乙醇胺和水的反应属于水解吗
不是,%是以前的浓度表示方法。现在不能用了。
如果溶质是固体、溶剂是液体,如20%氯化钠水溶液,则是20g氯化钠溶于100ml水,如果溶质、溶剂都是液体,如20%三乙醇胺水溶液,则是20ml三乙醇胺,加水至100ml。 三乙醇胺与油酸反应属于酸碱中和反应,只要三乙醇胺的量是足够的,就能使油酸反应完全,反应过程中,升温到60℃-80℃,并进行必要的搅拌,就可以加快反应速率,不需要使用催化剂,溶解后不水解需要添加那些助剂——加三乙醇胺效果很好,还可以加些价格便宜的Ca2+、Mg2+的络合剂(如:柠檬酸),另外注意:尽可能地降低水中盐分的含量
不是,%是以前的浓度表示方法。现在不能用了。如果溶质是固体、溶剂是液体,如20%氯化钠水溶液,则是20g氯化钠溶于100ml水,如果溶质、溶剂都是液体,如20%三乙醇胺水溶液,则是20ml三乙醇胺,加水至100ml。 三乙醇胺与油酸反应属于酸碱中和反应,只要三乙醇胺的量是足够的,就能使油酸反应完全,反应过程中,升温到60℃-80℃,并进行必要的搅拌,就可以加快反应速率,不需要使用催化剂,溶解后不水解需要添加那些助剂——加三乙醇胺效果很好,还可以加些价格便宜的Ca2+、Mg2+的络合剂(如:柠檬酸),另外注意:尽可能地降低水中盐分的含量
农药的水解是一个化学反应过程,是农药分子与水分子之间发生相互作用的过程。农药水解时,一个亲核基团(水或OH-)进攻亲电基团(C、P、S等原子),并且取代离去基团(Cl-、苯酚盐等)。
杀螟硫磷在正丁胺、乙醇胺和氨基乙酸乙酯等三个含氮亲核试剂作用下的水解反应机理如:
杀螟硫磷与Nu(亲核试剂)的水解反应机理
由该反应可以看出,正丁胺和乙醇胺的亲核进攻是碱催化的,氨基乙酸乙酯的取代反应不是碱催化的。
又如,在弱酸性条件下所有磺酰脲类除草剂的主要水解反应是磺酰脲桥的裂解。
磺酰脲类除草剂的水解机理
铝三角的具体化学方程式是:
Al3+和Al(OH)3的互转:
Al3+ + 3OH- = Al(OH)3 ↓ Al(OH)3 + 3H+ = Al3+ + 3H2O }
Al(OH)3 和AlO2-的转化:
Al(OH)3+ OH- = AlO2- + 2 H2O AlO2- + H+ + H2O = Al(OH)3↓}
Al3+和AlO2-的转化:
Al3+ + 4 OH- = AlO2- + 2 H2O AlO2- + 4 H+ = Al3++ 2 H2O }
其反应式:
水铝氧有:
(1)在40~60℃,pH>12的条件下,向铝酸钠水溶液吹入二氧化碳;铝酸钠水溶液里不加或添加水铝氧晶种在常温下放置;
(2)Al(OC2H5)3和1%~20%乙醇胺NH2C2H4OH共存,于20~60℃水解,将生成的凝胶熟化几个月等方法。
三羟铝石有:
1、在常温下向铝酸钠水溶液吹入二氧化碳;
2、铝汞齐在常温下水解;
3、Al(OC2H5)3在70℃以下水解;
以上内容参考:百度百科-氢氧化铝
环氧乙烷具有很高的化学活性的,所以才能生产乙醇胺,而乙二醇作为环氧乙烷的水解产物,是没有那么高的化学活性的啊。怎么能反过来又生产乙醇胺了呢?
