3d性能,ux性能,cpu性能,ram性能分别是什么?
3d性能:3D性能使用了《孤立》和《花园》两个场景,通过2个不同的3D场景,测试出GPU的游戏性能和极限性能。3D性能是运行游戏的关键,而决定3D性能的主要是集成在芯片中的GPU。3D性能通过测试所得到的分数越高,说明设备的3D性能越好。游戏时画面真实,运行流畅不卡顿。3D游戏如果画面一顿一顿的,或者说画面显得很假,这是3D性能不好的表现。
ux性能:UX即为用户体验,包含数据安全,数据处理,策略游戏,图像处理和I/O性能几项。几乎包括了生活中常用的使用场景,分数同样为越高越好。
CPU性能包括:算数运算,常用算法和多核性能三项,其中单核心性能比重增加。CPU性能得分越高,理论上CPU计算性能越好,表现在实际的使用中为:运行大型的3D游戏流畅不卡顿(良好的CPU性能和良好的GPU性能结合在一起才能达到最好的使用体验)。
RAM性能:RAM性能主要取决于RAM的大小和系统对于RAM的优化。RAM相当于手机的大脑容量,RAM容量越大,手机可以同时运行的程序越多,系统对于RAM的优化越好,使用起来也就更加流畅。相对来讲,RAM容量较小的手机无法同时运行多个程序,也就造成了常见的卡顿甚至闪退。
上述性能事关手机的使用感、性价比等,是评判手机好不好的一种指标。跑分软件通过自己的测量方式将繁琐的性能配置量化,最后得出一个确切的数字,越高越好,谁都看得懂。简单粗暴而且直观,相信这就是跑分软件盛行的原因。
在目前的跑分软件里,我个人最喜欢的还是安兔兔。
安兔兔的跑分测试是多个方面协同合作的结果,新的安兔兔V6.0更加重视3D性能以及手机的单核性能,这是因为在用户的实际使用中,对于GPU的需求较高,并且手机大多数时间只有单核在工作。所以八核甚至十核,二十核这件事情大家还是要理性看待,这或许就是骁龙820重新采用四核的原因吧。
新的安兔兔V6.0针对实际的用户使用场景进行了很多优化,自然在最后得分的体现上也就更加贴近于实际的使用体验。“跑个分”相比以前更有说服力,同时也最大限度的避免了高分低能的问题。
不过我还是劝大家理性看待分数。分数只是个对于硬件配置比较直观的评判,而具体的使用体验还要看手机本身的一些优化。跑分不能代表一切。购买手机的时候也无需过分在意它,明白自己的需求,找到一款适合自己的产品,会比光看跑分高要来的实在得多。
你好!!
说到3D, 就必须先说说游戏引擎, 因为二者是密不可分!
我们可以把游戏的引擎比作赛车的引擎,大家知道,引擎是赛车的心脏,决定着赛车的性能和稳定性,赛车的速度、操纵感这些直接与车手相关的指标都是建立在引擎的基础上的。游戏也是如此,玩家所体验到的剧情、关卡、美工、音乐、操作等内容都是由游戏的引擎直接控制的,它扮演着中场发动机的角色,把游戏中的所有元素捆绑在一起,在后台指挥它们同时、有序地工作。简单地说,引擎就是“用于控制所有游戏功能的主程序,从计算碰撞、物理系统和物体的相对位置,到接受玩家的输入,以及按照正确的音量输出声音等等。”
可见,引擎并不是什么玄乎的东西,无论是2D游戏还是3D游戏,无论是角色扮演游戏、即时策略游戏、冒险解谜游戏或是动作射击游戏,哪怕是一个只有1兆的小游戏,都有这样一段起控制作用的代码。经过不断的进化,如今的游戏引擎已经发展为一套由多个子系统共同构成的复杂系统,从建模、动画到光影、粒子特效,从物理系统、碰撞检测到文件管理、网络特性,还有专业的编辑工具和插件,几乎涵盖了开发过程中的所有重要环节,以下就对引擎的一些关键部件作一个简单的介绍。
