乙酸的制备方法
乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。 在氧气充足的情况下,醋杆菌属细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。由这些细菌发酵反应的化学方程式为:
C₂H5OH + O₂ →CH₃COOH + H₂O
具体做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够经过发酵,最后生成醋。工业生产醋的方法通过提供充足的氧气使得反应过程加快,此方法已经被商业化生产采用,也被称为“快速方法”或“德国方法”,因为首次在德国1823年应用成功而因此得名。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从下方自然进入或强制对流。强化的空气量使得此过程能够在几个星期内完成,大大缩短了制醋的时间。
Otto Hromatka和Heinrich Ebner在1949年首次提通过液态的细菌培养基制备醋。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。 部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:
C6H12O6==3 CH3COOH
此外,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。
2 CO2 + 4 H2 →CH3COOH + 2 H2O
2 CO + 2 H2 →CH3COOH
梭菌属因为有能够反应糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用范围较窄。
除了上述生物法外,工业用乙酸多采用如下方法合成: 大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下
CH3OH + CO →CH3COOH
这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要多金属成分的催化剂(第二步中)
⑴ CH₃OH + HI →CH₃I + H₂O
⑵ CH₃I + CO →CH₃COI
⑶ CH₃COI + H₂O →CH₃COOH + HI
通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司就开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此方法的应用一直受到限制。1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产乙酸的工艺。1968年,铑催化剂的大大降低了反应难度。采用铑的羰基化合物和碘化物组成的催化剂体系,使甲醇和一氧化碳在水-乙酸的介质中在175℃和低于3兆帕的压力条件下反应,即可得到乙酸产品。因为催化剂的活性和选择性都比较高,所以反应的副产物很少。甲醇低压羰基化法制乙酸,具有原料价廉,操作条件缓和,乙酸产率高,产品质量好和工艺流程简单等优势,但反应介质有严重的腐蚀性,需要使用耐腐蚀的特殊材质。1970年,美国孟山都公司建造了采用此工艺的装置,因此铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此方法采用钌催化剂,使用([Ir(CO)₂I₂]),它比孟山都法更加绿色也有更高的效率。 在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法,反应方程式如下:
2CH₃CHO+O₂→2CH₃COOH
乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。 采用正丁烷为原料,以乙酸为溶剂,在170℃-180℃,5.5兆帕和乙酸钴催化剂存在下,用空气为氧化剂进行氧化。同时此方法也可采用液化石油气或轻质油为原料。此方法原料成本低,但工艺流程较长,腐蚀严重,乙酸收率不高,仅限于廉价异丁烷或液化石油气原料来源易得的地区采用。
2 C₄H₁₀ + 5 O₂ →4 CH₃COOH + 2 H₂O
此反应可以在能使丁烷保持液态的最高温度和压力下进行,副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。
在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:
2 CH₃CHO + O₂ →2 CH₃COOH
也能被 氢氧化铜悬浊液氧化:
2Cu(OH)₂+CH₃CHO→CH₃COOH+Cu₂O↓+2H₂O
使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。 塞拉尼斯公司也是世界上最大的醋酸生产商之一。1978年,赫斯特-塞拉尼斯公司(现塞拉尼斯公司)在美国得州克莱尔湖工业化投运了孟山都法醋酸装置。1980年,塞拉尼斯公司推出AOPlus法(酸优化法)技术专利,大大改进了孟山都工艺。
AOPlus工艺通过加入高浓度无机碘(主要是碘化锂)以提高铑催化剂的稳定性,加入碘化锂和碘甲烷后,反应器中水浓度降低至4%~5%,但羰基化反应速率仍保持很高水平,从而极大地降低了装置的分离费用。催化剂组成的改变使反应器在低水浓度(4%~5%)下运行,提高了羰基化反应产率和分离提纯能力。 乙酸是大宗化工产品,是最重要的有机酸之一。主要可用于生产乙酸乙烯、乙酐、乙酸酯和乙酸纤维素等。聚乙酸乙烯酯可用来制备薄膜和粘合剂,也是合成纤维维纶的原料。乙酸纤维苏可制造人造丝和电影胶片。乙酸酯是优良的溶剂,广泛用于尤其工业。乙酸还可用来合成乙酐、丙二酸二乙酯、乙酰乙酸乙酯、卤代乙酸等,也可制造药物如阿司匹林、还可以用于生产乙酸盐等。在农药、医药和染料、照相药品制造、织物印染和橡胶工业中都有广泛应用。
在食品工业中,乙酸用作酸化剂,增香剂和香料。制造食醋时,用水将乙酸稀释至4~5%浓度,添加各种调味剂而得食用醋。作为酸味剂,使用时适当稀释,可用于调饮料、罐头等,如制作蕃茄、芦笋、婴儿食品、沙丁鱼、鱿鱼等罐头,可制作软饮料,冷饮、糖果、焙烤食品、布丁类、胶媒糖、调味品等。
乙酸具有防腐剂的作用。1.5%就有明显的抑菌作作用。在3%范围以内,可避免霉斑引起的肉色变绿变黑。
你问实验室方法还是工业方法,我只知道实验室方法,加入过量的乙酸或乙醇,浓硫酸得混合均匀避免局部浓度过高,控制好温度,别让催化剂浓硫酸把反应物碳化,还可以用分离柱分出产品水使平衡正向移动.中学课本会说用浓硫酸,既催化,又吸水,但是实际实验不会用那么多浓硫酸吸水,太多的浓硫酸只会让反应物和产品在加热时碳化.
