建材秒知道
登录
建材号 > 乙二醇 > 正文

叙述聚乙二醇(PEO)(分子量为2000)的合成工艺路线,反应条件,产物特征

寒冷的宝马
单纯的嚓茶
2022-12-31 03:25:10

叙述聚乙二醇(PEO)(分子量为2000)的合成工艺路线,反应条件,产物特征

最佳答案
刻苦的咖啡豆
悲凉的巨人
2026-02-01 22:40:13

1、将120#汽油加入反应釜中,在搅拌下加入异丙醇铝作催化剂(催化剂量为单体总量的1.01%~1.03%)。用氮气置换会中空气后,加入单体环氧乙烷(溶剂︰环氧乙烷=2︰1,质量比)。在10~20 ℃下反应4 h。然后并逐渐升温至35~40 ℃,再反应3 h。聚合反应结束后。将物料转移到蒸馏釜中,蒸出溶剂,冷却析晶,过滤,得粗产品。真空干燥得成品。

2、由乙二醇缩聚或由环氧乙烷与水加聚而得。

最新回答
俊秀的小猫咪
无奈的戒指
2026-02-01 22:40:13

聚乙二醇(PEG)这个东西很常用的,各行各业都有用,在橡胶里面主要是中和填料酸性,加快硫化速度和交联密度,具有良好的水溶性,并与许多有机物组份有良好的相溶性,具有优良的润滑性、保湿性、分散性、还能做抗静电剂及柔软剂。一般橡胶里面用PEG-4000,如果分子量太低,相容性不好,容易析出,而且是液体,不好添加,分子量太高,单位质量的醇基团少(羟值低),中和酸性效果差点,因为4000的分子量是固体片状,好加工,添加方便,不易析出,中分子量的聚合物,和橡胶相容性好点,所以一般选择PEG-4000。PEG作用可以概括以下几点: 

1.加工助剂,可以提高胶料的压出速度,改善脱模性,并使制品表面光亮,还有助于硫化时水份的排出。在应用于轮胎及橡胶模压制品中时,PEG-4000具有良好的润滑作用,使制品表面更光滑。在天然橡胶、合成橡胶中的生产工艺中,还可作为内脱模剂。优点是不挥发,不生产灰变,脱模后模具保持洁净。而且模压制品表面也由于它的加入而更加平滑洁净。2.硫化活性剂,,起到调节生胶和填充剂(特别是白色)结合性能的作用,另有降低门尼,提高硫化速率的作用,特别对噻唑类促进剂有较好的活化作用,可以提高硫化速度和交联程度。尤其是EPDM白CB补强的挤出微波连续硫化的配方中。与金属粘合的制品最好不用PEG 

3.酸性填料的活性剂,特别是对白炭黑,可以作为白炭黑的处理剂,以活化硫化体系。湿润白炭黑等酸性填料表面。一个反应是中和,一个类似于覆盖。因为酸性填料会吸附,请注意,是吸附促进剂。使用量和酸性填料的酸性表面积用量等等成正比。我们基本上可以理解为酸性表面已经被中和。当然另外的硫化反应也会出现酸性什么的,比如HS等。那些就交给氧化锌去搞定了4.活化分散剂,在使用各种填料和色料的胶料中作为活化分散剂时,能减少或消除填料对硫化的影响,使各种助剂分散均匀并延长焦烧时间,提高橡胶制品的物理机械性能。在各类彩色橡胶制品中,可以使制品色泽鲜艳。由于本身的极性特征,还可以增强对非极性橡胶(如EPDM)对微波的吸收。

迅速的哑铃
典雅的电话
2026-02-01 22:40:13

聚乙二醇400与环氧树脂、酸酐固化剂配合组成的绝缘浸渍胶,已被广泛用于干式变压器制造工艺,但劣质的聚乙二醇可能含有较多的乙二醇单体,造成聚乙二醇分子量分布较宽,严重时甚至导致浸渍胶中酐基/羟基当量比例失衡,会导致电器产品的品质下降。本研究的目的着重在于探索核磁共振、红外光谱、热重分析等试验手段用于快速检测聚乙二醇中残留乙二醇含量的可行性。实验结果表明,磁共振法检测速度快,随着乙二醇含量的增加,其CH2特征峰相对面积呈指数增加,拟合系数为0.988红外光谱法快便捷,随着乙二醇含量的增加,3 363.69cm-1吸收峰相对面积增加,拟合系数为0.993而热重分析法耗时较长,随着乙二醇含量的增加,样品在198℃时的失重率呈线性增长方式,拟合系数为0.997。

