建材秒知道
登录
建材号 > cas号 > 正文

表面活性剂CAS号对应表

粗犷的香菇
威武的灯泡
2022-12-31 01:13:47

表面活性剂CAS号对应表

最佳答案
能干的耳机
成就的大山
2026-02-03 22:42:58

表面活性剂常用英文缩略词

A

a-SAA0阴离子表面活性剂

AACG烷基两性羧基甘氨酸盐

AACP烷基两性丙氨酸盐

AAG 烷基两性甘氨酸盐

AAOA烷基酰胺丙基氧化胺

AAP 烷基丙氨酸盐

AAPB烷基酰胺丙基甜菜碱

AASB烷基酰胺丙磺基甜菜碱

ARS 支链烷基苯磺酸盐

AEO(n) 脂肪醇聚氧乙烯醚(n)

AEC 醇醚羧酸盐

AS00 烷基硫酸盐

AESS0 脂肪醇聚氧乙烯醚琥珀酸酯磺酸钠

AE 脂肪醇聚氧乙烯醚0

AES00 脂肪醇聚氧乙烯醚硫酸盐

ABS00 硬性苯磺酸盐

AOS00 烯基磺酸盐

AG 烷基甘氨酸盐

AGS 烷基甘油醚磺酸盐

APG 非离子烷基糖苷

AIDA烷基亚氨基二乙酸盐

AIDP烷基亚氨基二丙酸盐

Ale(2)S 月桂醇醚(2)硫酸铵盐

ALs 月桂醇硫酸酯铵盐

Am/DIFAG乙酸甘油单、二酸酯

AMT 长链酰基-N-甲基牛磺酸钠(1gepon T)

AOS a -烯烃磺酸盐

APAC长链烷基低聚氨基酸,烷基聚胺羧酸盐

APG 烷基低聚糖苷

APES烷基酚聚氧乙烯醚硫酸盐

C

CAPG 阳离子烷基糖苷

CHSB 十六烷基羟基磺丙基甜菜碱

CAPB 椰油酰胺丙基甜菜碱0

CAB 椰油酰胺甜菜碱

CAMA 椰油基咪唑啉甜菜碱0

CAPO 椰油酰胺丙基氧化胺

CoACG椰油基两性羧基甘氨酸盐

c-SAA0 阳离子表面活性剂

CCACP椰油基两性羧基丙氨酸盐

CoAG 椰油基两性甘氨酸盐

CoAHSB 椰油酰胺丙基羟基磺基甜菜碱

CoAPN-椰油基-β-丙氨酸盐

CoAPB 椰油酰胺丙基甜菜碱

CoASB 椰油酰胺磺丙基甜菜碱

CoB 椰油基甜菜碱

CoDEA 椰油基二乙醇酰胺

CoIDP 椰油亚氨基二丙酸盐

CCMEA 椰油单乙醇酰胺

CoMT椰油酰基-N-甲基牛磺酸钠

CoNnAa 椰油基低聚丙基甘氨酸

CoSB椰油基磺丙基甜菜碱

CM/DFAG 柠檬酸甘油单、二酸酯

CPC 十六烷基氯化吡啶

CSB十六烷基磺基甜菜碱

CAPG 阳离子烷基糖苷

CMEA椰油酸单乙醇酰胺

CAPB 椰油酰胺丙基甜菜碱0

CAB 椰油酰胺甜菜碱

CAMA 椰油基咪唑啉甜菜碱

CTAB十六烷基三甲基溴化铵

CTAC十六烷基三甲基氯化铵

D

DAC5十二烷基两性羧基甘氨酸盐

DAES十二胺乙基磺酸钠

DAP N-十二烷基-β-丙氨酸盐

DAPB十二酰胺丙基甜菜碱

DAPSB 十二酰胺丙基磺基甜菜碱

DB 十二烷基甜菜碱

DDBAC 十二烷基二甲基苄基氯化铵

DDEAC 双十烷基双甲基氯化铵

DDG 十二烷基二(氨乙基)甘氨酸

DEACG 癸基两性羧基甘氨酸盐

DEAP N-十烷基-β-丙氨酸盐

DEB 十烷基甜菜碱

DEEO(n) 十烷基聚氧乙烯醚(n)

DEO(n) 十二醇聚氧乙烯醚(n)

DETAC 十烷基三甲基氯化铵

DG 十二烷基甘氨酸

DHSB十二烷基羟基磺丙基甜菜碱

DIC 十二烷基咪唑啉阳离子

DIDP十二烷基亚氨基二丙酸盐

DMBB十二烷基甲基苄基甜菜碱

DMG 十二烷基氨乙基甘氨酸

DMT 十二酰基-N-甲基牛磺酸钠

DOA 十二烷基二甲基氧化胺

DPB十二烷基二甲基丙基甜菜碱

DSAC 双硬脂基双甲基氯化铵

DSB十二烷基磺丙基甜菜碱

DTAC十二烷基三甲基氯化铵

E

ECH烷基醚醋酸盐

EFA脂肪酸聚氧乙烯酯

EGDS乙二醇双硬脂酸酯

EHRA氢化蓖麻油酸聚氧乙烯酯

F

FMEE 脂肪酸甲酯乙氧基化合物

FMEA 脂肪酸单乙醇酰胺

H

HEDTA 羟乙基乙二胺三乙酸盐

HEED羟乙基乙二胺

HSB羟基磺基甜菜碱

HTB氢化牛脂基甜菜碱

I

Igepon A 椰油酰基乙基磺酸钠

ISAAP异硬脂酸两性丙氨酸

K

K12 脂肪醇硫酸盐(钠)

L

LDEA 月桂基二乙醇酰胺

LAPB 月桂酰胺丙基甜菜碱

LAPO 月桂酰胺丙基氧化胺

LACG月桂基两性羧基甘氨酸盐

LAG月桂基两性甘氨酸盐

LAP月桂基氨基丙酸盐

LAS00直链烷基苯磺酸盐(软性苯磺酸盐)

LAPB月桂酰胺丙基甜菜碱

LB 月桂基甜菜碱

LDBC月桂基二甲基苄基氯化铵

LDEA月桂酸二乙醇酰胺

LDEA 月桂基二乙醇酰胺

LAPB 月桂酰胺丙基甜菜碱

LAPO 月桂酰胺丙基氧化胺

LEO 月桂醇聚氧乙烯醚

LIDA月桂基亚氨二乙酸盐

LIDPN-月桂基-β-亚氨基二丙酸盐

L/MAP N-月桂基/肉豆蔻基-β-丙氨酸盐

L/MB 月桂基/肉豆蔻基甜菜碱

DFAG乳酸甘油单、二酸酯

LMIPA 月桂基单异丙醇酰胺

LQA月桂基氧化胺

LPC月桂基氯化吡啶

LTAC月桂基三甲基氯化铵

M

M/DFAG 甘油单、二脂肪酸酯

MES α-磺基脂肪酸甲酯钠盐

MES00 脂肪酸甲酯磺酸盐0

MAP 单烷基磷酸酯0

MgLES 月桂醇醚硫酸酪镁盐

MgLs月桂醇硫酸镁

MLS 月桂醇硫酸酯单乙醇胺盐

N

n-SAA0 非离子表面活性剂

NPO壬基酚聚氧乙烯醚

O

OACG油酸基两性羧基甘氨酸盐

OAG 单羧基化辛基咪唑啉钠盐

OAP 辛胺丙酸盐

oAPS油酰基两性丙基磺酸盐

0B 油酸基甜菜碱

OCACG 辛基两性羧基甘氨酸盐

ODBAC 十八烷基二甲基苄基氯化铵

ODEA油酸二乙醇酰胺

OIDP辛基亚氨基二丙酸钠

ONnAa 油酸基低聚丙基甘氨酸

OPES辛基酚醚硫酸盐

OSB 辛基磺基甜菜碱

P

PAS 烷基磺酸盐

PC 卵磷脂

PDEA棕榈油酸二乙醇酰胺

PEG 聚乙二醇

PEG(3)DS三乙二醇双硬脂酸酯

PFA 丙二醇脂肪酸酯

R

RAPB 蓖麻油酰胺丙基甜菜碱

RNnAa 烷基低聚氨基酸

S

SAS00仲烷基硫酸盐

SAG酰基谷氨酸钠

SAA00表面活性剂

SAS仲烷基磺酸盐

SDEE(3)S十烷基醇醚(3)硫酸钠

SDES十烷基硫酸钠

SDS 十二烷基硫酸酯钠盐

SE (蔗)糖酯

SLAS 直链烷基苯磺酸钠

SLE(n)S 十二烷基醚(n)硫酸钠

SLS 月桂醇硫酸钠

SLS-2月桂醇-2-硫酸钠

SL/TE(3)S十二/十四醇醚(3)硫酸酯钠盐

Span缩水山梨醇脂肪酸酯

STAC硬脂基三甲基氯化铵

T

TB 十四烷基甜菜碱

TDBAC 十四烷基二甲基苄基氯化铵

TDHEB 牛脂基双羟乙基甜菜碱

THSB 十四烷基羟基磺基甜菜碱

TIDP N-牛脂基-β-亚氨基二丙酸盐

TLE(2)S 月桂醇醚(2)硫酸酯三乙醇胺盐

TLS月桂醇硫酸酯仪二醇胺盐

TNnAa 牛脂基低聚丙基甘氨酸

TOA十四烷基氧化胺

TSB十四烷基磺基甜菜碱

TTAC十四烷基三甲基氯化铵

Tween聚氧乙烯化缩水山梨醇脂肪酸酯

TX-10壬基酚聚氧乙烯醚(10)

6501 椰油酸二乙醇酰胺

最新回答
仁爱的板凳
长情的篮球
2026-02-03 22:42:58

中文名: 聚乙烯

英文名: POLYETHYLENE

英文名2:PE

分子式: (C2H4)n

结构式:

分子量:

CAS号: 9002-88-4

RTECS号: TQ3325000

HS编码:

UN编号: 3314,塑料成型化合物

危险货物编号:

IMDG规则页码:

Polyethylene

PE,全名为Polyethylene,是最结构简单的高分子有机化合物,当今世界应用最广泛的高分子材料,由乙烯聚合而成,根据密度的不同分为高密度聚乙烯、中密度聚乙烯和低密度聚乙烯。低密度聚乙烯较软,多用高压聚合高密度聚乙烯具有刚性、硬度和机械强度大的特性,多用低压聚合。高密度聚乙烯可以做容器、管道,也可以做高频的电绝缘材料,用于雷达和电视。大量使用的常为低密度(高压)聚乙烯。聚乙烯为蜡状,有蜡一样的光滑感,不染色时,低密度聚乙烯透明,而高密度聚乙烯不透明,

聚乙烯是通过乙烯( CH2=CH2 )的加成反应和聚合反应,由重复的–CH2–单元连接而成的高聚合链。聚乙烯的性能取决于它的聚合方式;在中等压力(15-30大气压)有机化合物催化条件下进行Ziegler-Natta聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压力(100-300MPa),高温(190–210 C),过氧化物催化条件下自由基聚合,生产出的则是低密度聚乙烯(LDPE),它是支化结构的。

聚乙烯不溶于水,吸水性很小,就是对一些化学溶剂,如甲苯、醋酸等,也只有在70℃以上温度时才略有溶解。但是微粒状的聚乙烯,可以在15℃~40℃之间随温度的变化熔化或凝固,温度升高时熔化,吸收热量温度降低时凝固,放出热量。又因为它吸水量很小,不易潮湿,有绝缘性能,因此是很好的建筑材料。

理化性质

外观与性状: 有韧性的树脂质颗粒或粉末,白色,有蜡味。

主要用途:

熔点:

沸点:

相对密度(水=1):

相对密度(空气=1):

饱和蒸汽压(kPa):

溶解性: 浮在水上,不溶。

临界温度(℃):

临界压力(MPa):

燃烧热(kj/mol):

燃烧爆炸危险性

避免接触的条件:

燃烧性: 可燃

建规火险分级:

闪点(℃): 231℃

自燃温度(℃):