首先是光影效果,即场景中的光源对处于其中的人和物的影响方式。游戏的光影效果完全是由引擎控制的,折射、反射等基本的光学原理以及动态光源、彩色光源等高级效果都是通过引擎的不同编程技术实现的。
其次是动画,目前游戏所采用的动画系统可以分为两种:一是骨骼动画系统,一是模型动画系统,前者用内置的骨骼带动物体产生运动,比较常见,后者则是在模型的基础上直接进行变形。引擎把这两种动画系统预先植入游戏,方便动画师为角色设计丰富的动作造型。
引擎的另一重要功能是提供物理系统,这可以使物体的运动遵循固定的规律,例如,当角色跳起的时候,系统内定的重力值将决定他能跳多高,以及他下落的速度有多快,子弹的飞行轨迹、车辆的颠簸方式也都是由物理系统决定的。
碰撞探测是物理系统的核心部分,它可以探测游戏中各物体的物理边缘。当两个3D物体撞在一起的时候,这种技术可以防止它们相互穿过,这就确保了当你撞在墙上的时候,不会穿墙而过,也不会把墙撞倒,因为碰撞探测会根据你和墙之间的特性确定两者的位置和相互的作用关系。
渲染是引擎最重要的功能之一,当3D模型制作完毕之后,美工会按照不同的面把材质贴图赋予模型,这相当于为骨骼蒙上皮肤,最后再通过渲染引擎把模型、动画、光影、特效等所有效果实时计算出来并展示在屏幕上。渲染引擎在引擎的所有部件当中是最复杂的,它的强大与否直接决定着最终的输出质量。
每一款游戏都有自己的引擎,但真正能获得他人认可并成为标准的引擎并不多。纵观九年多的发展历程,我们可以看出引擎最大的驱动力来自于3D游戏,尤其是3D射击游戏。尽管像Infinity这样的2D引擎也有着相当久远的历史,从《博德之门》(Baldur's Gate)系列到《异域镇魂曲》(Planescape:Torment)、《冰风谷》(Icewind Dale)直至今年夏天将要发布的《冰风谷2》,但它的应用范围毕竟局限于“龙与地下城”风格的角色扮演游戏,包括颇受期待的《夜在绝冬城》(Neverwinter Nights)所使用的Aurora引擎,它们都有着十分特殊的使用目的,很难对整个引擎技术的发展起到推动作用,这也是为什么体育模拟游戏、飞行模拟游戏和即时策略游戏的引擎很少进入授权市场的原因,开发者即便使用第三方引擎也很难获得理想的效果,采用《帝国时代2》(Age of Empires)引擎制作的《星球大战:银河战场》(Star Wars:Galactic Battleground)就是一个最好的例子。
在引擎的进化过程中,肯·西尔弗曼于1994年为3D Realms公司开发的Build引擎是一个重要的里程碑,Build引擎的“肉身”就是那款家喻户晓的《毁灭公爵》(
3D游戏引擎设计是一项巨大的软件工程。一个人独立完成设计并撰写也并非不可能,但这不只是熬一两个晚上便能搞定的,你很可能会出写出几兆的源代码量。如果你没有持久的信念与激情,你很可能无法完成它。
那么至于2D, 就很好理解啦,目前80%的游戏都是2D的。
但是并不是说3D游戏就比2D游戏好,不见得!比如最近的英雄传说6空之轨迹,仍然保持2D风格,你能说它不好,不经典?!!答案是否定的!!