幸福的机器猫
标致的百褶裙
2026-02-01 22:40:13
通过测密度或侧熔点都可以区分开:

乙二醇相对密度(水=1)1.1155(20℃);熔点 -13.2℃

1,3-丙二醇相对密度:(20/20℃)1.0381,熔点:-59℃

乙二醇(ethylene glycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG。化学式为(CH2OH)2,是最简单的二元醇。乙二醇是无色无臭、有甜味液体,对动物有毒性,人类致死剂量约为1.6 g/kg。乙二醇能与水、丙酮互溶,但在醚类中溶解度较小。用作溶剂、防冻剂以及合成涤纶的原料。乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,也用于细胞融合;其硝酸酯是一种炸药。

1,3-丙二醇是无色粘稠液体,熔点-59℃,沸点188.2℃,相对密度1.036(25/4℃),折光率1.4293(27℃),闪点107℃,能与水、丙酮、氯仿混溶,溶于醚,易吸潮,略具甜味,在150℃以上易氧化,常温下稳定。丙二醇 的粘性和吸湿性好,并且无毒,因而在食品、医药和化妆品工业中广泛应用。丙二醇和各类香料具有较好的互溶性。

追寻的音响
傲娇的帆布鞋
2026-02-01 22:40:13
可以用根据溶液浓度(与

对应)与

的对应关系而设计的

检测。

有专门的二醇浓度计你可以去市场 看看

用化学方法不怎么好弄

HOCH2CH2OH

与乙醇相似,主要能与无机或

反应生成酯

细心的超短裙
寒冷的项链
2026-02-01 22:40:13

熔融插层法制备的插层复合物尽管插层不很均匀,但具有容易控制聚合物的聚合度(分子量),反应速率快,工业上容易实现等优点,得到了广泛的研究。蒙脱石-聚合物复合纳米材料研究比较多,目前已制备出多种类型复合物,其中有一些种类的纳米塑料已实现工业化生产。而对高岭土-聚合物材料的研究近几年才刚刚开始,对其研究很少。本次工作探讨了熔融法制备高岭土-聚乙二醇20000(Kao-PEG)的最佳反应时间,并首次综合运用X射线衍射、红外光谱、扫描电镜、透射电镜、热分析等对复合物进行表征,细致观察了复合物的形貌,并研究其插层前后的结构变化和热稳定性,加深了对该聚合物复合材料的科学认识,有益于今后对其予以开发应用。

一、实验用主要原料

高岭土:萍乡硬质高岭土,≤200目。无水乙醇:分析纯,含量≥99.7%。二甲基亚砜(DMSO):分析纯,含量≥99.0%。聚乙二醇-20000(PEG-20000):平均分子量19000,分析纯。丙酮:分析纯,含量99.5%。

二、Kao-PEG的制备

高岭土-聚乙二醇的制备分为2个步骤:高岭土-二甲基亚砜(Kao-DMSO)的制备和高岭土-聚乙二醇(Kao-PEG)的制备。

Kao-DMSO的制备:将10g高岭土悬浮于100mLDMSO和9mL蒸馏水的混合液中,将混合物装入三颈瓶内,放置于恒温磁力搅拌仪上,冷凝回流,在一定温度下磁力搅拌反应一定时间后,离心沉降分离;将固体物用无水乙醇洗涤除去复合物外表面多余的DMSO,50℃下烘干8h,得到白色粉末状样品。

Kao-PEG的制备:将0.5g Kao-DMSO与1.5g聚乙二醇(PEG-20000)混合,研磨10min,使混合均匀,置于坩埚内,在烘箱中160℃下熔融反应6h、12h、24h、48h、96h后取出,降至室温,用丙酮漂洗干净,风干后样品备测试用。

三、结果与讨论

1.高岭土-聚乙二醇插层复合物XRD分析

高岭石原样的d001值为0.717nm,用DMSO插层后d001值由0.717nm增至1.124nm,插层率90.17%。经聚乙二醇置换插层制备的Kao-DMSO复合物中,高岭石的d001值由0.717nm膨胀到1.121~1.125nm。因此,可以用插层率和置换插层率来表征插层程度。