制备方法
自从1933年Swarts以三氟醋酸酐为原料,经催化还原法制得三氯乙醇以来,相继开发出一系列合成方法。根据反应类型可以分为氧化法、还原法和水解法3种。根据原料可分为三氟醋酸法、三氟乙酰氯法、三氟醋酐法、三氟醋酸酯法、三氟乙醛法、偏氟乙烯法、三氟乙烷(HFC-143a)法以及三氟氯乙烷(HCFC-133a)法等。
(1)三氟乙酰氯法
以三氟乙酰氯为原料,经催化加氢还原反应得到三氟乙醇。催化剂的选择是合成的关键。若以氢化铝锂为催化剂,则因所用催化剂价格昂贵,操作困难以及无法再生回用等缺点,只适合于实验室制备。钯、铂以及钌是比较合适的催化剂,这些催化剂可用比较简单的方法进行再生活化,即使不活化,其寿命也可以达到24小时以上。钯是最理想的催化剂,为改善催化剂的耐热性,催化剂钯最好载于铝或其他惰性载体如硅胶、膨润土上。以钯/铝为催化剂,用氧气来还原三氟乙酰氯制备三氟乙醇的方法,具有设备简单,原料转化率高以及产品收率好等特点,具有工业化生产价值,不足之处是原料三氯乙酰氯与副产品氯化氢分离比较困难。合成可分为气相和液相两种方法。气相反应可以在常压或加压下进行,由于三氟乙酰氯的沸点较低,因而液相反应必须在加压情况下进行。在连续气相反应过程中,由于三氟乙酰氯和氢的反应可在瞬间完成,因而原料与催化剂的接触时间很短,一般情况下只有5~10秒,如在高温高压条件下,接触时间则更短,这有利于提高生能力。一般情况下,三氟乙醇的收率可达到75%~95%。
(2)三氟醋酐法
由三氯醋酐液相加氢还原生产三氟乙醇是国内外采用生产三氟乙醇的最早方法。但三氟醋酐容易发生深度还原,生成半缩醛、酯、酸,甚至生成烃类化合物。在反应温度20~40℃,压力4.5~5.0MPa下,以铂为催化剂进行液相氢化还原反应,生成的主要产物为三氟乙酸、三氟乙酯、三氟乙醇和三氟乙烷。以铂或镍为催化剂,三氟醋酐的气相氢化还原,其主要产物为三氟乙醇。采用铑/活性炭或铑/铝为催化剂,反应温度为50~150℃,反应压力0.5~1.5MPa下进行液相氢化还原,三氟乙醇的收率可以达到75%。该法技术简单,操作方便,但易产生大量的副产品。
(3)三氟醋酸法
在催化剂作用下,1分子的三氟醋酸与2分子的氢反应,可生成1分子的三氟乙醇。反应可以在气相中也可以在液相中进行。在气相氢化反应中,以铬或铜基化合物为催化剂,三氯乙醇的收率只有37%;以铑或铱基化合物为催化剂,三氟乙醇的收率更小,仅有1.4%。因为气相反应的反应温度高,产品收率低等原因,工业上一般采用液相法进行生产。液相法可采用间歇或连续方式进行,间歇法是以铑、铷、铱等为催化剂,在0.5~5MPa、70~150℃下进行,三氟醋酸的转化率和三氟乙醇的收率均很高,但由于三氟醋酸的深度还原,有一定量的副产物如三氯乙烷、乙烷和甲烷生成。连续液相法具有反应能力大,操作简单,原料转化率和产品收率好的特点,被应用于工业化生产中。
(4)三氟醋酸酯法
以三氟醋酸酯为原料,在金属氧化物催化剂如氧化铜、氧化锌、氧化铁、氧化铬、氧化镁、氧化钙、氧化铝、氧化硅或这些金属氧化物的混合物作用下反应可以制得到三氯乙醇。该法具有反应条件温和、催化剂价格低、寿命长、容易再生、催化效率高、原料转化率及产品选择性好等优点,不足之处是产品三氟乙醇与生成的水易形成共沸物,分离有一定的难度。
(5)三氟乙醛法
在催化剂钯/碳、共催化剂脂肪类叔胺的存在下,三氟乙醛的衍生物如水合物和/或半缩醛在液相中进行催化氢化反应,可以定量地制备三氟乙醇。较好的反应温度为90~100℃,压力3.5~4.5MPa。
(6)偏氟乙烯法
在催化剂存在下,偏氟乙烯可被氧化生成三氟乙醇。所用的催化剂可以是元素周期表中的Ib、IIb。IVb、Vb、VIb、Vllb、Vlllb物质或其衍生物,为提高催化剂性能,催化剂最好载于载体上,合适的载体为元素周期中IIa、Illa、IVa的金属。所用的氧化剂可以是臭氧、原子氧或分子氧。该法可以连续操作,适应于大规模生产,但原料的转化率以及产品的选择性均不理想。另外原料偏氟乙烯来源较为困难,且容易发生聚合反应,生成的结焦物会降低催化剂的活性,再者偏氟乙烯与氧化剂会形成爆炸极限,在操作上不安全。
(7)三氟乙烷(HFC-143a)法