2D 图形游戏最显著的特征是所有图形元素是以平面图片的形式制作的,地图无论是拼接的还是整图制作,其地表、建筑都是单张的地图元素构成的。而动画则是以一张一帧的形式预先存在的。这些图形元素最终都会以复杂的联系方式在游戏中进行调用而实现游戏世界中丰富的内容。另一方面是 2D 游戏的显示技术,传统的 2D 游戏很少需要调用显卡加速,大部分的 2D 图形元素都是通过 CPU 进行。因此一款 2D 游戏的图形符合要看 CPU 的负载能力,知道这点很重要,例如现在的二级城市网吧里普遍 CPU 配置高,但显卡配置低,因此即使是 3D 游戏纵横的现在,我们制作一款画面丰富、风格独特的 2D 游戏也是相当有市场的。近两年,有人也对 2D 游戏使用了显卡加速,但显卡技术注定 2D 图形是通过 3D 技术进行加速的,即单张的图形或动画还是以 D3D 计算帖图的形式进行,这样通常可以保证了 2D 图形运行可以达到很高的速度,但是这类技术也不是很全面,瓶颈主要在显存帖图数量的限制和 3D 显卡技术标准不一,导致个别显卡运行不了。像素点阵技术也是较早期的 2D 技术
大型3D游戏介绍:
比较大型经典的有:(中小型的不在介绍之列)
《三角洲特种部队》(Delta Force)
《古墓丽影 III》
《极品飞车3-9》
《波斯王子》(Prince of Persia)
《辐射II》(Fallout II)
《暗黑破坏神 II》(Diablo II)
《雷曼II》(Rayman II)
《文明II》(Civiliazation II)
《半条命》
《异教徒II》
《升刚:机甲师》
《窃贼:黑暗计划》
《彩虹六号防爆组》
《神通鬼大》
《上古卷轴:红衣卫士》
《国王秘史:永恒的面具》
《疗养院惊魂》
《你不认识杰克:搭便车》
《国际象棋大师6000》
《危险!》
《夺宝奇兵II》
《哨兵归来》
《柏德之门》
《辐射II》
《最终幻想VII》
《魔法门:天堂之令》
《重返克郎多》
《欧洲空战》
《猎鹰4.0》
《红色男爵3D》
《大空战》
《二战战斗机》
《独立战争》
《Descent:自由空间- 圣战》
<X-COM:截击机》
《FIFA 99》
《NBA Live 99》
《NFL Blitz》
《在线高尔夫》
《星际争霸》
《战争地带》
《Myth II:神话》
《铁路大亨II》
《战争之锤:恶兆》
等等,不一一列举.
谢谢!!
LOM。这是以涂有热熔粘合剂的纸张层叠、激光切割轮廓来成型的形式;
SLA。利用液体光敏树脂在紫外光照射下能快速固化为固体的方法来成型;
SLS。激光选择性烧结成型(原料可以是塑料粉末、陶瓷粉末、金属粉末等);
FDM,利用塑料丝熔融后逐层打印成型;
3DP。原料是粉末加树脂,可打印彩色。
还有也许其它正在开发中的。。。。。
1、POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。
2、POM具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。
3、POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击特性。
4、POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。对于各种不同的增强型材料有不同的收缩率。
5、POM属结晶性塑料,熔点明显,一旦达到熔点,熔体粘度迅速下降。
用途:
聚甲醛(pom)是一种性能优良的工程塑料,在国外有“夺钢”、“超钢”之称。pom具有类似金属的硬度、强度
pom和钢性,在很宽的温度和湿度范围内都具有很好的自润滑性、良好的耐疲劳性,并富于弹性,此外它还有较好的耐化学品性。pom以低于其他许多工程塑料的成本,正在替代一些传统上被金属所占领的市场,如替代锌、黄铜、铝和钢制作许多部件,自问世以来,pom已经广泛应用于电子电气、机械、仪表、日用轻工、汽车、建材、农业等领域。在很多新领域的应用,如医疗技术、运动器械等方面,pom也表现出较好的增长态势。
这个也不能具体的看分数,因为U不一样,分数就不一样,其实真正衡量显卡的性能的是3D Mark Vantage的X模式,这个显卡性能权重很大,相差1000分显卡都有很大的差别了。
版本有 2000,20001,.....2005,你说的 05就是2005版.
测试完会得出一个得分.这个分数越高表示性能越好.