不同时间熔融法制备高岭土-聚乙二醇(Kao-PEG)的XRD图谱及插层率见图4-28。可见熔融法的插层速率较快,反应12h插层率即趋向一稳定值80%左右;反应24h插层率达最大值;继续延长插层时间,插层率不是增高,反而有微弱程度的降低。从XRD图上还可以看出,插层时间太短,则反应不完全,如插层6h制备的复合物有分叉的衍射峰(d=1.019nm)存在,说明还处于预插层体复合物分子与插层分子的交换取代阶段。而反应12h以后则没有分叉的衍射峰,可以认为插层12h为最佳反应时间。Kao-PEG的d001峰尖锐且强度高,层间距比高岭土原样仅增加0.4nm左右,而PEG高分子链的横向截面高度也大约为0.30nm[8],表明PEG分子在高岭石层间为高度有序单层排列。

图4-28 高岭土、PEG、Kao-DMSO和不同反应时间Kao-PEGX射线衍射图谱

(a)高岭土;(b)PEG;(c)Kao-DMSO;(d)反应6h;(e)反应12h;(f)反应24h;(g)反应48h;(h)反应96h

因为Kao-PEG的d001值(1.121~1.125nm)同Kao-DMSO的d001值(1.124nm)非常相近,在XRD图谱上难以区分,为证明DMSO分子确实已被PEG置换,对反应物用水进行漂洗。若是Kao-DMSO,水漂洗后脱嵌,复合物的1.124nm恢复至高岭石的0.717nm左右;若为Kao-PEG,水洗后的d001值基本不变。经PEG插层反应48h后制备的Kao-PEG水洗后的XRD图(图4-29b)表明,水洗后的d001值仍为1.124nm,可见DMSO分子已被PEG分子置换。从Kao-PEG插层复合物的XRD图上还可看到,样品中有聚乙二醇的特征衍射峰存在(图4-28),在反应时间较短的复合物中聚乙二醇的衍射峰强度大,残留的包覆在高岭石表面的聚乙二醇较多,这与电镜照片相互佐证。

图4-29 反应48hKao-PEG及水洗后样品的XRD图谱

(a)Kao-PEG;(b)Kao-PEG水洗后样品

2.高岭土-聚乙二醇插层复合物FTIR分析

高岭土、Kao-DMSO、Kao-PEG、PEG等样品高波数区(羟基振动区)的红外光谱见(图4-30)。高岭石羟键特征振动峰为3694cm-1、3667cm-1、3647cm-1、3620cm-1(图4-30a),前3个振动峰归属于高岭石的内表面羟基,一般认为这些羟基的伸展方向与(001)面呈60°~73°夹角;后者归属于内羟基。内羟基位于片层内部远离插层客体分子,因此3620cm-1振动峰一般受插层影响微弱。而内表面羟基位于片层表面容易受到插层的影响,插层前后其振动峰变化较大。

图4-30 高岭石、Kao-DMSO、Kao-PEG、PEG高波数区的红外光谱

(a)高岭石;(b)Kao-DMSO;(c)Kao-PEG;(d)PEG

在Kao-DMSO的红外振动图谱(图4-30b)中,内表面羟基振动峰的位置(3695cm-1、3664cm-1)和强度与高岭土原样相比均有明显变化,强度降低,而内羟基振动峰(3622cm-1)的强度和位置则基本保持不变。另外在3022cm-1、2936cm-1处形成2个CH3振动峰,表明DMSO分子插入到高岭石层间并与内表面羟基形成了氢键。

而Kao-PEG的图谱(图4-30c)与高岭石或Kao-DMSO有着显著的差别,当PEG分子插入高岭石层间后,内表面羟基3694cm-1振动峰与高岭石相比强度明显减弱,与Kao-DMSO则基本类似;缺少3667cm-1、3647cm-1处的振动峰,新增加3652cm-1振动峰;内羟基振动峰(3623cm-1)位置与强度基本不变;归属于DMSO中的CH3振动峰(3022cm-1、2936cm-1)在Kao-PEG中难以辨别其存在,而属于PEG(图4-30d)的CH3振动峰(2888cm-1)则明显存在于Kao-PEG中(2887cm-1)。显然,PEG分子已替代DMSO插入到高岭石层间与内表面羟基形成了氢键。Kao-PEG中的3451cm-1归属于δ(HOH)振动峰。

不同样品的低波数区红外光谱见(图4-31),DMSO分子的S=O振动峰(1043cm-1)与CH3的振动峰(1310cm-1、1433cm-1)在Kao-DMSO中均有相应表现(1036cm-1、1319cm-1、1432cm-1),而在Kao-PEG中难以辨别其踪迹,表明经置换插层后DMSO被PEG完全置换,基本上无残留。这与高波数区红外光谱分析结果一致。Kao-PEG中的1634cm-1也归属于δ(HOH)振动峰,进一步说明Kao-PEG中存在有吸附水或插层水分子。在C—H振动带变化范围(1500~1200cm-1)内,Kao-PEG中有许多振动带与PEG相似,无明显变化,说明有吸附的PEG分子存在;增加的一些新的振动峰为插层PEG分子的振动所引起。