在引发剂存在下,三氟乙烷(HFC-143a)可以被氧化生成三氟乙醇,氧化剂可以是空气、氧气或氧气与氮气的混合物,引发剂是氟气。为减少反应热,氟气最好用载气如空气、氮气或氮气进行稀释。该法无须催化剂,反应条件温和,反应可以在气相中连续进行,存在的主要问题是引发剂氟气价格高,而且转化率和选择性不是很理想。
(8)三氟氯乙烷(HCFC-133a)法
三氟氯乙烷(HCFC-133a)与羧酸的碱金属盐如醋酸钾,在溶剂DSMO、DMF、环丁枫、N-甲基吡咯烷酮存在下,进行酯化反应生成三氟乙醇的羧酸酯,再在碱性水中水解得到三氟乙醇。所用溶剂的极性要比二乙醚大,溶剂最好无水,否则其中的水分会使副产物增加,同时减慢了反应速率。该法具有反应时间短,转化率和产率高以及催化剂用量少,价格低的特点,加上水溶液处理后可循环使用,无“三废”问题,发展前景较为乐观。我国浙江省化工研究院等科研单位已经研制开发出该生产方法。
乙酸(acetic acid)分子中含有两个碳原子的饱和羧酸,是烃的重要含氧衍生物。分子式C2H4O2,结构简式CH3COOH,官能团为羧基,因是醋的主要成分,又称醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在 普通食醋中含有3%~5%的乙酸。乙酸是无色液体 ,有强烈刺激性气味。熔点16 .6℃,沸点117 .9℃, 相对密度1.0492(20/4℃)密度比水大,折光率1.3716。纯乙酸在16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。易溶于水、乙醇、乙醚和四氯化碳。当水加到乙酸中,混合后的总体积变小,密度增加,直至分子比为1∶1 ,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,体积不再变化。 分子量:60.05
冰醋酸
冰醋酸 纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.6 °C (62 °F) ,凝固后为无色晶体。尽管根据乙酸在水溶液中的离解能力它是一个弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,是一个重要的化学试剂。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。
乙酸乙酯,是无色透明液体,浓度较高时有刺激性气味,易挥发,对空气敏感,能吸水分,水分能使其缓慢分解而呈酸性反应。能与氯仿、乙醇、丙酮和乙醚混溶,溶于水(10%ml/ml)。能溶解某些金属盐类(如氯化锂、氯化钴、氯化锌、氯化铁等)。相对密度0.902。熔点-83℃。沸点77℃。折光率1.3719。闪点7.2℃(开杯)。易燃。蒸气能与空气形成爆炸性混合物。半数致死量(大鼠,经口)11.3ml/kg。有刺激性。
kt/a生产装置。
(1)乙酸酯化法
乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。
CH3CH2OH+CH3COOH=CH3COOCH2CH3+H2O
乙醇
乙酸
乙酸乙酯
水
反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。
(2)
乙醛缩合法
在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。
2CH3CHO→CH3COOCH2CH3
乙醛
乙酸乙酯
该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。
(3)乙醇脱氢法
采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。
2C2H5OH→CH3COOCH2CH3+H2
乙醇
乙酸乙酯
氢
(4)
乙烯加成法
在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。
CH2CH2+CH3COOH=CH3COOCH2CH3
乙烯
乙酸
乙酸乙酯
该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。Rhone-Poulenc
、昭和电工和BP等跨国公司都开发了该生产工艺。