1简介
Optech系列干涉仪是深圳市天海泰达科技有限公司自主开发的新一代光纤连接器3D干涉测量仪(下图),用于测量光纤连接器的以下参数:
项目:测量范围重复性精度
–曲率半径mm(ROC)1~100±0.05
–顶点偏移um(Apex Offset)0~300±0.5
–光纤高度nm(Fiber Height)±250±5
–APC端面角度(APC Angle)0°/8°(可订制)±0.01
–键度误差(Key Error)N/A±0.01
测试基本条件和要求:
安定环境以及稳定的测试平台
测试人员经过测试培训,能掌握操
供给电源220VAC±10%,接地良好。
本干涉仪特点:
测试速度快,测试时间1.2秒,快速模式下可达到0.6~0.8秒。
可以测量同心度。
具有数据统计功能。
输出报表模版可自定义。
测量数据与企业数据库可实现无缝连接。"
3.1 配套夹具说明2.5夹具底板(图1)、1.25夹具底板(图2)、2.5标准插芯(图3)、1.25标准插芯(图4)
3.2:APC产品标配:
SCAPC限位块(图5)、FCAPC限位块(图6)、LCAPC限位块(图7)。
4网线、数据线、电源线的连接
第一步:连接电脑与干涉仪主机。
电脑与干涉仪靠网线与USB数据线线连接,接口位置如图11所示。
第二步:干涉仪主机接电源,电脑连接电源。
将干涉仪主机背部的电源线接220VAC电源,然后,打开正面控制面板
的开关,红灯亮,机器打开。再将电脑连接220VAC电源,打开电脑。"
5:电脑启动
启动电脑,若在欢迎界面需要输入用户密码,其初始密码一般为“123”,进入系统后,观察操作系统桌面右下角的网络连接状态图标到显示连接OK,用鼠标点到本地连接(红色圈内)网速要为1.0Gbps"
6:干涉仪软件启动与界面介绍
将以上第4、5完成后启动电脑系统桌面上的Optech.exe程序。程序首先进行初始化自检,在完成自检之后,就进入待测状态。如图12所示。
软件界面分为:标题栏、菜单栏、工具栏、第一视窗、第二视窗、第三视窗、第四视窗、第五视窗。其主要功能作用如下:
标题栏显示当前文件标题,一般以日期开头。
菜单栏与工具栏含概保存、打开及各个视窗主要操作功能命令。
第一视窗、第二视窗、第三视窗分别为:第一视窗显示干涉环以及数据,第二视窗显示3D模型,第三视窗为树状功能切换区。
第四视窗、第五视窗根据第三视窗功能的切换显示内容不一。"
双击第一视窗或第二视窗,第一视窗或第二视窗将全屏/正常还原显示。"
双击第三视窗将隐藏/显示第四视窗,扩展/还原第五视窗。双击第四视窗将隐藏/显示第五视窗,扩展/还原第四视窗。"
l拖动分界线可任意改变视窗大小,点击菜单栏“View”选择“保存视窗”,下次打开时显示保存时视窗大小"
l在任意视窗中,按右键显示可操作命令
7:装夹
如图13所示,将被测光纤连接器插入夹具中,旋转锁紧手柄,锁紧插入的光纤连接器。
8:调焦
如图13所示,旋转调焦旋钮,直至干涉环图像清晰。
9:对中
点击工具栏中“校验”命令,如图15所示,旋转X旋钮与Y旋钮,使纤芯(中心深色圆)与软件中对中圆(绿色四瓣圆弧)同心。
10:校验
完成以上7、8、9点步骤,如图16所示,界面切换到校验状态,将标准插芯插入夹具孔中,字符“1”面水平朝上再次点击“校验(F6)”,完成1点校验;将夹具底板松开,旋转插芯“2”朝上,再次点击“校验 (F6)”完成2点校验;依次类推完成8点校验后第一视窗显示一个米字以及一个蓝色十字圆圈,第四视窗显示校验的具体数据以及校验结果,第五视窗显示校验旋钮调整的方向与角度。若第四视窗中显示倾斜度Fail,请按照第五视窗所显示调整“左右校正按钮”,然后再重复以上步骤直至校验合格。注:若只显示共圆度或对称度Fail,毋须调整“左右校正按钮”直接重复以上步骤直至校验合格。
11:
设置标准
如图17所示,第1步先点击第三视窗中“设置标准”,第2步在第五视窗中设置名称,第3步点击新建,第4步在内容区输入所要设定的标准,完成后点击第5步的编辑命令保存。
若需要删除所建立的标准,则在第四视窗中先用鼠标选择要删除的标准,然后再用鼠标点击第五视窗中的删除命令可以将不需要的标准删除,但是注意不能删除当前标准。
新建标准时候可在第2步前先选择一个标准如IEC GR-326-3,然后再进行2、3、4、5步,方便快捷。
若只是修改标准,则在第四视窗选择一个标准,在第五视窗中修改后再点击编辑保存。
12:设置连接器规格