爆炸下限(V%):

爆炸上限(V%):

危险特性: 与强氧化剂接触能引起燃烧和爆炸。与氟、四氟化氙接触剧烈反应。与硝酸、氯化钠、三硝基甲烷不能配伍。

燃烧(分解)产物:

稳定性:

聚合危害:

禁忌物:

灭火方法:

包装与储运

危险性类别:

危险货物包装标志:

包装类别:

储运注意事项: ERG指南:171 ERG指南分类:物质(低至中等危害的)

毒性危害

接触限值:

侵入途径:

毒性:

健康危害: IARC评价:3组,动物证据充分;人类证据不足

急救

皮肤接触: 脱去并隔离被污染的衣服和鞋。确保医务人员了解该物质相关的个体防护知识,注意自身防护。

眼睛接触: 如果皮肤或眼睛接触该物质,应立即用清水冲洗至少20min。

吸入: 移患者至空气新鲜处,就医。如果患者呼吸停止,给予人工呼吸。如果呼吸困难,给予吸氧。

食入:

防护措施

工程控制:

呼吸系统防护:

眼睛防护:

防护服:

手防护:

其他:

泄漏处置:

曾经的中心
安静的柚子
2026-02-03 22:42:58
化学品中文名称: 乙烯-醋酸乙烯共聚物

化学品英文名称: ethylene-vinyl acetate copo 乙烯-醋酸乙烯共聚物

英文简称: EVA

CAS No.: 24937-78-8

分子式: (C2H4)x.(C4H6O2)y

分子量: 2000(平均)

正直的楼房
美丽的钢笔
2026-02-03 22:42:58
曲安奈德

编辑

声明

本词条可能涉及药品内容,网上任何关于药品使用的建议都不能替代医嘱。

曲安奈德益康唑乳膏曲安奈德为白色或类白色结晶性粉末;无臭。本品在丙酮中溶解,在氯仿中略溶,在乙醇中微溶,在水中极微溶解。比旋度取本品,精密称定,加二氧六环溶解并定量稀释制成每1ml中含10mg的溶液,依法测定(附录ⅥE),比旋度为+101°至+107°。作用与去炎松相似,其抗炎和抗过敏作用较强且远较持久.肌注后在数小时内生效,经1~2日达最大效应,作用可维持2~3周。

中文名

曲安奈德

外文名

Triamcinolone acetonide

别名

醋酸曲安缩松去炎舒松

CAS号

76-25-5

EINECS号

200-948-7

分子式

C24H31FO6

分子量

434.5

含量

99%

作用

为肾上腺皮质激素类药

目录

1 说明书

2 鉴别

3 检查

4 含量测定

5 测定方法

6 适应症

7 用法用量

8 注意事项

9 不良反应

10 对湿疹的治疗

11 物质毒性

说明书

编辑

中文别名:醋酸曲安缩松去炎舒松确炎舒松曲安缩松去炎松-A确炎舒松-A9-氟-11b,21-二羟基-16a,17-[(1-甲基亚乙基)双(氧)]-孕甾-1,4-二烯-3,20-二酮

CAS号:76-25-5

EINECS号:200-948-7

分子式: C24H31FO6

分子量: 434.5

含量: 99%

质量标准:EP5

物化性质:白色或类白色结晶性粉末无臭,几无味,溶于丙酮,不溶于水,略溶于氯仿,性质稳定。

作用: 为肾上腺皮质激素类药,用于神经性皮炎、湿疹、牛皮癣、关节痛、支气管哮喘等病症。

包装规格: 5KG/铝箔袋

本品为白色或类白色结晶性粉末;无臭。制剂为曲安奈德注射液。作用与去炎松相似,其抗炎和抗过敏作用较强且远较持久.肌注后在数小时内生效,经 1~2日达最大效应,作用可维持2~3周。  本

品在丙酮中溶解,在氯仿中略溶,在乙醇中微溶,在水中极微溶解。

比旋度 取本品,精密称定,加二氧六环溶解并定量稀释制成每1ml 中含10mg的溶 液,依法测定(附录Ⅵ E),比旋度为+101°至+107°。

鉴别

编辑

(1) 精密称取本品10mg,用乙醇溶解并稀释成100ml ,精密量取10ml到100ml量瓶中,用乙醇稀释至刻度,照分光光度法(附录Ⅳ A),在225 ~320nm 的波长处测定,在239nm 的波长处有最大吸收,吸收系数为340 ~370 。

(2) 本品的红外光吸收图谱应与对照的图谱(光谱集603 图)一致。

检查

编辑

曲安奈德

氟 取本品,照氟检查法(附录Ⅷ E)测定,含氟量应为4.0%~4.75 %。

其他甾体 取本品,加氯仿-甲醇(9:1) 制成每1.0 %的溶液,作为供试品溶液;

精密量取适量,加氯仿-甲醇(9:1) 稀释成每0.02%的溶液,作为对照溶液。照薄层色

谱法(附录Ⅴ B)试验,吸取上述两种溶液各10μl,分别点于同一硅胶GF254 薄层板上,以二氯甲烷-乙醚-甲醇-水(77:15:8:1.2) 为展开剂,展开后,晾干,在紫外光灯(254nm) 下检视。供试品溶液如显杂质斑点,不得多于3 个,其颜色与对照溶液的主斑点比较,不得更深。

干燥失重 取本品,在105 ℃干燥至恒重,减失重量不得过1.5 %(附录Ⅷ L)。

炽灼残渣 不得过0.2 %(附录Ⅷ N)。

硒 取本品0.10g ,依法检查(附录Ⅷ D),应符合规定(0.0050%)。

含量测定

编辑

本品为肾上腺皮质激素类药。9-氟-11β,21-二羟基-16α,17[(1- 甲基亚乙基) 双 (氧)]- 孕甾-1,4-二

烯-3,20-二酮。按干燥品计算,含C24H31FO6 应为97.0%~102.0%。

照高效液相色谱法(附录Ⅴ D)测定。

色谱条件与系统适用性试验 用十八烷基硅烷键合硅胶为填充剂;甲醇-水(70:30) 为流动相,检测波长为240nm 。理论板数按曲安奈德峰计算应不低于2500,曲安奈德峰和内标物质峰的分离度应大于2.0 。

内标溶液的制备 取醋酸氟轻松,加甲醇制成每1ml 中含0.15mg的溶液,即得。

测定法 取曲安奈德对照品适量,精密称定,加甲醇溶解并定量稀释制成每1ml 中约含0.13mg的溶液;精密量取该溶液与内标溶液各5ml ,置25ml量瓶中,用甲醇稀释至刻度,摇匀,取25μl 注入液相色谱仪,记录色谱图;另取本品适量,同法测定。按内标法以峰面积计算,即得。

测定方法

编辑

方法名称: 曲安奈德原料药-曲安奈德-高效液相色谱法

应用范围: 本方法采用高效液相色谱法测定曲安奈德原料药中曲安奈德的含量。

本方法适用于曲安奈德原料药。

方法原理: 供试品经甲醇溶解并定量稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长240nm处检测曲安奈德的峰面积,计算出其含量。

试剂: 甲醇

仪器设备: 1.仪器

1.1 高效液相色谱仪

1.2 色谱柱

十八烷基硅烷键合硅胶为填充剂,理论塔板数按曲安奈德峰计算应不低于5000。

1.3 紫外吸收检测器

2.色谱条件

2.1 流动相:甲醇 水=525 475

2.2 检测波长:240nm

2.3 柱温:室温

试样制备:

1. 对照品溶液的制备

精密称取曲安奈德对照品适量,用甲醇溶解并定量稀释成每1mL中约含30µg的溶液,即为对照品溶液。

2.供试品溶液的制备

精密称取供试品适量,用甲醇溶解并定量稀释成每1mL中约含曲安奈德30µg的溶液,即为供试品溶液。

注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。

操作步骤: 分别精密吸取对照品溶液和供试品溶液各20mL,注入高效液相色谱仪,用紫外吸收检测器于波长240nm处测定曲安奈德(C24H31FO6)的峰面积,计算出其含量。

参考文献: 中华人民共和国药典,国家药典委员会编,化学工业出版社,2005版,二部,p.200。

适应症

编辑

适用于各种皮肤病(如神经性皮炎、湿疹、牛皮癣等)、关节痛、支气管哮喘、肩周围炎、腱鞘炎、急性扭伤、慢腰腿痛及眼科炎症等。

用法用量

编辑

肌注:每周一次20-100mg;皮下或关节腔内注射,一般2.5-5mg,一日不超过30mg,一周不超过75mg。也可外用软膏。滴眼剂,一日1-4次。气雾剂一日3-4次。关节腔内注射可能引起关节损伤。长期用于滴眼可引起眼内压升高。

注意事项

编辑

贮藏:遮光,密闭保存。

适应症:适用于各种皮肤病(如神经性皮炎、湿疹、牛皮癣等)、关节痛、支气管哮喘、肩周围炎、腱鞘炎、急性扭伤、慢腰腿痛及眼科炎症等。

用法用量:肌注,每周一次20-100mg皮下或关节腔内注射,一般2.5-5mg,一日不超过30mg,一周不超过75mg.也可外用软膏.滴眼剂,一日1-4次.气雾剂一日3-4次.关节腔内注射可能引起关节损伤.长期用于滴眼可引起眼内压升高。

禁忌症:病毒性,结核性,急性化脓性眼疾忌用.孕妇不宜长期使用。

不良反应

编辑

曲安奈德益康唑乳膏

本品较大剂量易引起糖尿病、消化道溃疡和类柯兴综合征症状,对下丘脑-垂体-肾上腺轴抑制作用较强。并发感染为主要的不良反应。

1、长期使用大剂量的皮质激素,可以引起水、盐、糖、蛋白质及脂肪代谢紊乱:表现为向心型肥胖、满月面容、多毛、无力、低血钾、水肿、高血压、糖尿病等,临床上称之为库欣综合征。这些症状可以不做特殊治疗,停药后一般会自行逐渐消退,数月或较长时间后可恢复正常。必要时可配用降压、降糖药物,并给予低压、低糖、高蛋白饮食及补钾等对症治疗。因此,有高血压、动脉硬化、肾功能不全及糖尿病的病人,应该适当补充维生素D及钙剂,要慎重应用皮质激素。

2、诱发或加重感染:皮质激素有抗炎作用,但不具有抗菌作用,并且能降低机体抗感染能力,使机体的抗病能力下降,利于细菌生长、繁殖和扩散。因此,长期应用皮质激素可诱发感染或使机体内潜在的感染灶扩大或扩散,还可使原来静止的结核灶扩散。在用药过程中应注意病情的变化及是否有诱发感染现象,同时给予抗感染治疗。

3、 诱发或加重消化性溃疡:糖皮质激素除妨碍组织修复、延缓组织愈合外,还可使胃酸及胃蛋白酶分泌增多,又能减少胃粘液分泌,降低胃粘膜的抵抗力,可诱发或加重胃、十二指肠溃疡出血,甚至造成消化道穿孔。

4、 神经症状:可发生激动、失眠,个别病人可诱发精神病,癫痫病人可诱发癫痫发作。故有精神病倾向病人、精神病人及癫痫者应禁用。

5、肾上腺皮质萎缩或功能不全:较长期应用该类药物,由于体内糖皮质激素水平长期高于正常,可引起负反馈作用,而影响下丘脑及垂体前叶分泌促肾上腺皮质激素,使内源性糖皮质激素分泌减少或导致肾上腺皮质激素功能不全。一旦遇到应激时,如出血、感染,则可出现头晕、恶心、呕吐、低血压、低血糖或发生低血糖昏迷。

6、 反跳现象及停药症状:长期应用 激素类药物,症状基本控制时,若减量太大或突然停药,原来症状可很快出现或加重,此种现象称为反跳现象。这是因病人对激素产生依赖作用或症状尚未完全被控制所致。处理措施为恢复激素用量,待症状控制后再缓慢减量。

