结核分枝杆菌干拢素组合
1生物学性状
菌体为细长略弯的杆菌,经抗酸染色染成红色。本菌营养要求高,专性需氧,最适pH以6.5~6.8为宜。生长缓慢,在固体培养基经2周~4周才出现肉眼可见的菌落。对干燥的抵抗力特别强,对酸碱有较强的抵抗力,易产生耐药性变异及L型细菌。
2 致病性
致病物质
·脂质 ①索状因子 能使结核分枝杆菌相互粘连,在液体培养基中呈索状排列。能破坏细胞线粒体膜,影响细胞呼吸。抑制白细胞游走和引起慢性肉芽肿。②磷脂 能促结核结节的形成。③蜡质D 可激发机体产生Ⅳ型超敏反应。④硫酸脑苷脂 使结核分枝杆菌能在吞噬细胞中长期存活。
·蛋白质 主要成分是结核菌素,和蜡质D结合后能使机体发生超敏反应。
所致疾病
结核分枝杆菌可通过呼吸道、消化道或损伤的皮肤侵入易感机体,引起多种组织器官的感染,其中以肺部感染最常见。
·原发感染 多发生于儿童,为初次感染。机体因缺乏特异性免疫,结核分枝杆菌易由原发病灶扩散。
·继发感染 多发生于成年人,为再次感染。病菌可以是外来的或原来潜伏在原发病灶内的。由于机体已有特异性细胞免疫,故继发感染的特点是病灶多局限,一般不累及邻近的淋巴结。
3生化特征、免疫性与超敏反应
免疫性 主要是以T细胞为主的细胞免疫。
结核的免疫属于感染免疫,又称有菌免疫,即只有当结核分枝杆菌在体内存在时才有免疫力。一旦体内的结核分枝杆菌全部消失,免疫也随之消失。
免疫与超敏反应
结核分枝杆菌所致免疫应答的特点,是机体对结核分枝杆菌产生特异性免疫的同时,也产生了迟发型超敏反应。
结核菌素试验
·结核菌素试剂 旧结核菌素(OT)和纯蛋白衍生物(PPD)。
·试验方法与意义
试验方法 常规试验取PPD5个单位注入受试者前臂屈侧皮内,48h~72h观察结果,
结果判断 如局部出现红肿硬结超过5mm者为阳性。表明曾感染过结核分枝杆菌,但不一定发病。接种过卡介苗者也可呈阳性。结核菌素试验强阳性(红肿硬结超过15mm)者可能有活动性结核,应进一步作其它检查。
局部出现红肿硬结小于5mm者为阴性。阴性反应表明未感染过结核杆菌,但应考虑以下情况:感染初期;老年人反应低下;严重结核病患者或正患有其它传染病如麻疹等;继发性细胞免疫功能低下,如艾滋病或肿瘤等用过免疫抑制剂者。
结核菌素试验主要用于①用于选择卡介苗接种对象及免疫效果的测定,若结核菌素试验阴性则应接种卡介苗,接种后若结核菌素试验已转阳,表明已产生免疫力;②作为婴幼儿结核病诊断的参考;③在未接种卡介苗的人群中作结核分枝杆菌感染的流行病学调查;④用于测定肿瘤患者等细胞免疫功能状况。
许多种类的细菌无需空气,它们或是通过分解(而不是氧化)有机食物,或是从硫酸盐或硝酸盐等氧化合物而不是从空气中获得氧;有的细菌通过转换铁化合物和硫来保持生命的延续,生存下来;有的细菌在沸水中滋生;有的细菌则在0℃以下的盐水中生存;有的细菌在不可思议的高压下存活。看上去,多数细菌的生命是永无止境的,某些细菌的孢子可以休眠几千年。但是没有听说能在硫酸中生存的
硫细菌能够氧化H2S,把S积累在体内。如果环境中缺少H2S,这类细菌就把体内的S氧化成硫酸。
铁细菌是能够氧化硫酸亚铁,并利用氧化释放的能量合成有机物的一类细菌。
氢细菌能够利用分子态氢和氧之间的反应所产生的能,并以碳酸作唯一碳源而生长。
同时,在胃里还有其他食物,碱性的物质,水等等参与反应,胃里的PH值会暂时降到3甚至是4,这种情况下的酸度,角质层抗的更久。而很多虫卵的角质层抵抗酸碱冷热的能力非常优秀,这就给了它们经过胃跑到肠道里的机会。典型的就是猪肉绦虫。
另外胃里是盐酸,记得盐酸本身氧化性要比其他强酸弱一些(常用强酸也就是盐酸硫酸硝酸了)。尤其是硫酸,强硫酸不仅有强氧化性,而且有强吸水性——严格来说是把其他试剂中的氢氧组分按照水的比例夺走。
所以这也是虫卵能够扛过胃酸的原因之一。
极端嗜热菌。
极端嗜热菌(themophiles):能生长在90℃以上的高温环境。
如斯坦福大学科学家发现的古细菌,最适生长温度为100℃,80℃以下即失活。
德国的斯梯特(K. Stetter)研究组在意大利海底发现的一族古细菌,能生活在110℃以上高温中,最适生长温度为98℃,降至84℃即停止生长。
美国的J. A. Baross发现一些从火山口中分离出的细菌可以生活在250℃的环境中。嗜热菌的营养范围很广,多为异养菌,其中许多能将硫氧化以取得能量。
扩展资料:
嗜热菌可划分为3类:
1、兼性嗜热菌:最高生长温度在40~50 ℃之间,但最适生长温度仍在中温范围内,故又称为耐热菌。
2、专性嗜热菌:最适生长温度在40 ℃以上,40 ℃以下则生长很差,甚至不能生长。
3、极端嗜热菌:最适生长温度在65 ℃以上,最低生长温度在40 ℃以上。
