光伏电站系统效率怎么计算
影响光伏电站系统运行效率的就以下几点:
1,电站所在地点年太阳能辐射强度
2,光伏电池组件角度(面南,角度基本与当地维度相当,具体角度需要计算)
3,光伏组件效率(主要由使用年限决定,时间越长效率越低)
4,电气系统与控制系统效率(影响不大)
光伏系统的能量流路径上通常包含光伏阵列、汇流箱、直流配电柜、并网逆变器、交流配电柜及各环节之间的连接线缆。如下图所示。
基于光伏系统的能量流,在光伏系统设计时需充分考虑一些对光电转换效率影响的重要因素:
1、气象环境因素对光伏组件光电转换效率的影响
太阳能光伏组件长期暴露在自然环境中,风雨雷电等因素都会对太阳能光伏电池产生影响,光照、风力、温度等都会形成对太阳能光伏组件(电池)光电转换效率的改变,有些因素甚至能造成太阳能光伏电池功能和结构的损坏,应在太阳能光伏电站设计工作充分开展气象和环境监测数据的收集。
2、太阳能光伏电池组件倾角对光电转换效率的影响
太阳能光伏组件需要以最佳的角度吸收阳光,这样才能真正起到提高光电转换效率的作用,在不同季节、不同地理位置、不同日照条件下,太阳能光伏组件的最佳角度也会有很大的变化,要根据季节、经纬度和日照时间的变化积极调整太阳能光伏组件的倾角。固定倾角应选择全年综合发电量最大的倾角安装。
3、太阳能光伏组件表面清洁度对光电转换效率的影响
太阳能光伏组件表面清洁度,影响光电转换。需对太阳能光伏组件在环境中受到污染的实际情况进行了解,确定污染物沾染光伏组件表面的情况,特别需要注意大风、强对流和沙尘暴天气对光伏电池表面的影响,再根据当地人工成本确定光伏组件的清洗频率。
4、太阳电池方阵间距设计对光电转换效率的影响
光伏组件表面一旦被遮挡,将会影响电站的发电能力,因此在光伏组件方阵间距设计时,必须要考虑周围建(构)筑物对光伏组件的遮挡以及组件方阵之间的自遮挡问题。
5、MPPT跟踪精度对系统效率的影响
随着辐照度和温度的改变,光伏阵列的输出端电压随之改变,从而光伏阵列的输出功率也将改变。光伏逆变器的最大功率点跟踪(MPPT)目的是使光伏阵列在辐照度和温度改变时仍能获得最大功率输出,因此MPPT的精度很大程度上影响了系统的效率。
6、综合考虑并网系统各环节损耗及系统匹配等因素对效率的影响
光伏阵列在能量转换与传输过程中的损失包括:
组件匹配损失:应避免不同受光条件的组件串联造成的系统损失;
偏离最大功率点损失:如温度的影响、最大功率点跟踪(MPPT)精度等引入的发电损失;
直流线路损失:按有关标准规定,线缆损失需控制在一定范围内;
逆变器的转换损耗: 逆变器的直/交转换过程中因所处运行功率点不同而影响效率;
交流并网环节的损耗:从逆变器输出至高压电网的传输效率,主要考虑变压器效率。
光伏电站系统发电总效率=所有系统产品的效率的乘积,一般光伏项目的发电效率在70~80%左右。
1.太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式:辐射),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。
2.自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
影响太阳能光伏发电效率的因素:自然条件的影响:太阳高度角和地理纬度的影响,太阳高度角可以直接影响太阳的辐射强度,在纬度高的地区太阳的高度角就会越小,太阳的辐射强度就会越弱;在纬度低的地区,太阳高度角就会越大,这样太阳的辐射强度就会越强,因此在纬度低的地区,开发太阳能光伏发电更加具有可行性。大气透明度和海拔高度的影响,
大气的透明度是太阳光透过大气的一个参数,在天空晴朗的时候,大气的透明度就非常的高,太阳光对于地面的辐射就会强一些,反之则少;海拔高度越高时,空气就越稀薄,大气透明度就越大。因此海拔越高,太阳辐射能量也就越大,这些地区就更加适合开发太阳能光伏发电。
日照时数的影响,日照时数也是影响地面太阳能的一个重要因素。一般日照时间长,地面所获得的太阳总辐射量就多。逆变器整机效率对发电效率的影响,大功率的逆变器在满载时,效率必须在百分之九十以上。特别是在低负荷下供电时,仍须有较高的效率。逆变器效率的高低对太阳能光伏发电系统提高有效发电量和降低发电成本有重要的影响。光伏发电系统专用的逆变器在设计中应特别注意减少自身功率损耗,提高整机效率。所以为了提高输出效率,并网逆变器应具有最大功率点跟踪控制功能,随时跟随太阳能辐射能力而变化。此外还能根据日出、日落条件的不同自动进行开与关。
独立户用系统效率:60-65%;
BIPV发电效率:70-75%;
大型并网光伏电站效率:75-80%。
当然跟踪支架系统对光伏组件的发电效率也有很大的提高,单轴倾纬度角跟踪一般可以提高51%,双轴高精度跟踪可以提高56%。
随着技术的发展,组件发电效率、逆变系统、储能系统的效率都会得到大大的提升,尤其是一些大型荒漠发电站因其没有储能系统所以整体效率可以做到85%左右。
发电率不错,太阳能光伏发电发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪声、无污染;太阳能资源分布广泛且取之不尽、用之不竭。
因此,与风力发电、生物质能发电和核电等新型发电技术相比,光伏发电是一种最具可持续发展理想特征(最丰富的资源和最洁净的发电过程)的可再生能源发电技术,具有以下主要优点。
①太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。
②太阳能资源随处可得,可就近供电,不必长距离输送,避免了长距离输电线路所造成的电能损失。
③光伏发电的能量转换过程简单,是直接从光能到电能的转换,没有中间过程(如热能转换为机械能、机械能转换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。
④光伏发电本身不使用燃料,不排放包括温室气体和其它废气在内的任何物质,不污染空气,不产生噪声,对环境友好,不会遭受能源危机或燃料市场不稳定而造成的冲击,是真正绿色环保的新型可再生能源。
⑤光伏发电过程不需要冷却水,可以安装在没有水的荒漠戈壁上。光伏发电还可以很方便地与建筑物结合,构成光伏建筑一体化发电系统,不需要单独占地,可节省宝贵的土地资源。
⑥光伏发电无机械传动部件,操作、维护简单,运行稳定可靠。一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,基本上可实现无人值守,维护成本低。