设置连接器规格同设置标准类似,点击第三视窗中“设置连接器规格”,然后在第五视窗中编辑,对 当前的光纤连接器测试的接器规格进行设定。
13:设置连接器名称
如图18所示,第1步先点击第三视窗中“设置连接器名称”,第2步、第3步在规格、标准下拉框中选择需要的规格和标准,第4步在第五视窗中组别栏、连接器栏、客户、备注栏输入所要填写的内容。
按上述步骤之后就可以点击测量键(或按快捷键命令“空格”键和“~”键)进行数据测量了。
连接器的命名由“组别”+“连接器ID.字符”+“连接器ID.数字”组成,可以通过改变右边的下拉框中的选项,使“连接器ID.数字”在完成一次测试之后,自动递增、递减或不变。
1设置连接器名称
如图18所示,第1步先点击第三视窗中“设置连接器名称”,第2步、第3步在规格、标准下拉框中选择需要的规格和标准,第4步在第五视窗中组别栏、连接器栏、客户、备注栏输入所要填写的内容。
按上述步骤之后就可以点击测量键(或按快捷键命令“空格”键和“~”键)进行数据测量了。
连接器的命名由“组别”+“连接器ID.字符”+“连接器ID.数字”组成,可以通过改变右边的下拉框中的选项,使“连接器ID.数字”在完成一次测试之后,自动递增、递减或不变。
14: 测量值筛选与统计
如图19所示,第1步先点击第三视窗中“测量值筛选与统计”,第2步在筛选栏中设置好筛选条件,第3步点击刷新。筛选的数据显示在第四视窗。
注意在第四视窗鼠标右键中有删除、全部删除命令,请慎用,一旦删除数据,将无法恢复 。
l前面测量时在第一视窗中注意勾选保存按钮,保存后的数据方可筛选统计。
15:同心度检测
点击第三视窗中“同心度检测”,把被测插芯插在仪器的夹具底板孔中按测试键,每测一次,将插芯旋转一个角度,依次测试16次以上,在第四视窗中将显示出比较稳定的综合同心度值。"
16:研磨工艺诊断
如图20所示,点击左第三视窗中“研磨工艺诊断”,可以看到一个右图所示的表格,第2步把研磨的工艺参数及辅助材料填写在第五视窗中,然后点击测量键,在第3步可以看到研磨研磨的工艺参数及辅助材料以及被测插芯的粗糙度,3D参数等关联在一起。便于累计数据进行工艺分析,。
解释说明:
【球面度】如小于90%,表示端面没有形成很好的球面,会导致顶偏测试结果的波动,需要继续研磨。
【抛光面积】如小于90%,表示表面抛光不够,要提高抛光质量,减小划痕,清洁表面。
【粗糙度】如果小于5,要降低划痕,提高抛光质量。
【曲率】如果偏大,一般要增加压力,降低胶垫硬度,否则则反,同时注意去胶过程,避免端面磨出倾角。
【顶点偏移】如果过大,观察插芯柱面的洁净,露出夹具高度,夹持孔的松紧,对于9u,一般减小压力。
【纤高】如果偏大,则降低抛光的胶垫硬度(一般为55~60度)
补充说明:
当研磨工艺发生改变,记录与观察球面度等指标的变化趋势,如果是正向,就证明工艺改变的方向正确,否则相反。建议在第1、2道研磨之后,也进行相应的工艺诊断测试,用于判断研磨的中间过程是否合格,避免把缺陷留给最后的研磨工艺。
1测试结果的输出
多种输出方式,以满足对测试数据的多种处理,总体分为:及时显示报表输出模版输出统计输出(Cpk,不良率等)
1.1及时显示:
当前测试结果以多种形式及时显示出来(如图21所示)。
当前测试的3D图形在右上角的视窗实时显示。可以对3D进行如下操作:
--缩放:通过鼠标滚轮的滚动,改变大小。
n --旋转移动:通过鼠标左键的拖动,旋转与俯仰转动3D。
n --剖切:通过鼠标右键菜单的对应菜单,实现3D的剖切。
--测量:可以通过鼠标中间,依次选择起始两点,可以显示一条沿3D表面,连接两点的连线,显示两点之间的投影距离与高度差。
n --展平:将球面展平,直观地显示纤芯高度。
--3D保存:可以将3D数据保存。可以将之前保存的多个3D文档同时打开(如右图所示多视窗比较),方便比较。
n --保存bmp:可以将3D保存为bmp文件
15.2报表输出
打印输出:通过FILE/PRINT菜单,可以输出标准的3D报表
15.3模版输出
在第14点“设置连接器名称”图所示中右键选择“输出到Excel”或“输出到模版”进行保存和打印。
【补充说明】在右键菜单中,选择“打开模版”,可以对模版进行修改,从而达到定制的效果。
15.4统计输出
在第15点“测量值筛选与统计”右图所示中右键选择“输出到Excel”或“输出到模版”进行保存和打印。模版中具有多种统计功能(如图22所示):曲线图、频率图、偏移顶点分布、CpK统计、不良率统计、范围/均值统计.