对湿疹的治疗

编辑

世界卫生组织WHO在其关于免疫脱敏治疗的指导性文件中明确指出,“免疫脱敏治疗是唯一可以彻底治疗过敏湿疹的根本性治疗方法”。国际过敏研究权威组织也提出,“使用高品质的标准化脱敏制剂,同时应该使用最佳的过敏症治疗方案,包括清除湿疹过敏原、患者免疫修复、过敏湿疹并发皮肤炎症的对症药物治疗、标准化脱敏制剂免疫治疗,简称“四合一的四联疗法”方案。

第一,应该尽量寻找过敏原。有的时候过敏原很难找,总也查不清楚,因为人接触的东西太多。病从口入,可以自己记录一下,前三天吃什么东西,假如几次都是因为吃某个东西皮疹加重,以后记住就不要吃了。另外要注意环境因素,有很多花、花粉的地方就不要去了,花粉季节出门要戴上口罩。还有多见的比如对眼睛框过敏,对裤腰带的装饰品过敏,这些都应该避免。因为使用某种化妆品后开始觉得痒痒的,一般就说明对化妆品里面的成分过敏,这种化妆品就不要用。这是预防为主,尽量找到原因。找不到原因自己生活当中尽量避免一些过敏因素。

第二,患了湿疹会很痒,抓挠往往使得皮肤病变更加厉害。实际上皮炎越抓越痒,越痒越抓,造成恶性循环。因此痒的时候不要去抓,往往会越抓越痒。

第三,去看医生。皮疹可以吃一些抗过敏的药物,要痒得很厉害,可以吃一些扑尔敏、抗组胺药物。医生会给开一些外用药,最常见的用皮质类固醇。激素类药有20几种,而且激素有强弱之分。我们主张不要一开始用最强的,而且最强的药不适合长期使用,长期使用有副作用。还可以用一些外用药膏、药水。

物质毒性

编辑

文献、期刊报道的毒性作用试验数据

编号

毒性类型

测试方法

测试对象

使用剂量

毒性作用

1

急性毒性

肌肉注射

成年男性

571 ug/kg

1.血管毒性——休克

2.皮肤和附件毒性——皮炎 (全身暴露后)

3.免疫系统毒性——过敏性休克

2

急性毒性

肠外

成年女性

4 mg/kg

1.行为毒性——肌肉无力

2.血管毒性——血压身高,不具有自主神经节

3

急性毒性

皮下注射

大鼠

13100 ug/kg

详细作用没有报告除致死剂量以外的其他值

4

急性毒性

口服

小鼠

5 mg/kg

详细作用没有报告除致死剂量以外的其他值

5

急性毒性

腹腔注射

小鼠

105 mg/kg

详细作用没有报告除致死剂量以外的其他值

6

急性毒性

皮下注射

小鼠

132 mg/kg

详细作用没有报告除致死剂量以外的其他值

7

突变毒性

人类 细胞

1 nmol/L

8

突变毒性

人类 细胞

10 nmol/L

9

突变毒性

皮肤表面

人类

5000 ppm

10

突变毒性

皮肤表面

人类

5000 ppm

11

突变毒性

小鼠 细胞

1 nmol/L

12

突变毒性

小鼠白细胞

10 nmol/L

13

生殖毒性

皮肤表面

成年女性

101 mg/kg,雌性受孕 12-29 周后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

2.生殖毒性——胃肠道系统发育异常

14

生殖毒性

皮下注射

大鼠

450 ug/kg,雌性受孕 11-19 天后

1.生殖毒性——影响分娩

2.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

3.生殖毒性——新生儿体重增加量减少

15

生殖毒性

皮下注射

大鼠

900 mg/kg,雌性受孕 11-19 天后

1.生殖毒性——胚胎或胎儿死亡

16

生殖毒性

皮下注射

大鼠

1 mg/kg,雌性受孕 14-15 天后

1.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

17

生殖毒性

皮下注射

大鼠

2 mg/kg,雌性受孕 14-15 天后

1.生殖毒性——植入后死亡率增加

18

生殖毒性

肌肉注射

大鼠

375 ug/kg,雌性受孕 12-14 天后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

19

生殖毒性

肌肉注射

大鼠

500 ug/kg,雌性受孕 14 天后

1.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

2.生殖毒性——影响胎儿

20

生殖毒性

肌肉注射

大鼠

750 ug/kg,雌性受孕 12-14 天后

1.生殖毒性——对新生儿有影响

21

生殖毒性

肌肉注射

大鼠

1500 ug/kg,雌性受孕 12-14 天后

1.生殖毒性——泌尿系统发育异常

22

生殖毒性

肌肉注射

大鼠

750 ug/kg,雌性受孕 12-14 天后

1.生殖毒性——植入后死亡率增加

2.生殖毒性——影响产仔数

3.生殖毒性——胚胎或胎儿死亡

23

生殖毒性

腹腔注射

小鼠

13 mg/kg,雌性受孕 12 天后

1.生殖毒性——影响胎儿

24

生殖毒性

皮下注射

小鼠

12800 ug/kg,雌性受孕 11-14 天后

1.生殖毒性——植入后死亡率增加

25

生殖毒性

皮下注射

小鼠

960 ug/kg,雌性受孕 11-14 天后

1.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

26

生殖毒性

皮下注射

小鼠

2500 ug/kg,雌性受孕 12 天后

1.生殖毒性——植入后死亡率增加

2.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

27

生殖毒性

皮下注射

小鼠

10 mg/kg,雌性受孕 11 天后

1.生殖毒性——胚胎或胎儿死亡

2.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

28

生殖毒性

皮下注射

小鼠

12800 ug/kg,雌性受孕 11 天后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

29

生殖毒性

肌肉注射

小鼠

480 ug/kg,雌性受孕 11-14 天后

1.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

30

生殖毒性

肌肉注射

小鼠

10 mg/kg,雌性受孕 11 天后

1.生殖毒性——影响胎儿

31

生殖毒性

肌肉注射

小鼠

5 mg/kg,雌性受孕 11 天后

1.生殖毒性——植入后死亡率增加

2.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

32

生殖毒性

肌肉注射

小鼠

10 mg/kg,雌性受孕 11 天后

1.生殖毒性——影响胎儿或胚胎细胞遗传物质

33

生殖毒性

肌肉注射

小鼠

10 mg/kg,雌性受孕 11 天后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

2.生殖毒性——胚胎或胎儿死亡

3.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

34

生殖毒性

注入

小鼠

650 ug/kg,雌性受孕 6-18 天后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

35

生殖毒性

注入

小鼠

6500 ug/kg,雌性受孕 6-18 天后

1.生殖毒性——胚胎植入前死亡率上升

36

生殖毒性

肌肉注射

50 mg/kg,雌性受孕 23-31 天后

1.生殖毒性——中枢神经系统发育异常

2.生殖毒性——耳/眼发育异常

3.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

37

生殖毒性

肌肉注射

60 mg/kg,雌性受孕 41-44 天后

1.生殖毒性——颅骨和面部发育异常 (包括鼻/舌)

2.生殖毒性——肌肉骨骼系统发育异常

3.生殖毒性——血液和淋巴系统发育异常 (包括脾和骨髓)

38

生殖毒性

肌肉注射

60 mg/kg,雌性受孕 41-44 天后

1.生殖毒性——胎儿毒性(如胎儿发育不良,但不至死亡)

2.生殖毒性——胚胎或胎儿死亡

39

生殖毒性

肌肉注射

50 mg/kg,雌性受孕 23-31 天后

1.生殖毒性——机体稳态发育异常

40

生殖毒性

肌肉注射

3 mg/kg,雌性受孕 63-65 天后

1.生殖毒性——呼吸系统发育异常

41

生殖毒性

肌肉注射

仓鼠

500 ug/kg,雌性受孕 9 天后

1.生殖毒性——植入后死亡率增加

2.生殖毒性——中枢神经系统发育异常

3.生殖毒性——其他发育异常

42

生殖毒性

肌肉注射

仓鼠

100 ug/kg,雌性受孕 11 天后

1.生殖毒性——内分泌系统发育异常

2.生殖毒性——影响新生儿的生化和代谢

[1-30]

参考资料

1. Annals of Pharmacotherpy. (Harvey Whitney Books Co., POB 42696, Cincinnati, OH 45242) V. 26- 1992- : 28,1310,1994

2. Netherlands Journal of Medicine. (Elsevier Science, POB 211, 1000 AE Amsterdam. Netherlands) V.16- 1973- : 56,12,2000

3. Drugs of the Future. (J.R. Prous, S.A., Apartado de Correos 540, 08080 Barcelona, Spain) V.1- 1975/76- : 6,44,1981

4. Gekkan Yakuji. Pharmaceuticals Monthly. (Yakugyo Jihosha, Inaoka Bldg., 2-36 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo 101, Japan) V.1- 1959- : 21,2117,1979

5. Drugs in Japan (Ethical Drugs). (Yakugyo Jiho Co., Ltd., Tokyo, Japan) : 6,516,1982

6. Cancer Research. (Public Ledger Building, Suit 816, 6th &Chestnut Sts., Philadelphia, PA 19106) V.1- 1941- : 43,2664,1983

7. Archives of Dermatology. (AMA, 535 N. Dearborn St., Chicago, IL 60610) V.82- 1960- : 103,39,1971

8. Psoriasis, Proceedings of the International Symposium, Stanford, CA, 1971, Farber, E.M., and A.J. Cox, eds., Stanford, CA, Stanford Univ. Press, 1971 : -,335,1971

9. Arzneimittel-Forschung. Drug Research. (Editio Cantor Verlag, Postfach 1255, W-7960 Aulendorf, Fed. Rep. Ger.) V.1- 1951- : 36,1782,1986

10. Cancer Research. (Public Ledger Building, Suit 816, 6th &Chestnut Sts., Philadelphia, PA 19106) V.1- 1941- : 43,2536,1983

词条标签:

科技产品 , 科技 , 医学人物 , 医学

曲安奈德图册

V百科往期回顾

其他人还看

纠错

曲安奈德注射液

曲安奈德鼻喷雾剂

糖皮质激素

地塞米松

醋酸曲安奈德注射液

派瑞松

封闭针

布地奈德

激素类药物

词条统计

浏览次数:296251次

编辑次数:30次历史版本

最近更新:2016-05-07

创建者:hbjlyy

说明书

鉴别

检查

含量测定

测定方法

适应症

用法用量

注意事项

不良反应

对湿疹的治疗

物质毒性

猜你喜欢

气体灭火

北京灭火器年检

自动灭火器价格

数据恢复

杭州花店配送

什么叫域名

什么零食店好

装潢设计教学

网页制作教学

平面设计教学

新手上路

成长任务

编辑入门

编辑规则

百科术语

我有疑问

我要质疑

我要提问

参加讨论

意见反馈

投诉建议

举报不良信息

未通过词条申诉

投诉侵权信息

封禁查询与解封

©2016Baidu 使用百度前必读 | 百科协议 | 百度百科合作平台

爱笑的枕头
神勇的战斗机
2026-02-03 22:42:58
4,4’-二氨基二苯甲烷 101-77-9

邻苯二甲酸甲苯基丁酯(BBP) 85-68-7

邻苯二甲酸二(2-乙基己基)(DEHP) 117-81-7

邻苯二甲酸二丁基酯(DBP) 84-74-2

蒽 120-12-7

二甲苯麝香(MX) 81-15-2

短链氯化石蜡(C10-C13)(SCCP) 85535-84-8

二氯化钴 7646-79-9

六溴环十二烷(HBCDD)及所有主要的非对映异构体(HBCDD) 25637-99-4

3194-55-6

(134237-50-6,

134237-51-7,

134237-52-8)