随着对嗜热菌研究的广泛开展和进行,新的菌种不断被发现。在这些新发现的菌种中,从意大利一处海底火山口附近的硫磺矿区分离到的一种极端嗜热菌Pyrodictium,最使科学家们感兴趣,它是迄今所知嗜热性最强的细菌。
该处的海床由热矿沉积物和被硫覆盖的洞隙组成,海床上不断喷射出热海水和火山气。海床的温度为103℃。Pyrodictium生长的温度范围85~110℃,最适生长温度为105℃;
pH值范围5~7;对盐分的适应范围很广,为1.2%~12%,最适盐度为1.5%;严格化能无机营养型,利用H2和元素硫形成大量的H2S;
严格厌氧,暴露在氧气下,数分钟后即失活。该菌在保持H2/CO2气相条件、并供给硫的人工合成海水中能够生存,在培养过程中,加入酵母浸出液和蛋白胨可刺激其生长。
嗜热菌种类很多,营养范围亦非常广泛,但多数种类营异养生活,营自养生活的嗜热菌主要包括产甲烷细菌和硫化细菌,不过其中有一部分是混合营养型。
嗜热菌对pH值的要求,有两个绝然不同的范围,嗜酸嗜热的最适pH范围为1.5~4,而另一类群pH范围都是5.8~8.5。极端嗜碱的嗜热菌至今尚未发现。
参考资料来源:百度百科-高温细菌
防治SRB腐蚀的微生物方法有很多种,现介绍如下几种:
(1)生物竞争排斥法
很多微生物在SRB生存的环境中能生长或者能更好的生长,具有相同的生活习性,并且对钢铁无腐蚀作用;由此与SRB争夺生活空间和食物营养,从而抑制了SRB的生长繁殖[16,17]。如表2中的异养反硝化菌[12-17]、脱氮硫杆菌[18]等。
(2)代谢产物抑制法
有些微生物通过产生可抑制SRB生长的代谢产物如短芽胞杆菌分泌的抗生素, 尤其对包在生物膜中的SRB起到很好的效果,由此抑制或杀死SRB。
表2 防治SRB腐蚀的几种微生物
名称
防腐机制
特征
短芽胞杆菌
(Bacillus brevis, 简称B.brevis)
分泌抗生素
严格好氧和兼性厌氧菌,菌细胞杆状,菌体大小(0.7~0.9)×(3~5)μm,革兰氏阳性或可变,以周生鞭毛运动,有芽孢。
假单胞菌
( Pseudomonas fragiK, 简称P.fragiK)
机制不明
(对软钢防腐效果较好)
好氧,直或微弯的杆菌,不呈螺旋状,菌体大小(0.5~1.0)×(1.5~5.0)μm,革兰氏阴性,无芽孢,具单根极生鞭毛,运动活泼。
硫化细菌
(Sulphide-Oxidizing Bacteria简称SOB)
氧化硫化氢、硫代硫酸钠
好氧自养菌
异养反硝化菌
(dinitrobenzene
简称DNB)
竞争生存空间和营养
严格厌氧和兼性好氧菌,菌细胞杆状,革兰氏阴性
脱氮硫杆菌
(Thiobacillus denitrificans,
简称T.denitrificans)
竞争生存空间和营养,氧化硫化氢、硫代硫酸钠
严格自养和兼性厌氧菌,菌细胞球杆状,菌体大小(0.3~0.5)×(1.0~1.5)μm ,单个、成对或短链状排列,具单根极生鞭毛,运动活泼,无芽孢,革兰氏染色阴性。
(3)反代谢产物法
SRB产生的硫化物与Fe2 形成FeS,是铁的腐蚀的一个重要中间产物,而有些微生物如硫化细菌却能将硫化物氧化成没有腐蚀效应的硫酸盐[15]。
(4)生物膜保护法
一些微生物在钢铁表面产生聚合物,形成一层生物膜,从而阻止腐蚀微生物的入侵。
(5)生物阴极保护法
很多钢铁构件通过阴极保护法或牺牲阳极法来防止不受腐蚀,其原理也就是向铁供给电子以阻止Fe变成铁离子;一些微生物却能够产生电子,以此进行生物阴极保护。目前本实验室正从微生物电池着手这一研究。
红霞涂抹的远处群山,机场内,四架喷气式飞机在跑道上滑行,顷刻间,它们迎着喷薄的红日,带着浓浓的“白烟”,展翅飞向蓝天?当飞机升到20000米的高度时,突然,一架战鹰形如醉汉,急剧地向下翻滚,一头钻进大海?这是几十年前发生在美国某飞机场的悲惨一幕?
令人遗憾的是,类似的悲剧还发生过不止一次?为什么一架正常飞行的飞机会突然失控呢?这个问题使美国安保人员及有关科学家大伤脑筋?他们虽然对事件进行了详细的调查,但仍未能找到问题的答案?
后来,有人偶然在一架飞机的燃料箱里发现了一种“锈”物,这无疑是一个重要线索?飞机的燃料及油箱要求是很严格的,怎么会有“锈”物呢?于是,这种“锈”物就被请到了实验室,经过化验后问题终于真相大白?原来,这罪魁祸首就是小不点儿的细菌?细菌能有这么大的能耐吗?竟能吃掉现代化的喷气式飞机?
这是一种嗜硫细菌,当它在燃料箱体上驻扎之后,就会在那里繁衍生息,以飞机燃料中的硫黄为食,然后,排出代谢产物——硫酸,腐蚀箱体,或通过输油管损害发动机零件,从而造成人们不易觉察的“内伤”,以致造成机损人亡的惨剧?这事提醒人们,飞机上千万不能让嗜硫细菌“光顾”?
嗜硫细菌