆液中经过纺丝获得三醋酯纤维。如将纤维素醋酸酯局部皂化,则获得溶于丙酮的纤维素醋酸酯,纺丝后所得纤维称二醋酯纤维。④铜铵纤维,采用氢氧化四氨铜溶液作溶剂,将棉短绒溶解成浆液纺丝制得的人造丝。丝质精细优美,但成本较高。⑤人造蛋白质纤维,英国人最早研究从动物胶中提取蛋白制造人造蛋白纤维。1935年意大利有人试验从牛乳中提取乳酪素,制成人造羊毛。此后,一些国家相继以大豆蛋白、花生蛋白制取人造纤维获得成功。由于这类纤维的实用性能和制造成本存在问题,产量极少。
自从粘胶纤维工业化生产以来,随着科学技术的发展,人造纤维的产量不断增加、质量不断提高。到了40年代末,各种人造纤维的世界总年产量已超过60万吨其中粘胶纤维占84%。此后,又发展出几种有突出性能的新型粘胶纤维。其中有:
① 高湿模量纤维:结构接近于棉纤维,截面形状接近于羊毛,湿态与干态的强度比达70%,吸水量小碱溶性低。50年代初,日本石川正之改进粘胶纤维制备工艺条件,并将初生的湿丝条进行高倍拉伸,获得高强度的粘胶纤维,取名为“虎木棉”。此后,比利时、瑞士和法国等相继生产,制得一系列高强度、低延伸度和高湿模量的粘胶纤维,统称波里诺西克。这种纤维兼具棉和粘胶纤维的优点。
② 超强粘胶纤维:是一系列具有高强度、高韧性和抗疲劳等性能的粘胶纤维。这种纤维晶粒小、横截面上皮层结构占60%以上,有的甚至达100%。因此,纤维的强度和抗疲劳性能都很高,可用于制造汽车轮胎帘子线。
③ 永久卷曲粘胶纤维:利用粘胶纤维具有皮芯结构的特点,采用适当的工艺条件,使纤维横截面形状不对称和皮层厚度分布不均匀,在横截面上产生不同的内应力,从而使纤维形成卷曲形态。
合成纤维 普通合成纤维 20世纪30年代中期合成纤维开始兴起。聚氯乙烯纤维是最早的合成纤维(见含氯纤维)。以乙炔和盐酸合成氯乙烯,然后经过聚合、纺丝制成纤维。德国最早的产品称配采乌(PCU)。纤维的断裂强度和延伸度近似于棉,干态和湿态的强度几乎相等,耐水,抗腐蚀而且不易霉烂,对各种化学药品的反应很稳定。耐燃烧是聚氯乙烯纤维的一个突出性质,但在75~80℃时易变形。聚氯乙烯纤维可以用作工业滤布、薄膜、包装布、航海服以及游泳衣等。将聚氯乙烯继续氯化,可使含氯量升至64%,这类高氯纤维商品名叫配采(PC),中国称过氯乙烯纤维。其软化点高于纯聚氯乙烯纤维,短纤维适用于制做飞行员和消防员的防火服装。普通合成纤维的品种很多,重要的有:
① 聚酰胺纤维:中国称锦纶,又称尼龙。1939年美国人首先研制成功。由己二酸和己二胺缩水成盐,再经缩聚、熔纺而成纤维。根据单体分子上碳原子的数目,这种纤维称为聚酰胺66。由氨基己酸缩水生成己内酰胺,进一步开环聚合获得的纤维称聚酰胺6。这两种纤维都具有优异的耐磨性,回弹性和耐多次变形性能广泛用于制做袜子、内衣、运动衣、轮胎帘子线、工业带材、渔网、军用织物等。
② 聚丙烯腈纤维:中国称腈纶。50年代初出现以来发展很快。1950年工业化生产的产品为纯聚丙烯腈长丝,因吸湿性差而染色困难,后经改进与烯基衍生物形成2元或3元共聚物,其中90%左右为丙烯腈,染色性能大为改善。腈纶广泛用于制做绒线、针织物和毛毯。腈纶纺织物轻、松、柔软、美观,能长期经受较强紫外线集中照射和烟气污染,是目前最耐气候老化的一种合成纤维织物,适用于作船篷、账篷、船舱和露天堆置物的盖布等。