重铬酸钠 10588-01-9

氧化双三丁基锡 56-35-9

五氧化二砷 1303-28-2

三氧化二砷 1327-53-3

三乙基砷酸酯 15606-95-8

砷酸铅 7784-40-9

2,4-二硝基甲苯 121-14-2

蒽油 90640-80-5

蒽油,蒽糊,轻油 91995-17-4

蒽油、蒽糊,蒽馏分 91995-15-2

蒽油,含蒽量少 90640-82-7

蒽油,蒽糊 90640-81-6

邻苯二甲酸二异丁酯 (DIBP) 84-69-5

硅酸铝耐火陶瓷纤维

——

氧化锆硅酸铝耐火陶瓷纤维

铬酸铅 7758-97-6

钼铬红(C.I.颜料红104) 12656-85-8

铅铬黄(C.I.颜料黄34) 1344-37-2

磷酸三(2-氯乙基)酯 115-96-8

高温煤焦油沥青 65996-93-2

丙烯酰胺 79-06-1

负责的菠萝
土豪的蜗牛
2026-02-03 22:42:58

tpe材料是英文Thermo-plastic elastomer的缩写,中文意思是热塑性弹性体。是一种具有橡胶的高弹性,高强度,高回弹性,又具有可注塑加工的特征的材料。tpe材料,一类热塑性弹性体,应用于普通透明玩具、运动器材等。

具有环保无毒安全,应用范围广,有优良的着色性,触感柔软,耐候性,抗疲劳性和耐温性,加工性能优越,无须硫化,可以循环使用降低成本,既可以二次注塑成型,与PP、PE、PC、PS、ABS等基体材料包覆粘合,也可以单独成型。

TPE原料是生产数据线的主流,完美应用在电子设备配件上(数据线,耳机线、音频线等等)。

扩展资料:

tpe材料特点

1、可用一般的热塑性塑料成型机加工,不需要特殊的加工设备。

2、 生产效率大幅提高。可直接用橡胶注塑机硫化,时间由原来的20min左右,缩短到1min以内;由于需要的硫化时间很短,因此已可用挤出机直接硫化,生产效率大幅提高。

3、 易于回收利用,降低成本。生产过程中产生的废料(逸出毛边、挤出废胶)和最终出现的废品,可以直接返回再利用;用过的TPE旧品可以简单再生之后回收利用,减少环境污染,扩大再生资源来源。

4、节能。热塑性弹性体大多不需要硫化或硫化时间很短,可以有效节约能源。以高压软管生产能耗为例:橡胶为188MJ/kg,TPE为144MJ/kg,可节能达25%以上。

5、 应用领域更广。由于TPE兼具橡胶和塑料的优点,为橡胶工业开辟了新的应用领域。

6、 可用于塑料的增强、增韧改性。自补强性大,配方简化,配合剂对聚合物的影响制约小,质量性能更易掌握。但TPE的耐热性不如橡胶,随着温度上升而物性下降幅度较大,因而适用范围受到限制。

TPE热塑性弹性体材料具有以下两大特征:

1、材料结构中同时含结晶性的硬性链段(塑料相)和非结晶性的柔性链段(橡胶相)。

2、直接加工成型,无需硫化交联。TPE材料结构中硬性链段和柔性链段通过物理交联,硬性链段抑制了柔性链段的无定形特性,使得TPE材料常温下为可定型的弹性体状态。而加热塑化使得硬性和柔性链段同时都达到粘流态,这时材料可塑化加工成型。

同时,压缩变形、弹性回复、耐久性等同橡胶相比较差,价格上也往往高于同类橡胶。尽管如此,TPE的优点仍十分突出,各种新型的TPE产品也不断开发出来。作为一种节能环保的橡胶新型原料,发展前景十分看好。

大意的帅哥
默默的羽毛
2026-02-03 22:42:58
乙酸又称醋酸,广泛存在于自然界,它是一种有机化合物,是典型的脂肪酸。被公认为食醋内酸味及刺激性气味的来源。在家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。

目录

简介

历史

制备发酵法

甲醇羰基化法

乙醇氧化法

乙醛氧化法

乙烯氧化法

丁烷氧化法

命名

易错点

物理性质

化学性质酸性

二聚物

溶剂

化学反应

鉴别

生物化学

制取方式

对环境的影响:

其他补充,满足国际运输操作人员需要

理化性质

燃烧爆炸危险性

泄漏处理

健康危害性

急救

防护措施

储运

冰醋酸用途

乙酸反应化学方程式简介

历史

制备 发酵法

甲醇羰基化法

乙醇氧化法

乙醛氧化法

乙烯氧化法

丁烷氧化法

命名

易错点

物理性质

化学性质 酸性

二聚物

溶剂

化学反应

鉴别

生物化学

制取方式对环境的影响:其他补充,满足国际运输操作人员需要理化性质燃烧爆炸危险性泄漏处理健康危害性急救防护措施储运冰醋酸用途乙酸反应化学方程式展开 编辑本段简介

乙酸(acetic acid)分子中含有两个碳原子的饱和羧酸,是烃的重要含氧衍生物。分子式C2H4O2,结构 乙酸分子模型

简式CH3COOH,官能团为羧基。因是醋的主要成分,又称醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在 普通食醋中含有3%~5%的乙酸。乙酸是无色液体 ,有强烈刺激性气味。熔点16 .6℃,沸点117 .9℃, 相对密度1.0492(20/4℃)密度比水大,折光率1.3716。纯乙酸在16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。易溶于水、乙醇、乙醚和四氯化碳。当水加到乙酸中,混合后的总体积变小,密度增加,直至分子比为1∶1 ,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,体积不再变化。 分子量:60.05 分子结构:

冰醋酸

冰醋酸 纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.6 °C (62 °F) ,凝固后为无色晶体。尽管根据乙酸在水溶液中的离解能力它是一个弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,是一个重要的化学试剂。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。

编辑本段历史

醋几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。 乙酸在化学中的运用可以追溯到很古老的年代。在公元前3世纪,希腊哲学家泰奥弗拉斯托斯详细描述了乙酸是如何与金属发生反应生成美术上要用的颜料的,包括白铅(碳酸铅)、铜绿(铜盐的混合物包括乙酸铜)。古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即乙酸铅,这导致了罗马贵族间的铅中毒。8世纪时,波斯炼金术士贾比尔,用蒸馏法浓缩了醋中的乙酸。 文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的性质发生如此大的改变,以至于在几个世纪里,化学家们都认为这是两个截然不同的物质。法国化学家阿迪(Pierre Adet)证明了它们两个是相同的。 1847年,德国科学家阿道夫·威廉·赫尔曼·科尔贝第一次通过无机原料合成了乙酸。这个反应的历程首先是二硫化碳经过氯化转化为四氯化碳,接着是四氯乙烯的高温分解后水解,并氯化,从而产生三氯乙酸,最后一步通过电解还原产生乙酸。 1910年时,大部分的冰醋酸提取自干馏木材得到的煤焦油。首先是将煤焦油通过氢氧化钙处理,然后将形成的乙酸钙用硫酸酸化,得到其中的乙酸。在这个时期,德国生产了约10000吨的冰醋酸,其中30%被用来制造靛青染料。

编辑本段制备

乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过甲醇的羰基化制备,具体方法见下。空缺部分由其他方法合成。 整个世界生产的纯乙酸每年大概有500万吨,其中一半是由美国生产的。欧洲现在的产量大约是每年100万吨,但是在不断减少。日本每年也要生产70万吨纯乙酸。每年世界消耗量为650万吨,除了上面的500万吨,剩下的150万吨都是回收利用的。

发酵法

有氧发酵 在人类历史中,以醋的形式存在的乙酸,一直是用醋杆菌属细菌制备。在氧气充足的情况下,这些细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。有这些细菌达到的化学方程式为: C2H5OH + O2 → CH3COOH + H2O 做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够变为醋。工业生产醋的方法通过提供氧气使得此过程加快。 现在商业化生产所用方法其中之一被称为“快速方法”或“德国方法”,因为首次成功是在1823年的德国。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从他的下方自然进入或强制对流。改进后的空气供应使得此过程能够在几个星期内完成,大大缩短了制醋的时间。 现在的大部分醋是通过液态的细菌培养基制备的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。 无氧发酵 部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下: C6H12O6 → 3 CH3COOH 更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。 2 CO2 + 4 H2 → CH3COOH + 2 H2O 梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。

甲醇羰基化法

大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下 CH3OH + CO → CH3COOH 这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二部中) (1) CH3OH + HI → CH3I + H2O(2) CH3I + CO → CH3COI(3) CH3COI + H2O → CH3COOH + HI 通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制 。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis−[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于钌,使用([Ir(CO)2I2]) ,它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。

乙醇氧化法

由乙醇在有催化剂的条件下和氧气发生氧化反应制得。 C2H5OH + O2 CH3COOH + H2O

乙醛氧化法

在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法。乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。当丁烷或轻石脑油在空气中加热,并有多种金属离子包括镁,钴,铬以及过氧根离子催化,会分解出乙酸。化学方程式如下: 2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O 此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55 atm。副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。 在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸 2 CH3CHO + O2 → 2 CH3COOH 使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。

乙烯氧化法

由乙烯在催化剂(所用催化剂为氯化钯:PdCl2、氯化铜:CuCl2和乙酸锰:(CH3COO)2Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。

丁烷氧化法

丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。 2CH3CH2CH2CH3 + 5O2=4CH3COOH + 2H2O

编辑本段命名

乙酸既是常用的名称,也是国际纯粹与应用化学联合会(IUPAC)规定的官方名称。俗称醋酸(acetic acid),该名称来自于拉丁文中的表示醋的词“acetum”。无水的乙酸在略低于室温的温度下(16.7℃),能够转化为一种具有腐蚀性的冰状晶体,故常称无水醋酸为冰醋酸,冰乙酸,冰形醋酸,乙酸冰。 乙酸的实验式(即最简式)为CH2O,化学式(即分子式)为C2H4O2。常被写为CH3-COOH、CH3COOH或CH3CO2H来突出其中的羧基,表明更加准确的结构。失去H后形成的离子为乙酸根阴离子。乙酸最常用的正式缩写是AcOH 或 HOAc,其中Ac代表了乙酸中的乙酰基(CH3CO)。酸碱中和反应中也可以用HAc表示乙酸,其中Ac代表了乙酸根阴离子(CH3COO),但很多人认为这样容易造成误解。上述两种情况中,Ac都不应与化学元素中锕的缩写混淆。

编辑本段易错点

乙酸与“蚁酸”“己酸”不同 ① 蚁酸(formic acid) = 甲酸(methanoic acid) 化学式:HCOOH(HCO2H) ② 羊油酸(caproic acid) = 己酸(hexanoic acid) (百度小词典中译“乙酸”为“caproic acid”有误) 化学式CH3(CH2)4COOH 乙酸(acetic acid)

编辑本段物理性质

乙酸在常温下是一种有强烈刺激性酸味的无色液体。 乙酸的熔点为16.6℃(289.6 K)。沸点117.9℃(391.2 K)。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。 乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水。 下为中华人民共和国关于工业乙酸的国家标准 指标名称 指标

优等品 一等品 合格品

色度, Hazen 单位(铂 - 钴色号)≤ 10 20 30

乙酸含量, % ≥ 99.8 99.0 98.0

水分, % ≤ 0.15 - -

甲酸含量, % ≤ 0.06 0.15 0.35

乙醛含量, % ≤ 0.05 0.05 0.10

蒸发残渣, % ≤ 0.01 0.02 0.03

铁含量(以 Fe 计), % ≤ 0.00004 0.0002 0.0004

还原高锰酸钾物质, min ≥ 30 5 -

编辑本段化学性质

酸性

羧酸中,例如乙酸,的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。 乙酸的酸性促使它还可以与碳酸钠、氢氧化铜、苯酚钠等物质反应。 2CH3COOH + Na2CO3 =2CH3COONa + CO2 ↑+ H2O 2CH3COOH + Cu(OH)2 =Cu(CH3COO)2 + 2H2O CH3COOH + C6H5ONa =C6H5OH (苯酚)+ CH3COONa

二聚物

乙酸的二聚体,虚线表示氢键 乙酸的晶体结构显示 ,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。二聚体有较高的稳定性,现在已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。其它的羧酸也有类似的二聚现象。 (两端连接H)