【补充说明】在右键菜单中,选择“打开模版”,可以对模版进行修改,从而达到定制的效果。
16:PC与APC的切换
PC→APC:松开夹具平台转轴下的锁紧手柄,将蝶型旋钮拧出,轻推夹具座底部,使其向左旋转到底,将蝶型旋钮拧紧到左孔中,然后锁紧锁紧手柄。
APC→PC:松开夹具平台转轴下的锁紧手柄,将蝶型旋钮拧出,轻推夹具座底部,使其向右旋转到底,将蝶型旋钮拧紧到右孔中,然后锁紧锁紧手柄。
第二部分 干涉仪的保养
1. 外部环境注意事项
1.1 干涉仪工作场所干净,无明显震动以及潮湿,禁止干涉仪靠近研磨机以及水源处。
1.2 标准插芯每次使用后必须戴上防尘帽,每隔一个月应用无尘纸粘酒精清洗插芯圆柱面。
1.3 长期不使用时,拔出电源插头,使用薄膜将整机覆盖,防尘防潮。尤其是夹具底板应该拆卸下来,擦拭干净无水分,抹上防锈油或机油用小塑料袋装好放入夹具盒中。
1.4 接地良好,勿靠近强磁高电压设备。
1.5 请勿频繁拔插USB数据线和网络数据线。
1.6 电脑以及干涉仪主机请勿频繁开关机,开关机时间间隔应基本保持在一小时以上。
1.7 干涉仪主机不应长期工作,工作24小时应让其至少关闭一次,每次至少十分钟以上。
1.8 拷贝数据应使用专门的U盘,保证U盘干净无毒,电脑应避免连接外部网络以防止中毒。
1.9 请勿随便卸载电脑上已装软件,请勿随便删除电脑文档,请勿随便安装电脑软件。
1.10 当电脑不可避免的接触到非安全移动硬盘,U盘等其他存储媒介时,请及时运行电脑自带的杀毒软件杀毒,并将电脑连接外部网络升级杀毒软件。
2 夹具平台的保养
2.1 保持硬件平台干净无灰尘,并保证如下图示定位面无脏,杂物等。锁紧螺丝时,发现螺丝有打滑迹象必须马上更换。
2.2 仪器停机许久再用时,如右上图,将夹具平台锁紧手柄松开,用力压住图示位置,使平台发生转动再松开,可使校正时更加灵敏可靠。
3 夹具底板装夹口的保养
定期用棉签等软物清洁夹具底板孔口,不使用时候喷上防锈油防锈。
不用夹具定板时将手柄打开在松开状态,不受力状态下,如上图所示。
4 装夹口松紧的调节
如图所示,用个M5的7字内六角板手调节M5的基米。将M5基米顺时针旋,装夹口的锁紧力就加大,逆时针旋转,装夹口的锁紧力就减小。夹具锁紧力勿过大或过小,一般保持在1.5KG力左右,插芯刚刚不被拔出为佳