图4-31 高岭石、Kao-DMSO、Kao-PEG、PEG低波数区的红外光谱

(a)高岭石;(b)Kao-DMSO;(c)Kao-PEG;(d)PEG

以上分析表明,PEG通过置换Kao-DMSO中的DMSO而插入高岭石层间,形成Kao-PEG插层纳米复合物,并且吸附有少量的水分子和PEG分子。

3.高岭土-聚乙二醇插层复合物电镜分析

高岭土原样总体上为片状堆积体,板片平直,厚度较大,粉碎后的颗粒呈板状、板柱状、等粒状、似球状等,大小不一(图4-32a)。经二甲基亚砜插层后,形貌变化不太大,高岭石的板片仍清晰可见,但片层端面处的棱角钝化,层厚度减小,有别于高岭土原样(图4-32b)。聚乙二醇原样多为粒径在0.2~1mm的片状块体(图4-32c),片层可扭曲并在层片间形成空洞(图4-32d)。高岭石经聚乙二醇插层后的扫描电镜照片见(图4-32e、4-32f)。由图可见,高岭土-聚乙二醇的形貌与高岭土原样、聚乙二醇原样或高岭土-二甲基亚砜插层复合物(Kao/DMSO)有着本质的差别。用聚乙二醇插层后,高岭石片层被撑开,成径厚比非常大的二维结构,单层厚达到纳米级(50~100nm),层间孔隙增大。由于PEG20000为分子量极大的长链分子,Kao-PEG中高岭石片层的表面被或多或少的聚乙二醇(PEG)分子包覆,颗粒之间相互粘连成为较大的颗粒。当高岭石表面包覆有比较多的PEG分子时,其形貌非常奇特,高岭石片层表面的PEG分子以插层后的薄板状高岭石片层为骨架并将其片层相互连接,因此,以高岭石为骨架形成大小不等形状各异的许多孔洞(图4-32e)。当高岭石表面包覆较少的PEG分子时,Kao-PEG复合物中主要为插层高岭石板片堆积体,高岭石的板片平直,形貌清晰可见,但高岭石仍然被PEG分子连接为大的颗粒(图4-32f)。

经反应96h的高岭土-聚乙二醇复合物的透射电镜照片(图4-33a、4-33b)表明,高岭石在复合物中主要呈极薄的板片状,说明聚合物插层后,有相当一部分高岭石已剥离为层厚在纳米级的薄片。由于复合物的这种结构,显然具有纳米级的薄层和高的比表面积,使得Kao-PEG插层复合物在吸附剂、催化剂载体等方面具有潜在的应用前景。

图4-32 不同样品的扫描电镜照片

(a)kaolinite;(b)Kao-DMSO;(c)(d)PEG;(e)Kao-PEG(12h);(f)Kao-PEG(96h)

图4-33 Kao-PEG(96h)的透射电镜照片

4.高岭土-聚乙二醇插层复合物热稳定性

Kao-PEG的加热过程比较复杂,按热失重曲线特征(图4-34)大约可分为3个阶段:0~170℃为缓慢失重阶段,曲线平缓,失重3%;170~600℃为强烈失重阶段,曲线陡峭下降,失重51%;600~1200℃为微弱失重阶段,曲线近于水平,失重4%左右。

3个阶段有不同的差热特征,第一阶段差热曲线上的68℃吸热峰归属于聚乙二醇的熔化吸热,该阶段的失重为表面吸附物的加热挥发。第二阶段最为复杂,177℃吸热峰归属于聚乙二醇的熔化与挥发;紧接其后180~344℃之间的强放热峰为有机物的燃烧,复合物大量失重伴随着强烈放热,并与400~600℃之间高岭石脱羟基吸热变化过程相重叠,致使曲线复杂化。第三阶段,差热曲线和热失重曲线均表现出缓慢变化,在600~800℃为高岭石少量脱羟基阶段,1005℃为偏高岭石晶相转变的放热反应,放热峰微弱不明显,而且,1060℃以下仍持续有少量失重,这是由于有机物脱嵌时高岭石因脱羟基片层坍塌致使部分有机物陷在片层中间,片层间有机物的存在阻碍偏高岭石转变为莫来石等的反应,导致反应进行较慢,因而随着晶格重排有机物缓慢释放。从以上分析可知,Kao-PEG复合物在低于170℃仅有聚乙二醇的熔化和少量水的挥发,因此,Kao-PEG复合物在低于170℃下稳定。