溶剂

液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。

化学反应

对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。因为铝在空气中表面会形成氧化铝保护层,所以铝制容器能用来运输乙酸。金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。除了醋酸铬(II),几乎所有的醋酸盐能溶于水。 Mg(s)+ 2 CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g) NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l) 乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。 同样,乙酸也可以成酯或氨基化合物。如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。 CH3COOH + CH3CH2OH<==>CH3COOCH2CH3 + H2O 440℃的高温下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。

鉴别

乙酸可以通过其气味进行鉴别。若加入氯化铁(III),生成产物为深红色并且会在酸化后消失,通过此颜色反应也能鉴别乙酸。乙酸与三氧化砷反应生成氧化二甲砷,通过产物的恶臭可以鉴别乙酸。

编辑本段生物化学

乙酸中的乙酰基,是生物化学中所有生命的基础。当它与辅酶A结合后,就成为了碳水化合物和脂肪新陈代谢的中心。然而,乙酸在细胞中的浓度是被严格控制在一个很低的范围内,避免使得细胞质的pH发生破坏性的改变。与其它长链羧酸不同,乙酸并不存在于甘油三酸脂中。但是,人造含乙酸的甘油三酸脂,又叫甘油醋酸酯(甘油三乙酸酯),则是一种重要的食品添加剂,也被用来制造化妆品和局部性药物。 乙酸由一些特定的细菌生产或分泌。值得注意的是醋菌类梭菌属的丙酮丁醇梭杆菌,这个细菌广泛存在于全世界的食物、水和土壤之中。在水果或其他食物腐败时,醋酸也会自然生成。乙酸也是包括人类在内的所有灵长类生物的阴道润滑液的一个组成部分,被当作一个温和的抗菌剂

编辑本段制取方式

主要制法有: ① 乙醛催化氧化法: 2CH3CHO+O2→2CH3COOH ② 甲醇低压羰基化法(孟山都法): CH3OH+CO→CH3COOH 其他方法

③ 低碳烷或烯液相氧化法: 2C4H10+5O2→4CH3COOH+2H2O 以上各反应皆需催化剂与适宜的温度、压力。除合成法还有发酵法,我国用米或酒酿造醋酸。 乙酸最初由发酵法及木材干馏法制得,现一般由乙醇或乙醛氧化制得,近年来利用丁烷为原料通过催化、氧化制得(醋酸钴为催化剂,空气氧化后,得到的乙酸是含有酮、醛、醇等的混合物)。

编辑本段对环境的影响:

一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入后对鼻、喉和呼吸道有刺激性。对眼有强烈刺激作用。皮肤接触,轻者出现红斑,重者引起化学灼伤。误服浓乙酸,口腔和消化道可产生糜烂,重者可因休克而致死。 慢性影响:眼睑水肿、结膜充血、慢性咽炎和支气管炎。长期反复接触,可致皮肤干燥、脱脂和皮炎。 二、毒理学资料及环境行为 毒性:属低毒类。 急性毒性:LD503530mg/kg(大鼠经口)1060mg/kg(兔经皮)LC505620ppm,1小时(小鼠吸入)人经口1.47mg/kg,最低中毒量,出现消化道症状人经口20~50g,致死剂量。 亚急性和慢性毒性:人吸入200~490mg/m3×7~12年,有眼睑水肿,结膜充血,慢性咽炎,支气管炎。 致突变性:微生物致突变:大肠杆菌300ppm(3小时)。姊妹染色单体交换:人淋巴细胞5mmlo/L。 生殖毒性:大鼠经口最低中毒剂量(TDL0):700mg/kg(18天,产后),对新生鼠行为有影响。大鼠睾丸内最低中毒剂量(TDL0):400mg/kg(1天,雄性),对雄性生育指数有影响。 危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与强氧化剂可发生反应。 燃烧(分解)产物:一氧化碳、二氧化碳。 醋酸是一种极为重要的化工产品,它在有机化工中的地位与无机化工中的硫酸相当。醋酸的主要用途有: (1)醋酸乙烯。醋酸的最大消费领域是制取醋酸乙烯,约占醋酸消费的44%以上,它广泛用于生产维纶、聚乙烯醇、乙烯基共聚树脂、黏合剂、涂料等。 (2)溶剂。醋酸在许多工业化学反应中用作溶剂。 (3)醋酸纤维素。      醋酸可用于制醋酐,醋酐的80%用于制造醋酸纤维,其余用于医药、香料、染料等。 (4)醋酸酯。醋酸乙酯、醋酸丁酯是醋酸的两个重要下游产品。醋酸乙酯用于清漆、稀释料、人造革、硝酸纤维、塑料、染料、药物和香料等;醋酸丁酯是一种很好的有机溶剂,用于硝化纤维、涂料、油墨、人造革、医药、塑料和香料等领域。

编辑本段其他补充,满足国际运输操作人员需要

中文名称:醋酸 别 名:醋酸、冰醋酸 英文名称:ACETIC ACID,Ethanic acid,Vinegar acid 英文缩写:A C 联合国编号(UNNO):2789 化学式:CH3COOH

编辑本段理化性质

相对密度(水为1):1.050 凝固点(℃):16.7 沸点(℃):118.3 粘度(Pa.s):1.22 20℃时蒸气压(KPa):1.5 外观及气味:无色液体,有刺鼻的醋味。 溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂。 相容性:材料:稀释后对金属有强烈腐蚀性,316#和318#不锈钢及铝可作良好的结构材料。 国家产品标准号 :GB/T 676-2007

编辑本段燃烧爆炸危险性

闪点(℃):39 爆炸极限(%):4.0-17 静电作用:可能有 聚合危害: 燃烧性: 自燃温度: 危险特性:能与氧化剂发生强烈反应,与氢氧化钠与氢氧化钾等反应剧烈。稀释后对金属有腐蚀性。 消防方法:用雾状水、干粉、抗醇泡沫、二氧化碳、灭火。用水保持火场中容器冷却。用雾状水驱散蒸气,赶走泄漏液体,使稀释成为不燃性混合物。并用水喷淋去堵漏的人员。

编辑本段泄漏处理

污染排放类别:Z 泄漏处理:切断火源,穿戴好防护眼镜、防毒面具和耐酸工作服,用大量水冲洗溢漏物,使之流入航道,被很快稀释,从而减少对人体的危害。

编辑本段健康危害性

健康危害性评价:2, 3, 2 阈限值(TLV):50 大鼠经口LD50:3530(mg/kg) 健康危害:吸入后对鼻、喉、和呼吸道强烈的刺激作用。皮肤接触,轻者出现红斑,重者引起化学灼伤。误服农醋酸,口腔和消化道可因休克致死。

编辑本段急救

皮肤接触:皮肤接触先用水冲洗,再用肥皂彻底洗涤。 眼睛接触:眼睛受刺激用水冲洗,再用干布拭擦,严重的须送医院诊治。 吸 入:若吸入蒸气得使患者脱离污染区,安置休息并保暖。 食 入:误服立即漱口,给予催吐剂催吐,急送医院诊治。

编辑本段防护措施

呼吸系统防护:空气中深度浓度超标时,应佩戴防毒面具。 眼睛防护:戴化学安全防护眼镜。 手防护:戴橡皮手套。 其它:工作后,淋浴更衣,不要将工作服带入生活区。

编辑本段储运

适装船型:3 适装舱型:不锈钢舱 储运注意事项:注意货物温度保持在20-35℃,即货物温度要大于其凝固点16.7℃防止冻结。装卸货完毕时要尽量排尽管系中的残液。

编辑本段冰醋酸用途

冰醋酸是最重要的有机酸之一.主要用于醋酸乙烯、醋酐、醋酸纤维、醋酸酯和金属醋酸盐等,也用作农药、医药和染料等工业的溶剂和原料,在照相药品制造、织物印染和橡胶工业中都有广泛用途. 冰醋酸是重要的有机化工原料之一,它在有机化学工业中处于重要地位.醋酸广泛用于合成纤维、涂料、医药、农药、食品添加剂、染织等工业,是国民经济的一个重要组成部分.冰醋酸按用途又分为工业和食用两种,食用冰醋酸可作酸味剂、增香剂.可生产合成食用醋.用水将乙酸稀释至4-5%浓度,添加各种调味剂而得食用醋.其风味与酿造醋相似.常用于番茄调味酱、蛋黄酱、醉米糖酱、泡菜、干酪、糖食制品等.使用时适当稀释,还可用于制作蕃茄、芦笋、婴儿食品、沙丁鱼、鱿鱼等罐头,还有酸黄瓜、肉汤羹、冷饮、酸法干酪用于食品香料时,需稀释,可制作软饮料,冷饮、糖果、焙烤食品、布丁类、胶媒糖、调味品等.作为酸味剂,可用于调饮料、罐头等. 洗涤通常使用的冰醋酸,浓度分别为28%,56%,99%的.如果买的是冰醋酸,把28CC的冰醋酸加到72CC的水里,就可得到28%的醋酸.更常见的是它以56%的浓度出售,这是因为这种浓度的醋酸只要加同量的水,即可得到28%的醋酸. 浓度大干28%的醋酸会损坏醋酸纤维和代纳尔纤雏. 草酸是有机酸中的强酸之一,在高锰酸钾的酸性溶液中,草酸易被氧化生成二氧化碳和水.草酸能与碱类起中和反应,生成草酸盐. 醋酸也一样,28%的醋酸具有挥发性,挥发后使织物是中性;就象氨水可以中和酸一样,28%的醋酸也可以中和碱. 碱也会导致变色.用酸(如28%的醋酸)即可把变色恢复过来. 这种酸也常用来减少由丹宁复合物、茶、咖啡、果计、软饮料以及啤酒造成的黄渍.在去除这些污渍时,28%的醋酸用在水和中性润滑剂之后,可用到最大程度.

编辑本段乙酸反应化学方程式

乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O 乙酸与碳酸氢钠:NaHCO3+CH3COOH=NaCH3COO+H2O+CO2↑ 醋酸与碱反应:CH3COOH+OH-=CH3COO- +H2O 醋酸与弱酸盐反应:2CH3COOH+CO32-=2CH3COO- +H2O+CO2↑ 醋酸与活泼金属单质反应:Fe+2CH3COOH=Fe(CH3COO)2+H2↑ 醋酸与金属氧化物反应:2CH3COOH+ZnO=Zn(CH3COO)2+H2O 醋酸与醇反应:CH3COOH+C2H5OH=CH3COOC2H5+H2O(条件是加热,浓硫酸催化,可逆反应)乙酸与锌反应:2CH3COOH +Zn =(CH3COO)2Zn +H2↑ 乙酸与钠反应:2CH3COOH+2Na=2CH3COONa+H2↑

火星上的鸡翅
简单的手链
2026-02-03 22:42:58

丙三醇,国家标准称为甘油,无色、无臭、味甜,外观呈澄明黏稠液态,是一种有机物。俗称甘油。

丙三醇,能从空气中吸收潮气,也能吸收硫化氢、氰化氢和二氧化硫。难溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类。 丙三醇是甘油三酯分子的骨架成分。相对密度1.26362。熔点17.8℃。沸点290.0℃(分解)。折光率1.4746。闪点(开杯)176℃。急性毒性:LD50:31500 mg/kg(大鼠经口)。