③ 聚酯纤维:中国称涤纶。1940年由英国人J.温菲尔德和J.迪克逊用对苯二甲酸和乙二醇为原料,在实验室内研制成功,1941年正式生产。涤纶的拉伸性、回弹性和化学稳定性都很好。涤纶织物具有挺刮和易洗快干的优点。涤纶的耐晒强度比锦纶好,能抗微生物和霉烂,耐虫蛀,但吸湿性不及锦纶且染色困难。涤纶采用熔体纺丝,纺丝速度在1300米/分以下。后来有一种高速纺涤纶长丝纺速在3500米/分以上,不仅产量增加,而且由于纤维中大分子部分取向而使结构比较稳定,纤维便于运输和贮藏。
④ 聚烯烃纤维:是50年代发展的纤维,其中重要品种聚乙烯纤维是用石油裂解所得的乙烯副气为原料制成的,中国商品名乙纶。乙纶织物可用作汽车装饰布、家具布、工厂滤布、船篷、绳索和渔网等。等规聚丙烯纤维是聚烯烃纤维中一个出色的品种简称聚丙烯纤维,中国商品名丙纶。意大利人G.纳塔以三乙基铝及四氯化钛溶于四氢化萘中作为催化剂将丙烯进行聚合,使大分子具有立体规整性,由此获得固体高结晶性的聚丙烯,可以制成性能优越的纤维。聚丙烯纤维吸湿率低,不能用常规方法染色常在聚合物里掺入颜料,熔态时捏和纺制成有色纤维。丙纶耐老化性能很差,必须添加防老化剂以改善其耐日光性能。丙纶可用作地毯、大面积的人工草坪、工业用滤布、工作服以及家用织物如蚊帐等,还可与其他纤维混纺制成各种针织物和机织物。
⑤ 聚乙烯醇纤维:中国称维纶。是以醋酸乙烯为原料进行聚合、醇解、纺丝,然后经缩甲醛而制得。维纶性质接近于棉,吸湿性比其他合成纤维高。主要产品为短纤维,用于制做渔网、 滤布、帆布、轮胎帘子线、软管织物、传动带以及工作服等。生产维纶的主要国家有日本、朝鲜和中国。维纶与聚氯乙烯纤维混纺的产品称为维氯纶。
特种纤维 指具有耐腐蚀、耐高温、难燃、高强度、高模量等一些特殊性能的新型合成纤维。特种纤维除作为纺织材料外,广泛用于国防工业、航空航天、交通运输、医疗卫生、海洋水产和通信等部门。主要品种有:
① 耐腐蚀纤维:是用四氟乙烯聚合制成的含氟纤维1954年在美国试制成功,商品名特氟纶(Teflon),中国称氟纶。聚四氟乙烯熔点327℃极难溶解,化学稳定性极好,在王水、酸液和浓碱液中沸煮而不分解,除在高温下经过高度氟化过的试剂外,几乎不溶于任何溶剂。氟纶织物主要用作工业填料和滤布。
② 耐高温纤维:有聚间苯二甲酰间苯二胺纤维、聚酰亚胺纤维等种类,其熔点和软化点高,长期使用温度在200℃以上能保持良好的性能。
③ 高强度高模量纤维:指强度大于10克/旦、模量大于200克/旦的合成纤维。如1968年美国研制的凯夫拉尔,是将聚对苯二甲酰对苯二胺制成液晶溶液,通过干-湿法纺丝制成的纤维,中国称芳纶1414,可用作飞机轮胎帘子线和航天、航空器材的增强材料。以粘胶纤维、腈纶纤维、沥青为原料经高温碳化、石墨化可以得到高强度、高模量碳纤维。用碳纤维制成的复合材料,是制造宇宙飞船、火箭、导弹、飞机的结构材料,在原子能、冶金、化工等工业部门和体育运动器材方面也有广泛的应用。
④ 难燃纤维:如酚醛纤维、PTO纤维等在火焰中难燃,可用作防火耐热帘子布、绝热材料和滤材等。
⑤ 弹性体纤维:断裂伸长率在400%以上,拉伸外力除去后能快速恢复原来长度。弹性纤维的代表品种是聚氨酯纤维,中国称氨纶。弹性纤维是由硬链段和软链段嵌段共聚物制成的。软链段赋予纤维高的伸长率,硬链段不发生形变,阻止分子间的相对滑移,因而赋予纤维较高的回弹性。弹性纤维可制紧身衣、游泳衣、松紧带、袜子罗口、外科手术用袜等。
⑥ 功能纤维:改变纤维形状和结构使其具有某种特殊功能,例如将铜铵纤维或聚丙烯腈纤维制成中空形式,在医疗上可用作人工肾透析血液病毒的材料。聚酰胺66中空纤维用作海水淡化透析器,聚酯中空纤维用作浓缩、纯化和分离各种气体的反渗透器材等。