先看下乙醇胺的合成路线吧。不过你的这个降低成本的思路值得学习,向你学习了
乙酸酐在水中发生水解生成乙酸,在热水中立即反应。乙酸酐可以和醇发生醇解反应生成酯和酸,例如乙酸酐溶于乙醇生成乙酸乙酯和乙酸。
2,这样我们就可以看出,硼酸与单乙的反应更完全一些,水解程度更低。而三乙与硼酸的反应程度略低,较容易水解,但可以提供稳定的ph。
磷脂属于复合脂,是含有磷酸的脂类。根据分子中醇的不同,分为甘油磷脂和鞘氨醇磷脂两大类。甘油磷脂(phosphoglyceride)又称磷酸甘油酯,是磷脂酸衍生物。
磷脂和磷脂酸
甘油磷脂的水解需要磷脂酶(phospholipases)。根据水解的位点,磷脂酶分为四种活性,称为磷脂酶A1、A2、C和D,如下图。另外还有一种磷脂酶B,是同时具有A1和A2 活性,如来自点青霉的磷脂酶。
[图片上传失败...(image-f8f203-1642167664178)] 磷脂酶
因为是按照水解位点分类,所以每一类磷脂酶都有很多种。比如PLA2,已经鉴定出至少30种,一般分为六大类:分泌型磷脂酶A2(sPLA2)、胞质型PLA2(cPLA2)、不依赖钙的PLA2(iPLA2)、PAF乙酰水解酶(AH PLA2)、溶酶体PLA2(LPLA2)和脂肪特异PLA2(AdPLA2)。
其中分泌型PLA2是Ca2+依赖的低分子量蛋白质,参与许多过程,包括类花生酸(如前列腺素等)的产生、宿主防御和炎症反应等。溶酶体PLA2优先水解被氧化的磷脂,参与与肺泡表面活性物质代谢,还与肺部宿主防御相关(Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jun1864(6):932-940.)。
磷脂被PLA1或PLA2水解除去一分子脂肪酸后生成的产物称为溶血磷脂(lysophospholipid,LP),因为它含有一个疏水烃链和一个极性磷酸基团,是强去污剂,可破坏细胞膜,使红细胞破裂而发生溶血。某些蛇毒含PLA2,进入猎物血液后催化产生LP,所以有剧毒。
LP最初被认为只是磷脂合成的普通中间体。但后来的研究表明,LP可以表现出类似于细胞外生长因子或信号分子的生物学特性。比较重要的LP包括溶血磷脂酰胆碱(LPC)、溶血磷脂酸(LPA)和某些鞘磷脂。有研究表明,它们可通过激活PPARγ途径参与动脉粥样硬化、血管性痴呆和脊髓损伤等疾病过程(Int J Mol Sci. 2017 Dec18(12): 2730.)。
溶血磷脂介导的PPARγ信号途径。引自Int J Mol Sci. 2017 Dec18(12): 2730.
溶血磷脂被溶血磷脂酶等继续水解,最终生成甘油、X基团(或称碱基)和磷酸。甘油可参加糖代谢,碱基可用于磷脂再合成,也可分解或转化生成其他物质。
甘油磷脂的合成可以先合成磷脂酸,再连接碱基。例如脑磷脂(磷脂酰乙醇胺,PE)的合成。首先乙醇胺生成磷酸乙醇胺,然后再与CTP生成CDP-乙醇胺,这是其活性形式。磷脂酸水解掉磷酸,生成甘油二酯,最后与CDP-乙醇胺生成脑磷脂,放出CMP。
最后一步由内质网上的磷酸乙醇胺转移酶催化。这是一种硒蛋白,由 SELENOI 基因编码。催化磷脂酸水解的磷脂酸磷酸酶也定位与内质网膜,水解分散在水中的磷脂酸,用于磷脂合成。在肝脏和肠粘膜细胞还有一种可溶性磷脂酸磷酸酶,只能水解膜上的磷脂酸,是用于合成甘油三酯的。
脑磷脂和卵磷脂的合成,引自themedicalbiochemistrypage.org
卵磷脂(磷脂酰胆碱,PC)的合成可以利用已有的胆碱,这个过程与脑磷脂合成类似。胆碱先磷酸化,再连接CDP作为载体,最后与甘油二酯生成卵磷脂。如果要从头合成胆碱,可以将脑磷脂的乙醇胺进行三次甲基化,生成卵磷脂。供体是S-腺苷甲硫氨酸,由磷脂酰乙醇胺甲基转移酶(PEMT)催化。