图4-34 高岭土-聚乙二醇插层复合物的热重-差热分析

俏皮的白开水
默默的飞机
2026-02-01 22:40:13

1、性能不同

DOT4较DOT3的性能更好,主要表现在高温性能上。

2、沸点不同

DOT4平衡回流 沸点为230℃,DOT3的平衡回流沸点为205℃。

3、使用特征不同

使用DOT4制动液的汽车要比使用DOT3制动液的汽车可以更频繁地刹车。

DOT3,一般为醇醚型。醇醚型的化学成份为低聚乙二醇或丙二醇。低聚乙二醇或丙二醇具有较强的亲水性,所以在使用或贮存的过程中其含水量会逐渐增高。

由于刹车油的沸点会随着水份含量的增高而降低,所以其制动性能会随之下降。当你发现需要用力踩刹车才能制动时,一个很可能的原因就是刹车油的水份含量过高。刹车油一般每两年一换。

DOT4,一般为酯型。酯型则是在醇醚型的基础上添加大量的硼酸酯。硼酸酯是由低聚乙二醇或丙二醇通过和硼酸的酯化反应而成。

硼酸酯的沸点比低聚乙二醇或丙二醇更高,所以其制动性能更好。硼酸酯还具有较强的抗湿能力,它能分解所吸收的水份,从而减缓了由于吸水而导致的沸点下降。所以酯型性能比醇醚型更好,价格也更高。

参考资料来源:百度百科-制动液

疯狂的战斗机
跳跃的冷风
2026-02-01 22:40:13

聚酯(PET)纤维是由大分子链中的各链节通过酯基连成成纤聚合物纺制的合成纤维,聚酯英文缩写为PET。我国将聚对苯二甲酸乙二醇酯含量大于85%以上的纤维简称为涤纶,国外的商品名称很多,如美国的达克纶(Dacron)、日本的特托纶(Tetoron)、英国的特恩卡(Terlenka)、前苏联的拉乌珊(Lavsan)等。

优点

1、耐微生物性。涤纶耐微生物作用,不受蛀虫、霉菌等作用,收藏涤纶衣物无需防虫蛀,织物保存较容易

2、 聚酯纤维容易产生静电,用柔顺剂浸泡清洗。

3、尺寸恒定。面料自身材料决定其不具有延展性,不会变形,并持久保持其平整度。

缺点

1、吸湿性较差,穿着有闷热感,同时易带静电、沾污灰尘,影响美观和舒适性。

2、聚酯面料的抗熔性较差,遇着烟灰、火星等易形成孔洞。因此,涤纶面料穿着时应尽量避免烟头、火花等的接触。

扩展资料

聚脂纤维常被人们称作涤纶,常做运动裤常用面料,但涤纶透气不好,容易感觉闷热,不属于高档面料。在全球走的是环保路线的今天,也常用秋冬面料,但不易做内衣。涤纶耐酸。清洗时用中性或酸性洗涤剂,用碱性洗涤剂会使面料老化加速。另外,聚酯纤维材质的面料一般不会要求熨烫,低温蒸汽轻烫就行 。

参考资料来源:百度百科—聚酯纤维面料

百度百科—聚酯纤维

知性的手链
无限的未来
2026-02-01 22:40:13
一元醇的化学式是CnH2n+1OH,二元醇的化学式是CnH2n+2O2,三元醇的化学式是CnH2n+3O3.

一、性质不同

1、一元醇

一般醇为无色液体或固体,含碳原子数低于12的一元正碳醇是液体,12或更多的是固体。一元醇溶于有机溶剂,三个碳以下的醇溶于水。

2、二元醇

所有醇类一样,均可与有机酸或无机酸反应,生成酯。

3、三元醇

难溶于水,易溶于乙醇、甲苯等有机溶剂。可燃。无毒。

二、醇类不同

1、一元醇

一元醇,即在分子内仅含有一个羟基的醇。

2、二元醇

分子中有两个羟基的醇叫二元醇。一般两个羟基不是在同一个碳上。

3、三元醇

聚醚三元醇又称为三羟基聚醚、聚氧化丙烯三醇,俗称甘油聚醚,平均分子量3000~7000。

三、应用不同

1、一元醇

木醇(即甲醇)由干馏木材得到,香茅醇由还原香茅醛得到,橙花醇存在于橙花油中,甘醇(即乙二醇)因具有醇和甘油的特征而得名。

2、二元醇

乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,也用于细胞融合。

3、三元醇

用作环氧树脂胶黏剂的增韧剂。