基本介绍中文名 :丙三醇 英文名 :GLYCEROL,GLYCERINE 别称 :1,2,3-丙三醇,甘油 化学式 :C3H8O3 分子量 :92.09 CAS登录号 :56-81-5 EINECS登录号 :200-289-5 熔点 :17.8℃(18.17℃,20℃)  沸点 :290.9℃ at 760 mmHg 水溶性 :任意比例混溶 密度 :1.263-1.303g/cm3 外观 :无色、透明、无臭、粘稠液体 闪点 :177℃ 套用 :用于气相色谱固定液及有机合成等 安全性描述 :无毒,大量可导致似麻醉作用 IUPAC命名 :propane-1,2,3-triol 引燃温度 : 370℃发现历史,编号系统,物性数据,毒理学数据,生态学数据,分子结构数据,计算化学数据,性质与稳定性,贮存方法,安全信息,生产方法,天然甘油,合成甘油,用途,工业用途,日用,野外,医药,植物,中国药典,衍生物,注意事项,操作注意事项,储存注意事项,安全风险,安全术语,风险术语,国家标准, 发现历史 甘油,1779年由斯柴尔(Scheel)首先发现,1823年人们认识到油脂成分中含有Chevreul,希腊语为甘甜的意思,因此命名为甘油(Glycerine)。第一次世界大战期间,因其为制造火药的原料,则产量大增。 编号系统 CAS号:56-81-5 MDL号:MFCD00004722 EINECS号:200-289-5 RTECS号:MA8050000 BRN号:635685 物性数据 1. 性状:无色无臭的黏稠状液体,有甜味。 2. 沸点(ºC,101.3kPa):290,182(2666pa) 3. 熔点(ºC,流动点):20 4. 相对密度(g/mL,15/15ºC):1.26526 5. 相对密度(g/mL,20/20ºC):1.2613 6. 相对密度(g/mL,25/25ºC):1.26170 7. 相对蒸汽密度(g/mL,空气=1):3.1 8. 折射率(15ºC):1.47547 9. 折射率(n20ºC):1.4746 10. 折射率(n25ºC):1.4730 11. 黏度(mPa·s,20ºC):243 12. 黏度(mPa·s,25ºC):56.0 13. 黏度(mPa·s,30ºC):18 14. 黏度(mPa·s,50ºC):18 15. 闪点(ºC,闭口):177 16. 燃点(ºC):523(Pt上);429(玻璃上) 17. 蒸发热(KJ/mol,55ºC):88.17 18. 蒸发热(KJ/mol,b.p.):61.09 19. 生成热(KJ/mol,15ºC,液体):669.05 20. 燃烧热(KJ/mol,25ºC,液体):1656.42 21. 比热容(KJ/(kg·K),15ºC):2.46 22. 电导率(S/m,20ºC):1.0×10-8 23. 热导率(W/(m·K)):0.29 24. 蒸气压(kPa,125.5ºC):0.13 25. 体膨胀系数(K-1):0.000615 26. 溶解性:能吸收硫化氢、氢氰酸、二氧化硫。能与水、乙醇相混溶,1份该品能溶于11份乙酸乙酯、约500份乙醚,不溶于苯、二硫化碳、三氯甲烷、四氯化碳、石油醚、氯仿、油类。易被脱水,失水生成双甘油和聚甘油等。氧化生成甘油醛和甘油酸等。在0℃下凝固,形成有闪光的斜方结晶。在温度150℃左右时,会发生聚合。与无水醋酸酐、高锰酸钾、强酸、腐蚀剂、脂肪胺、异氰酸酯类、氧化剂不能配伍。 27. 相对密度(20℃,4℃):1.2613 28. 相对密度(25℃,4℃):1.255130 29. 临界温度(ºC):576.85 30. 临界压力(MPa):7.5 31. 偏心因子:1.320 32. 溶度参数(J·cm-3)0.5:34.315 33. van der Waals面积(cm2·mol-1):7.650×1010 34. van der Waals体积(cm3·mol-1):51.360 毒理学数据毒性分级中毒急性毒性:口服- 大鼠 LD50:26000 毫克/ 公斤;口服- 小鼠 LC50: 4090 毫克/ 公斤。*** 数据:皮肤- 兔子 500 毫克/ 24小时 轻度; 眼睛 -兔子 126 毫克 轻度。食用对人体无毒。作溶剂使用时可被氧化成丙烯醛而有 *** 性。小鼠静脉注射LC50为7.56g/kg,工作场所最高容许浓度为10mg/m3。大鼠经口LD50:20ml/kg;静脉注射LD50:4.4ml/kg。存于凉爽、干燥处。生态学数据 对水体有一定的危害。对环境没有污染。 分子结构数据 1、 摩尔折射率:20.51 2、 摩尔体积(cm3/mol):70.9 3、 等张比容(90.2K):199.0 4、 表面张力(dyne/cm):61.9 5、 极化率(10-24cm3):8.13 计算化学数据 1.疏水参数计算参考值(XlogP):无 2.氢键供体数量:3 3.氢键受体数量:3 4.可旋转化学键数量:2 5.互变异构体数量:无 6.拓扑分子极性表面积60.7 7.重原子数量:6 8.表面电荷:0 9.复杂度:25.2 10.同位素原子数量:0 11.确定原子立构中心数量:0 12.不确定原子立构中心数量:0 13.确定化学键立构中心数量:0 14.不确定化学键立构中心数量:0 15.共价键单元数量:1 性质与稳定性 1.无色、透明、无臭、粘稠液体,味甜,具有吸湿性。 与水和醇类、胺类、酚类以任何比例混溶,水溶液为中性。溶于11倍的乙酸乙酯,约500倍的乙醚。不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类、长链脂肪醇。可燃,遇二氧化铬、氯酸钾等强氧化剂能引起燃烧和爆炸。也是许多无机盐类和气体的良好溶剂。对金属无腐蚀性,作溶剂使用时可被氧化成丙烯醛。 化学性质:与酸发生酯化反应,如与苯二甲酸酯化生成醇酸树脂。与酯发生酯交换反应。与氯化氢反应生成氯代醇。甘油脱水有两种方式:分子间脱水得到二甘油和聚甘油;分子内脱水得到丙烯醛。甘油与碱反应生成醇化物。与醛、酮反应生成缩醛与缩酮。用稀硝酸氧化生成甘油醛和二羟基丙酮;用高碘酸氧化生成甲酸和甲醛。与强氧化剂如铬酸酐、氯酸钾或高锰酸钾接触,能引起燃烧或爆炸。甘油也能起硝化和乙酰化等作用。 2.无毒。即使饮入总量达100g的稀溶液也无害,在机体内水解后氧化而成为营养源。在动物实验中,如使之饮用极大量时,具有与醇相同的麻醉作用。 3. 存在于烤菸菸叶、白肋烟菸叶、香料烟菸叶、烟气中。 4. 天然存在于菸草、啤酒、葡萄酒、可可中。 贮存方法 1.贮存于清洁干燥处,应注意密封贮存。注意防潮,防水,防热,严禁与强氧化剂混放。可用镀锡或不锈钢容器贮存。 2. 采用铝桶或镀锌铁桶包装或用酚醛树脂衬里的贮槽贮存。贮运中要防潮、防热、防水。禁止将甘油与强氧化剂(如硝酸、高锰酸钾等)放在一起。按一般易燃化学品规定贮运。 安全信息 危险运输编码:UN 1282 3/PG 2 危险品标志:易燃有害 安全标识:S26S39S24/25 危险标识:R11R36R20/21/22 生产方法 甘油的工业生产方法可分为两大类:以天然油脂为原料的方法,所得甘油称天然甘油;以丙烯为原料的合成法,所得甘油称合成甘油。 天然甘油 1984年以前,甘油全部从动植物脂制皂的副产物中回收。至今为止,天然油脂仍为生产甘油的主要原料,其中约42%的天然甘油得自制皂副产,58%得自脂肪酸生产。制皂工业中油脂的皂化反应。皂化反应产物分成两层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油,下层是废碱液,为含有盐类,氢氧化钠的甘油稀溶液,一般含甘油9-16%,无机盐8-20%。油脂反应。油脂水解得到的甘油水(也称甜水),其甘油含量比制皂废液高,约为14-20%,无机盐0-0.2%。近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甜水中一般不含无机酸,净化方法比废碱液简单。无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高,而且都含有各种杂质,天然甘油的生产过程包括净化、浓缩得到粗甘油,以及粗甘油蒸馏、脱色、脱臭的精制过程。 合成甘油 从丙烯合成甘油的多种途径可归纳为两大类,即氯化和氧化。现在工业上仍在使用丙烯氯化法及丙烯不定期乙酸氧化法。 丙烯氯化法 这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解。环氧氯丙烷水解制甘油是在150℃、1.37MPa二氧化碳压力下,在10%氢氧化钠和1%碳酸钠的水溶液中进行,生成甘油含量为5-20%的含氯化钠的甘油水溶液,经浓缩、脱盐、蒸馏,得纯度为98%以上的甘油。 丙烯过乙酸氧化法 丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯丙基醇。后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油。过乙酸的生产不需要催化剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%。上述后两步反应在特殊结构的反应精馏塔中连续进行。原料烯丙醇和含有过乙酸的乙酸乙酯溶液送入塔后,塔釜控制在60-70℃、13-20kPa。塔顶蒸出乙酸乙酯溶剂和水,塔釜得至甘油水溶液。此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程。生产1t甘油消耗烯丙醇1.001t,过乙酸1.184t,副产乙酸0.947t。目前,天然甘油和合成甘油的产量几乎各占50%,而丙烯氯化法约占合成甘油产量的80%。我国天然甘油占总产量90%以上。 工业级甘油 工业级甘油量用1/2量的蒸馏水稀释,搅拌充分后,加入活性炭,并加热至60~70℃进行脱色处理,然后,真空过滤,保证滤液澄清透明。控制滴加速度,将滤液加到事先处理好的732型强酸阳树脂和717型强碱阴阳树脂混合的柱内,以吸附除去甘油中的电解质和醛类、色素、酯类等非电解质杂质。