磷脂酰丝氨酸(PS)可通过PE或PC与丝氨酸的碱基交换生成,由磷脂酰丝氨酸合酶(PTDSS)催化。PTDSS1对PC亲和力更高,而PTDSS2用于催化PE。PS可被PISD催化脱羧生成PE,构成一个转化循环。
除了磷脂之间互相转化之外,磷脂的脂酰基链还可以被水解下来,再换上另一个脂酰基,称为磷脂酰基链重塑。这种现象详细的生理功能还不清楚,推测它可以在分子水平上微调膜脂质的组成,以确保最佳的膜物理性能并维持特定的脂质功能(Biochim Biophys Acta Mol Cell Biol Lipids. 2019 May 27. pii: S1388-1981(19)30076-9.)。
磷脂酰胆碱的脂酰基链重塑反应。引自Biochim Biophys Acta Mol Cell Biol Lipids. 2019 May 27. pii: S1388-1981(19)30076-9.
在磷脂酰肌醇和磷脂酰甘油的合成过程中,CDP被用作二脂酰甘油的载体。由CDP-二脂酰甘油合酶(CDS)催化。此途径最后合成的二磷脂酰甘油(diphosphatidylglycerol,DPG)就是心磷脂(cardiolipin,CL)。
心磷脂的合成,引自themedicalbiochemistrypage.org
心磷脂是线粒体内膜的主要磷脂之一,是线粒体内膜的特征性磷脂。心磷脂的合成是在线粒体内膜上完成的。磷脂酸外膜(OM)转移到内膜(IM),经过CDP二酰甘油(CDP-DG)、磷脂酰甘油磷酸(PGP)和磷脂酰甘油(PG),在IM的基质面上转化为CL。
[图片上传失败...(image-ae14d1-1642167664177)] 心磷脂在线粒体膜上的合成过程。引自Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan1862(1):3-7.
心磷脂与线粒体中多种蛋白复合物的组装和活性有关。呼吸链复合物I至V和溶质载体家族的蛋白质均已显示与CL紧密结合。CL不仅结合于这些蛋白的表面上,也促进它们组装成超复合体,并稳定其结构(Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan1862(1):3-7.)。
乙醇与乙酸酐的反应...展开
圆绿丰
TA获得超过5039个赞
关注
成为第106位粉丝
乙酸酐CH3COO-OCCH3先水解,生成两分子的CH3COOH,然后再与乙醇发生酯化反应。 CH3COO-OCCH3 + H2O → 2CH3COOH 和 CH3COOH + C2H5OH → CH3CO—OCH2CH3 + H2O 两个方程式加起来。 (CH3CO)2O+CH3CH2OH→CH3COOCH2CH3+CH3COOH 酸酐(英文:Anhydrides)是某含氧 酸脱去一分子水或几分子水,所剩下的部分。一般 无机酸是一分子的该酸,直接失去一分子的水就形成该酸的酸酐,其酸酐中决定 酸性的 元素的 化合价不变。而 有机酸是两分子该酸或多分子该酸通过分子间的 脱水反应而形成的。只有 含氧酸才有酸酐。 无氧酸是没有酸酐的。酸酐一般可看作是由酸 脱水而成的 氧化物( 有机酸的酸酐不属于 氧化物)。许多能再与水作用而成原来的酸。根据酸的性质可分为:(1) 无机酸的酸酐,由一个或两个酸分子缩水而成。例如 碳(酸)酐即 二氧化碳CO2、硝(酸)酐即 五氧化二氮N2O5。(2) 有机酸的酸酐,由两个 一元酸分子或一个 二元酸分子缩水而成的 化合物,虽不是氧化物,也称酸酐。例如乙(酸)酐(CH3CO)2O、 邻苯二甲酸酐C8H4O3等。