改性纤维 合成纤维虽然有良好的物理机械性质,但是由于表面光滑,吸水性、染色性差,织物的服用性能不及天然纤维织物。为使合成纤维具有天然纤维特色,50年代开展合成纤维改性研究,主要是用物理方法或化学方法改善合成纤维的吸湿、染色、抗静电、抗燃、抗污、抗起球等性质,同时还增加了化学纤维的品种。
① 化学改性:主要有接枝变性、共聚变性以及将原纤维经过化学处理变性等三种方法。
② 物理改性:主要有通过改变喷丝孔形状纺制的异形纤维;利用合成纤维的热塑性,将伸直的纤维变为卷曲的变形纤维(如膨体纱和弹力丝);将两类性质不同的高聚物流体从同一喷丝孔挤出而制成的复合纤维。
无机纤维 近代工业的发展需要耐高温、高强度、电绝缘、耐腐蚀的特种材料,为此人们试制出一系列无机物纤维,如玻璃纤维、硅酸铝纤维、硼纤维、钛酸钾纤维、陶瓷纤维、石英纤维、硅氧纤维等。玻璃纤维可用作防火焰、防腐蚀、防辐射以及塑料增强材料,也是优良的电绝缘材料。钛酸钾、硅酸铝纤维是1200℃高温下的绝缘材料。
化学纤维的结构
大分子结构 化学纤维大多由分子量很高的高聚物制成,许多分子量不大、化学结构相同或不同的小分子称为单体,经过缩聚或聚合反应串连成线形高聚物,就象一根有许多环节的链条,即为高分子:
A′-A-A……-A-A-A-A……-A-A-A″链中A为单体,A′及A″为末端基团。由A、B两种或A、B、C三种化学组成不同的单体构成的高聚物称作二元或三元共聚物。用二元或三元共聚物制成的纤维又称做二元或三元共聚纤维。高分子的特征是分子量很高,但其分子量W是一系列不同分子量的平均值。大分子中重复单元称为链节,可以由一个或一个以上单体组成。构成分子链的链节的重复数目称聚合度DP。纤维的平均分子量是链节的分子量A与聚合度的乘积,即W=A×DP。
由化学结构不同的高聚物制备的化学纤维,其分子量也不相同。如聚酰胺 6分子量为16000~22000,是由130~180多个己内酰胺单体组成的,DP=130~180。丙纶的分子量为180000~300000,是由4000个以上丙烯单体组成的DP=4000~7000。化学纤维中大分子伸展的平均长度为200~400毫微米。分子量越高,纤维的强度也越高。
制造化学纤维的大分子的一般要求是:线形能伸直,支链尽可能少,没有庞大的侧基,大分子间无化学键具有一定规律的化学结构和空间结构。大分子的化学结构对纤维性能有一定的影响。例如:大分子中含有共轭体系的纤维,其熔点高;含有卤素的纤维难燃;含有亲水基团的纤维吸湿性好。
织态结构 纤维是高分子物质,在空间构型上常是一个方向的长度大于其他两向长度好多倍。集合几个这样的大分子构成一个组织单元,既可能成为晶体,也可能是无定形区。大分子长度可以贯穿一个或数个晶体组织和无定形区。连接多个分子的单元组织的集合体,称做超分子,又名织态结构。纤维的各种性质和特征,既和大分子的化学结构有联系,也在较大程度上和它的超分子结构有关。表征纤维织态结构的因素有多种,重要的有:序态、结晶形态、侧序分布和取向。
序态 纤维中相邻大分子的聚集状态称为序态。这种序态可以由紊乱的无定形态直到三维有序的结晶态,两者在纤维中常同时存在。晶区由许多更小的微晶体构成,微晶体中最小的重复单位为晶胞。晶体的存在和它的特征可以从 X射线的衍射图谱中得到证实和说明。纤维中结晶与无定形的分布形态及其对纤维宏观性质的影响,是一个复杂而且尚不能十分肯定的问题,较有重要影响的学说有:
① 两相结构:它的基本概念是一些大分子的长度可以远超过晶区或无定形区各自的长度,足够把若干个晶区和无定形区串连起来形成网络结构。粘胶人造纤维在溶液中的溶胀行为支持了这种论点,它是属于分散的晶相和连续的无定形相所组成的例子。其他纤维如棉及苎麻等则属于连续晶相和分散的无定形相的两相结构。图1 表示两相结构的两种模型,缨状微胞模型中大分子可以穿过若干晶区和无定形区,而折叠链缨状微胞模型中大分子可以折叠在一个晶区内,也可以穿过无定形区进入另一晶区折叠。连结二个晶区的分子称为缚结分子,它们的数量和形态对纤维的物理机械性质有重要的影响。
② 单相结构:认为实际上有一些纤维的结晶不够规整,不能视作真正的结晶,属于过渡态的蕴晶(准晶),它们与以岛屿形式分散在无定形基质中的两相结构不同,两相不能截然分开,故称单相结构。它们的实际结晶度和密度都低于理想结晶性纤维的结晶度和密度。染料和水的吸附作用都发生在无定形区内。
结晶形态 晶区在整个纤维中的百分含量为结晶度,结晶度的大小与纤维性质有直接关系,对纤维的物理机械和热学性质影响尤大。纤维中结晶有多种不同形态。例如在聚酰胺、聚烯烃纤维的初生纤维中常出现球状晶。这种初生纤维经过拉伸以后,球状晶常被破坏变成其他晶型。纤维中晶型可能是单晶,例如在聚乙烯中以折叠链状组成的单晶型;也可能是由条带状折叠链盘旋成的串晶;还可能是柱状晶。
纤维中的晶区大小并不均衡一致,常呈一定的分布。长度可由数十至一、二百埃,宽度则甚小。检测晶体的X射线衍射谱上的衍射点的宽度直接与晶区的宽度相关。
侧序分布 分子聚集成序垂直于大分子轴向的形状称为侧序。侧序最高的部分是微晶体,最低的部分是无定形。各种纤维的侧序分布都不相同。有些纤维的晶相和无定形相不能截然分离,应看作是由无定形到结晶同时存在的连续相。用这样的侧序分布图谱阐述它们的性质很容易理解。
通常测定侧序分布的方法是将试样置于逐渐增加浓度或温度的溶剂内,依次测定各物理量,如溶胀、溶解、收缩、吸附或吸收等性质的变化。凡侧序较低的部分首先受到溶剂的影响而发生相应的变化。图3 是纤维侧序分布的例子。
取向 以特定方向(如纤维轴向)为基准的纤维大分子作有序的排列状态,称为取向。纤维在成形拉伸过程中所形成的平行于轴向的取向称单轴取向,纤维的性质在平行和垂直于轴向的两个方向呈各向异性,例如偏振光在纤维上的折射率、用直接染料染色的纤维的光吸收率和声波传播速度都呈各向异性。根据光折射原理所测定的平行于纤维轴的折射率与垂直于纤维轴的折射率之差(即双折射),是表示纤维取向度的一个重要指标。薄膜则可以兼有平行和垂直于轴的双取向。
表征化学纤维性质的参数 属于形态方面的有:纤度(见支数)、截面形状、长度、卷曲和折皱、光泽;属于机械性质方面的有:断裂强度和继裂伸长度、弹性模量、耐疲劳性、耐磨性;属于物理方面的有:耐热性、耐光性、导电性、难燃或抗燃性、比重;属于化学方面的有:纤维和水、酸、碱、有机溶剂以及微生物等的作用性能。各种化学纤维分子结构和织态结构不同,反映化学纤维各方面性质的参数也不相同。
按制备方法分
化学纤维又分为两大类:①人造纤维,以天然高分子化合物(如纤维素)为原料制成的化学纤维,如粘胶纤维、醋酯纤维。②合成纤维,以人工合成的高分子化合物为原料制成的化学纤维,如聚酯纤维、聚酰胺纤维、聚丙烯腈纤维。化学纤维具有强度高、耐磨、密度小、弹性好、不发霉、不怕虫蛀、易洗快干等优点,但其缺点是染色性较差、静电大、耐光和耐候性差、吸水性差。 耐磨性、耐热性、吸湿性、透气性较差,遇热容易变形,容易产生静电。