除去杂质后的甘油溶液进行减压蒸馏,控制真空度93326Pa以上,釜温在106~108℃,蒸出大部分水之后,再将釜温升到120℃快速脱水,不出水时停止加热,所得釜内物料即为成品。 用途 气相色谱固定液(最高使用温度75℃,溶剂为甲醇),分离分析低沸点含氧化合物、胺类化合物、氮或氧杂环化合物,能完全分离3-甲基吡啶(沸点144.14℃)和4-甲基吡啶(沸点145.36℃),适用于水溶液的分析、溶剂、气量计及水压机缓震液、软化剂、抗生素发酵用营养剂、干燥剂、润滑剂、制药工业、化妆品配制、有机合成、塑化剂。可与水以任何比例溶解,低浓度丙三醇溶液可做润滑油对皮肤进行滋润(开塞露)。 工业用途 1、用作制造硝化甘油、醇酸树脂和环氧树脂。 丙三醇键线式 2、在医学方面,用以制取各种制剂、溶剂、吸湿剂、防冻剂和甜味剂,配剂外用软膏或栓剂等。 3、在涂料工业中用以制取各种醇酸树脂、聚酯树脂、缩水甘油醚和环氧树脂等。 4、纺织和印染工业中用以制取润滑剂、吸湿剂、织物防皱缩处理剂、扩散剂和渗透剂。 5、在食品工业中用作甜味剂、菸草剂的吸湿剂和溶剂。 6、在造纸、化妆品、制革、照相、印刷、金属加工、电工材料和橡胶等工业中都有着广泛的用途。 7、并用作汽车和飞机燃料以及油田的防冻剂。 8、甘油可以作为塑化剂用于新型陶瓷工业。 日用 食用级甘油其中最优质一种-生物精化甘油,除含有丙三醇,还有酯类、葡萄糖等还原糖,属于多元醇类甘油;除具有保湿、保润功能外,还具有高活性、抗氧化、促醇化等特殊功效 。 每克甘油完全氧化可产生4千卡热量,经人体吸收后不会改变血糖和胰岛素水平。甘油是食品加工业中通常使用的甜味剂和保湿剂,大多出现在运动食品和代乳品中。 在果汁、果醋等饮料中的套用 不同品质的水果,都含有不同程度的单宁,而单宁又是水果中的苦、涩味来源。 作用:迅速分解果汁、果醋饮料中的苦、涩异味,增进果汁本身的厚味和香味,外观鲜亮,酸甜适口。 添加量:0.8%~1% 果酒行业的套用 用水果或其它干鲜果品酿制或泡制的酒,只是制作方法不同,都称为果酒(乾红、干白),果酒都存在单宁,单宁就是苦、涩味的来源。 作用:分解果酒中的单宁,提升酒品的品质、口感,去除苦、涩味。 添加量:1% 肉干、香肠、腊肉行业的运用 腌腊制品、肉干、香肠的用法: 在加工制作时,将植物精化甘油用50度以上纯粮酒稀释后,均匀喷洒在肉上或切好的肉中,充分搓揉或搅拌。 作用:锁水、保湿,达到增重效果,延长保质期。 添加量:1.2%~1.5% 果脯行业的运用 果脯在加工制作时,因存放问题使产品容易失水,干硬,水果中同样也含有单宁。 作用:锁水、保湿,抑制单宁异性增生,达到护色、保鲜、增重效果,延长保质期。 添加量:0.8%~1% 野外 在野外,甘油不仅可以作为供能物质,满足人体需要。还可以作为引火剂,方法为:在可燃物下堆上5~10克的高锰酸钾固体,再将甘油倒在高锰酸钾上,约半分钟就有火苗冒出。因为甘油粘稠,所以可以事先可用无水乙醇等易燃有机溶剂稀释,但溶剂不宜过多。 医药 稳定血糖和胰岛素 《欧洲套用生理学》杂志登载过一项研究。研究者们将6名身体健康的年轻男性分为三组,分别给予葡萄糖、甘油和安慰剂,然后让他们在健身器上做同样的运动。在运动前45分钟服用葡萄糖的人(每磅体重0.5g葡萄糖),在开始运动时其体内的血糖水平上升了50%,血液中胰岛素水平上升了3倍。在运动前45分钟服用甘油的人(每磅体重0.5g甘油),在开始运动时血液中甘油水平增加了340倍,但血糖和胰岛素水平没有任何变化。 因此,如果你用甘油代替高热量的碳水化合物,就可以避免因进食大量的饼干或蛋糕所带来的不良后果了。可以说,大剂量的服用甘油几乎不会对血糖及胰岛素水平有影响。大量的证据提示,如果你的目标是减少碳水化合物的摄入量,甘油可能是一种理想的糖原。 能量酸 有些科学家还强调指出,如果你想在运动场上有更佳的表现,甘油也是一种不错的补剂。原因在于,当你身体中水分充足时,体能会更强大而且持久。特别是在高温环境中,甘油强大的保水性恰恰有助于身体储存更多的水分。 发表在《国际运动医学》杂志的一项研究显示,甘油可能含有一种产生能量的酸性物质。研究者将甘油和一种名为阿斯帕坦的营养性甜味剂作比较,方法是让被试者分别服用甘油和阿斯帕坦,剂量为每公斤体重1.2g甘油(20%水溶液形式)或26ml阿斯帕坦。结果表明,在亚极限运动负荷下,甘油不但可以降低运动者的心率,还可以将运动时间延长20%。 对于进行高强度体能训练的人,甘油可能给他们带来更出色的表现。对于健美运动员来说,甘油可能帮助他们把体表及皮下的水分转移到血液和肌肉中。 植物 据新的研究表明有的植物的表面有一层甘油,可以使植物在盐碱地生存。 中国药典 2010版中国药典修订增订内容  甘油 Ganyou Glycerol 书页号:2005年版二部-68 [修订] 【检查】 易炭化物 取本品5.0ml,在振摇下逐滴加入硫酸5ml,此时温度不得超过20℃,静置时间为1小时,如显色,与同体积对照溶液(取比色用氯化钴溶液0.2ml、比色用重铬酸钾溶液1.6ml与水8.2ml制成)比较,不得更深。 丙烯醛、葡萄糖与铵盐 取本品4.0g,加10%氢氧化钾溶液5ml,在60放置5分钟,不得显黄色或发生氨臭。 【含量测定】取本品0.1g,精密称定,加水45ml,混匀,精密加入2.14%(g/ml) 高碘酸钠溶液25ml,摇匀,暗处放置15分钟后,加50%(g/ml)乙二醇溶液5ml,摇匀,暗处放置20分钟,加酚酞指示液0.5ml,用氢氧化钠滴定液(0.1mol/L)滴定,并将滴定的结果用空白试验校正。每1ml氢氧化钠滴定液(0.1mol/L)相当于9.21mg的C 3 H 8 O 3 。 [增订] 【检查】二甘醇、乙二醇和其他杂质 照气相色谱法(附录V E)测定。 色谱条件与系统适用性试验 用氰丙基苯基二甲基聚矽氧烷为固定液(或极性相近的固定液)的毛细管柱为色谱柱(30m×0.53mm×3μm)程式升温,于100℃维持4分钟,以50℃每分钟升温至120℃,维持10分钟,再以50℃每分钟升温至220℃,维持6分钟;氢火焰离子化检测器,检测器温度为250℃;进样口温度为200℃;载气为氮气,流速为每分钟4.5ml,分流比为10:1。对照品溶液重复进样所得二甘醇和乙二醇峰面积与内标峰面积比值的相对标准偏差均不得大于5%,系统适用性溶液中各成分峰间的分离度应符合要求。 系统适用性试验溶液的制备 取二甘醇、乙二醇、正己醇和甘油适量,精密称定,用甲醇溶解并稀释制成每1ml中含有甘油400mg、二甘醇、乙二醇、正己醇0.1mg的溶液,即得。 内标溶液的配制 取正己醇适量,加甲醇制成每1ml中约含0.5mg的溶液,即得。 对照品溶液的制备 分取二甘醇、乙二醇适量,精密称定,用甲醇溶解并稀释制成每1ml中含有二甘醇、乙二醇各0.5mg的溶液。精密量取5ml,置25ml量瓶中,精密加入内标溶液5ml,用甲醇稀释至刻度,作为对照品溶液。 供试品溶液的制备 取本品约10g,精密称定置25ml量瓶中,精密加入内标溶液5ml,用甲醇溶解并稀释至刻度,作为供试品溶液。 测定法 分别精密量取供试品溶液、对照品溶液和系统适用性溶液各1μl注入气相色谱仪,记录色谱图,按内标法以峰面积计算,供试品含二甘醇与乙二醇均不得过0.025%;如有其他杂质,扣除内标峰按归一化法计算,单个未知杂质不得过0.1%;杂质总量(包含二甘醇、乙二醇)不得过1.0%。 衍生物 甘油是脂肪醇,具有脂肪醇的化学活性;同时又是多元醇,是最简单的三元醇,因此,甘油的化学性质除了脂肪醇的通性外,还有多元醇的性质。具体说甘油可发生的化学反应有:与无机酸、羧酸、酸酐、酰氯等反应生成盐或酯;与醇生成醚;与环氧乙烷环氧丙烷发生加成反应生成聚醚;与碱金属单质或碱金属氢化物发生醇凎反应生成盐;与多元脂肪族羧酸或多元芳香酸发生分子间缩合反应生成聚酯。 注意事项 操作注意事项 密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸菸。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项 储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 安全风险 甘油如果与强氧化剂混合(比如三氯化铬、氯酸钾、高锰酸钾)可能爆炸。在稀溶液中该反应速度较低,有几种氧化产物生成。有光照或与碱式硝酸铋、氧化锌接触时,甘油变黑。 如果有铁污染物掺杂其中,会导致含有苯酚、水杨酸、丹尼酸的混合物颜色变黑。甘油形成一种硼酸复合物(甘油硼酸),它的酸性要强于硼酸。 小鼠口服毒性LD50=31,500mg/kg。静脉给药LD50=7,560mg/kg。 燃爆危险: 本品可燃,具 *** 性。 危险特性: 遇明火、高热可燃。 安全术语 S24/25Avoid contact with skin and eyes. 避免与皮肤和眼睛接触。 S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S39 Wear eye / face protection. 戴护目镜或面具。 风险术语 R36 Irritating to eyes. *** 眼睛。 R20/21/22 Harmful by inhalation, in contact with skin and if swallowed. 吸入、皮肤接触及吞食有害。 R11 Highly flammable. 高度易燃。 国家标准 《甘油》(GB/T 13206-2011)《Glycerines》于2012年9月1日实施,替代GB/T 13206-1991。 《食品添加剂 单、双硬脂酸甘油酯》(GB 1986-2007)《Food additive - Glyceryl mono- and distearate》于2008年6月1日实施,代替GB 1986-1989。

爱撒娇的鱼
聪慧的河马
2026-02-03 22:42:58

乙二胺四乙酸是一种有机化合物,其化学式为C 10 H 16 N 2 O 8 ,常温常压下为白色粉末。它是一种能与Mg 2+ 、Ca 2+ 、Mn 2+ 、Fe 2+ 等二价金属离子结合的螯合剂。由于多数核酸酶类和有些蛋白酶类的作用需要Mg 2+ ,故常用做核酸酶、蛋白酶的抑制剂;也可用于去除重金属离子对酶的抑制作用。

基本介绍中文名 :乙二胺四乙酸 英文名 :Ethylenediamietraacetic acid 别称 :四乙酸二氨基乙烯、托立龙、EDTA 化学式 :C10H16N2O8 分子量 :292.24 CAS登录号 :60-00-4 EINECS登录号 :200-449-4 熔点 :250℃ 水溶性 :0.5g/L(25℃) 密度 :0.86g/cm3 外观 :白色粉末 安全性描述 :S26-61-37/39-36 危险性符号 :Xi 危险性描述 :R36-52/53-36/37/38-36/38基本信息,物化性质,形状描述,贮存运输,用途说明,危险说明,理化性质,用途,配伍禁忌,生产原理,工艺流程,主要设备,操作工艺,质量指标,质量检验,安全措施,EDTA的制备,实验室制法,上游原料,下游产品, 基本信息 英文别名:(Ethylenedinitrilo)tetraacetic acid disodium saltEdetic acid disodium saltEDTA disodium saltEdetic acid~EDTAEDTA,free acid Ethylenediamine tetraacetic acid,free acidEDTA,500 mM Solution,pH 8.0,ULTROL GradeEDTA-SOLUTIONEDTAEdetic acidEDTA ACID 线性分子式:(HOOCCH 2 ) 2 NCH 2 CH 2 N(CH 2 COOH) 2 CAS号:60-00-4 分子量:292.24 分子式:C 10 H 16 N 2 O 8 EINECS登录号:200-449-4 沸点: 540.597°C at 760 mmHg 闪点: 280.743°C 水溶性: 0.5 g/L (25℃) 蒸汽压: 0mmHg at 25°C 危险品标志: Xi:Irritant风险术语: R36/37/38:安全术语: S26:S37/39: 英文别名简称:EDTA 物化性质 熔点:250 °C (dec.)(lit.) 密度:0.86 g/cm 3 折射率:n 20 D 1.363 储存条件:2-8°C 溶解度:3 M NaOH: 100 mg/mL form:crystalline 水溶解性:0.5 g/L (25 ℃) Merck:14,3517 BRN:1716295 稳定性:Stable. Incompatible with copper, copper alloys, nickel, aluminium, strong oxidizing agents, strong bases CAS 资料库:60-00-4(CAS DataBase Reference) NIST化学物质信息:N,N'-1,2-Ethane diylbis-(N-(carboxymethyl)glycine)(60-00-4) EPA化学物质信息:Glycine, N,N'-1,2-ethanediylbis[ N-(carboxymethyl)-(60-00-4) 形状描述 白色粉末,能溶于氢氧化钠、碳酸钠及氨溶液中,能溶于沸水,微溶于冷水,不溶于醇及一般有机溶剂。 贮存运输 密封保存。 用途说明 钙离子络合剂,洗涤剂,血液抗凝剂。生化研究中用作钙螯合剂,消除微量重金属导致的酶催化反应中的抑制作用。 用作洗涤剂、血液抗凝剂及电镀液中作络合剂、pH值调节剂等。 危险说明 危险标志:Xi 危险代码:R36 安全说明:S26-S4 理化性质 白色无臭无味、无色结晶性粉末,熔点250℃(分解)。不溶于醇及一般有机溶剂,能够溶于冷水(冷水速度较慢),热水,溶于氢氧化钠,碳酸钠及氨的溶液中,能溶于160份100℃沸水。其碱金属盐能溶于水。 用途 1、EDTA是一种重要的络合剂。EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。能和碱金属、稀土元素和过渡金属等形成稳定的水溶性络合物。除钠盐外,还有铵盐及铁、镁、钙、铜、锰、锌、钴、铝等各种盐,这些盐各有不同的用途。此外EDTA也可用来使有害放射性金属从人体中迅速排泄起到解毒作用。也是水的处理剂。EDTA还是一种重要的指示剂,可是用来滴定金属镍,铜等 ,用的时候要与氨水一起使用,才能起指示剂的作用。 2、EDTA是一种优良的钙、镁离子螯合剂,用作乳液聚合所用水的螯合剂,除去Ca 2+ 、Mg 2+ 、Fe 2+ 、Fe 3+ 等金属离子。也用作厌氧胶的络合剂,即用EDTA处理甲基丙烯酸双酯,除去过渡金属离子,消除能促进过氧化物分解的影响,对提高厌氧胶稳定性的效果非常好。EDTA钠盐螯合金属离子能提高改性丙烯酸快。固结构胶(SGA)的储存稳定性,用量-3×10 -4 ~6.0×10 -4 。用量1.5%,50~C储存稳定性达360h以上(50℃储存4d,相当于SGA20~C储存1年)。 3、常用于锅炉水质的软化。防止结垢。 配伍禁忌 乙二胺四乙酸与其盐与强氧化剂、强碱和高价金属离子如铜、镍和铜合金配伍禁忌。 乙二胺四乙酸和或其二钠盐显弱酸性,能与碳酸盐反应放出二氧化碳和与金属反应生成氢气。 其它配伍禁忌,如乙二胺四乙酸和乙二胺四乙酸二钠与锌的螯合可使胰岛素失效;用乙二胺四乙酸二钠作为稳定剂的葡萄糖酸钙注射剂与肠道外营养液混合时,肠道外营养液中的微量金属将被螯合;在输液中乙二胺四乙酸二钠与两性霉素和盐酸肼苯哒嗪有配伍禁忌。 生产原理 由乙二胺与氯乙酸钠反应后,经酸化制得; 也可由乙二胺与甲醛、氰化钠反应得到四钠盐,然后用硫酸酸化得到。 工艺流程 原料配比(kg/t) 氯乙酸(95%)2000 烧碱(工业品) 880 乙二胺(70%)290 盐酸(35%) 2500 〔若用硫酸代替盐酸,则用硫酸(98%)1200kg〕 主要设备 成盐锅 缩合反应罐 酸化锅 水洗锅 离心机 贮槽 干燥箱 操作工艺 在800L不锈钢缩合反应罐中,加入100kg氯乙酸、100kg冰及135kg 30%的氢氧化钠溶液,在搅拌下再加入18kg 83%~84%的乙二胺。在15℃保温1h后,以每次10L分批加入30%氢氧化钠溶液,每次加入后待酚酞指示剂不显碱性后再加入下一批,最后反应物呈碱性。在室温保持12h后,加热至90℃,加活性炭,过滤,滤渣用水洗,最后溶液总体积约600L。加浓盐酸至pH不3,析出结晶。过滤,水洗至无氯根反应。烘乾,得EDTA64kg。收率95%。也可以在较高温度条件下进行。例如,采用如下摩尔配比:乙二胺:氯乙酸:氢氧化钠=1:4.8:4.8,反应温度为50℃,反应6h,再煮沸2h,反应产物用盐酸酸化即可得到EDTA结晶,收率82%~90%。 质量指标 含量 ≥90% 铁(Fe) ≤0.01% 灼烧残渣 ≤0.15% 重金属(Pb 2+ ) ≤0.001% 在Na 2 CO 3 中溶解度 合格 质量检验 ⑴含量测定 采用配位滴定法。先将乙二胺四乙酸用KOH配制成pH为12.0~13.0的试样液。以酸性铬蓝K和萘酚绿作混合指示剂,用试样液滴定于120℃干燥过的分析纯CaCO 3 ,当溶液由紫红色变为蓝绿色即为终点。 ⑵灼烧残渣测定 按常规方法进行。 安全措施 ⑴生产中使用氯乙酸、乙二胺等有毒或腐蚀性物品,生产设备应密闭,操作人员应穿戴劳保用品,车间保持良好通风状态。 ⑵产品密封包装,贮于通风、干燥处,注意防潮、防晒,不宜与碱性化学物品混贮。 EDTA的制备 由乙二胺与一氯乙酸在碱性溶液中缩和或由乙二胺、氰化钠和甲醛水溶液作用而得。 实验室制法 称取一氯乙酸94.5g(1.0mol)于1000mL圆底烧瓶中,慢慢加入50%碳酸钠溶液,直至二氧化碳气泡发生为止。加入15.6g(0.2mol)乙二胺,摇匀,放置片刻,加入40%NaOH溶液100mL,加水至总体积为600mL左右,装上空气冷却回流装置,于50℃水浴上保温2h,再于沸水浴上保温回流4h。取下烧瓶,冷却后倒入烧怀中,用浓HCl调节pH至1.2,则有白色沉淀生成,抽滤,得EDTA粗品。精制后得纯品。 上游原料 氢氧化钠-->盐酸-->甲醇-->硫酸-->甲醛-->氰化钠-->乙二胺-->氯乙酸-->浓盐酸-->活性炭(脱色)-->甲醛水溶液-->氯乙酸钠-->氢氰酸-->乙醇酸-->酚酞-->氰化物-->乙二胺四乙酸钠-->乙二胺水溶液-->乙二胺四乙酸四钠 下游产品 L-胱氨酸-->乙二胺四乙酸二钠盐-->N-叔丁氧羰基-N'-(2-氯苄氧羰基)-L-赖氨酸-->L-酪氨酸-->乙二胺四乙酸四钠-->水杨酸钠-->乙二胺四乙酸铁钠-->乙二胺四乙酸钾-->EDTA三钾盐二水合物-->无花果蛋白酶-->乙二胺四乙酸四钠盐二水合物

野性的流沙
坚强的乌冬面
2026-02-03 22:42:58
醋酸仲丁酯

醋酸仲丁酯,即乙酸仲丁酯,也称醋酸另丁酯,为无色、易燃、具有果实味的液体,可溶解多种树脂及有机物,是醋酸丁酯的四种同分异构体之一,它与其它异构体的性能在大多数情况下都相似,其作溶剂最大的区别在于其沸点较常用的醋酸正丁酯和醋酸异丁酯低,蒸发速度较快。因此,与醋酸正丁酯相比,对于慢干要求很严的场合,应用时可能要加入挥发性较低的组分以调节体系的挥发度(如用价廉的1000号/100号芳烃溶剂油取代体系中高价的甲苯/二甲苯),或减少高挥发度溶剂的用量,以达到良好的性能。对于希望快干一点或慢干要求不严的场合,可100%替代醋酸正丁酯(醋酸丁酯)。 醋酸仲丁酯可以与任意比例的 醋酸丁酯/醋酸混丁酯 混溶和混用。

最近几年,由于全球范围内对环境保护的要求日趋严格,人们趋向于减少甲苯、二甲苯、酮类等溶剂的用量,其发展方向是开发和利用树酯涂料和用醋酸酯类等含氧溶剂取代挥发性涂料配方中的芳烃和酮类,而由价格低廉的醋酸仲丁酯正可满足这一趋势。

1 醋酸仲丁酯的应用

(1)取代醋酸丁酯/醋酸正丙酯用作涂料和油墨的溶剂

醋酸仲丁酯对许多物质具有良好溶解性。工业上它可用作制造硝基纤维素漆、丙烯酸漆、聚氨酯漆等的溶剂,这些漆类可用作飞机机翼涂料、人造皮革涂料、汽车涂料等,也可用于赛璐珞制品、铜板纸、漆皮等的制造。它还可用作印刷油墨中的挥发性溶剂和感光材料的快干剂。油墨行业的大佬之一广东中山叶氏油墨已经成功应用。国内知名品牌油漆商大多数都已试用。

(2)作香料

醋酸仲丁酯存在于贻贝、熟香蕉、烘山芋、苹果汁香精等物质中,是这些物质的致香组分之一,因此,可用作果实味香精。

(3)用于医药

醋酸仲丁酯由于其挥发度适中,具有良好的皮肤渗透性,可用作药物吸收促进组分。

(4)作反应介质组分

醋酸仲丁酯和其它两种常用的醋酸丁酯一样,可作为反应介质,如用于合成三烷基胺氧化物,N,N二丙烯基乙二胶等。

(5)作萃取剂组分

醋酸仲丁酯可用作萃取剂组分,用作共沸蒸馏溶剂组分和部分取代以往采用甲苯、二甲苯和甲基异丁基酮等作为溶剂的场合,如萃取分离乙醇丙醇、丙烯酸等物质。

(6)作金属清洗剂组分

醋酸仲丁酯可以用作金属清洗剂组分,清除金属表面的涂料。

2 醋酸仲丁酯的生产及使用情况

目前醋酸仲丁酯的生产方法有两种:醇酯化法和加成法。70年代前,醋酸仲丁酯在国内外均有醇酯化法生产,美国曾有溶剂用醋酸仲丁酯产品。我国50、60年代,在涂料中也用过醋酸仲丁酯, 后来因生产成本过高,改为醋酸正丁酯及其它混合物代替,目前,中国已成功开发醋酸仲丁酯生产新工艺。该工艺流程短、成本低,具有较强的竞争优势,目前,产品已投放湖南、湖北、广东、广西、江苏、浙江、上海、山东、福建、北京等地。

3 醋酸仲丁酯的市场分析及建议

对于醋酸仲丁酯的市场情况,由于影响因素很多,很难估计。据业内人士推测,醋酸仲丁酯用于涂料的需求量可达3000t/a,印墨中的应用量大约2000~4000t/a,取代甲基异丁基酮(MIBK)的用量可达5000t/a。醋酸仲丁酯可良好地取代甲苯(甲苯111℃,仲丁酯112℃,沸点最接近),如果我国对甲苯作溶剂予以限制,其用量将较大。此外,醋酸仲丁酯还可在医药工业中占有一定的用量。因此,在几个较大的应用范围内,我国醋酸仲丁酯的市场潜力可达1万t/a以上。 由于各涂料厂、油墨厂对溶剂配方存在偏爱,虽然醋酸仲丁酯的市场潜力较大,但市场有待于开拓。考虑到醋酸仲丁酯在国内作涂料溶剂已被其它溶剂取代30多年,推向市场需用户调改配方,而各涂料生产厂的偏爱不同,并非所有可用的厂家都愿意改变配方,因此,需要进行用于涂料溶剂的研究开发;对其它应用,也需要开展应用开发。

1.物质的理化常数:

国标编号 32130

CAS号 105-46-4

中文名称 乙酸仲丁酯

英文名称 sec-butyl acetate;2-butanol acetate

别 名 醋酸仲丁酯;醋酸第二丁酯

分子式 C6H12O2;CH3COOCH(CH3)CH2CH3 外观与性状 无色液体,有果子样的香气

分子量 116.16 蒸汽压 2.00kPa/25℃ 闪点:19℃

熔 点 -98.9℃ 沸点:112.3℃ 溶解性 不溶于水,可混溶于乙醇、乙醚等多数有机溶剂

密 度 相对密度(水=1)0.86;相对密度(空气=1)4.00 稳定性 稳定

危险标记 7(中闪点易燃液体) 主要用途 用作溶剂,化学试剂,调制香料

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品对眼及上呼吸道粘膜有刺激性。有麻醉作用。可引起皮肤干燥并可通过完整的皮肤吸收。

二、毒理学资料及环境行为

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:

 

4.实验室监测方法:

羟胺-氯化铁比色法《空气中有害物的测定方法》(第二版),杭士平主编

5.环境标准:

前苏联 车间空气中有害物质的最高容许浓度 200mg/m3

前苏联(1975)水体中有害物质最高允许浓度 0.1mg/L

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:可能接触其蒸气时,应该佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿防静电工作服。

手防护:戴防苯耐油手套。

其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:饮足量温水,催吐。就医。

灭火方法:灭火剂:泡沫、二氧化碳、干粉、砂土。用水灭火无效,但可用水保持火场中容器冷却。