关于三羧酸循环的问题
以下文字请自己找分子式对应。
根据沈同和王镜岩主编的<生物化学>(第二版下)(抱歉, 较新的第三版我没找到, 不过应该差不多)的叙述, 首先在丙酮酸形成乙酰-CoA的过程中,甲基是保留的,同样还在甲基位置。
然后在合成柠檬酸时,其形成柠檬酸的第二位上的亚甲基。虽然这个分子是一个对称分子,但是在其向α-酮戊二酸的转变过程中,“由于顺乌头酸酶与柠檬酸的结合的不对称,脱水时氢原子仅来自草酰乙酸部分”(P102)。
所以在随后的α-酮戊二酸、琥珀酰CoA、琥珀酸中,C14都将保留在亚甲基中,在延胡索酸中也会位于烯键两边任一个碳原子处。
但是在形成L-苹果酸时,它则可能位于α碳(有羟基的那个)或者是β碳(亚甲基)处。
所以在最后形成草酰乙酸时,C14既可能在α位(羰基)也可能在β位(亚甲基)。
至于它的释放……
根据循环的途径,如果C14一直位于草酰乙酸的α位,那么它不会以CO2的形式释放出去,而是会一直处在循环之中。
但是如果C14一旦处在β位上,那么在下一轮循环过中,它将位于延胡索酸的羧基位置。因为是对称分子,所以在形成L-苹果酸时又会出现不同。
首先是,如果C14出现在L-苹果酸的1号位(就是羟基边上的那个),那么它将在再下一轮的循环中于α酮戊二酸转变成琥珀酰CoA时以CO2的形式脱下。这时是第三个循环了已经。
而如果它出现在L-苹果酸的4号位,那么它将在再下一轮循环中于柠檬酸转变为α酮戊二酸的时候以CO2的形式脱落。这也是第三个循环。
综上所述,丙酮酸甲基处标记的C14会位于草酰乙酸的α位或β位(或者是2号位或3号位)。而至少需要经过3个循环在可以检测出含有C14的CO2的释放。
草酰乙酸一般有三个来源:
1.苹果酸再生为草酰乙酸:三羧酸循环中,生成的苹果酸在脱氢酶的催化下,再生为草酰乙酸。
2.由丙酮酸生成:在羧化酶的催化下,丙酮酸生成草酰乙酸。
3.由磷酸烯醇式丙酮酸(PEP)生成:PEP在羧激酶的催化下,可生成草酰乙酸。
3.天冬氨酸生成:天冬氨酸在转氨酶的催化下,生成草酰乙酸。
去路:
1.生成天冬氨酸:在转氨酶的催化下生成天冬氨酸。
2.间接的去路:三羧酸循环中,每一分子的乙酰CoA需要一分子的草酰乙酸参与,虽然理论上草酰乙酸由苹果酸氧化后再生,但是三羧酸循环中,很多中间产物用于合成脂肪酸和氨基酸等物质,间接消耗了草酰乙酸。
草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。
作为α-酮酸,其酮基碳可受亲核进攻,例如:
草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;
草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;
作为β-酮酸,草酰乙酸稳定性不强,易脱羧。例子有:
苹果酸在苹果酸酶催化下经过草酰乙酸,发生氧化脱羧生成丙酮酸;
糖异生中,草酰乙酸在磷酸烯醇式丙酮酸羧化激酶作用下转变为磷酸烯醇式丙酮酸;
羧化 丙酮酸在丙酮酸羧化酶催化下转化为草酰乙酸,这是三羧酸循环的一个重要回补途径,该反应需要生物素作辅酶,消耗一分子ATP;
苹果酸在苹果酸脱氢酶作用下被NAD+氧化脱氢生成草酰乙酸,再生的草酰乙酸可再次进入三羧酸循环用于柠檬酸的合成。
转化:TCA,乙酰COA进入乙醛酸循环(GAC),脂肪酸合成的原料
从线粒体转到其膜外通过:乙酰COA在线粒体内与草酰乙酸结合生成柠檬酸,柠檬酸可以透过线粒体膜进入细胞质,然后在柠檬酸裂解酶的催化下生成乙酰COA和草酰乙酸
苹果酸(苹果酸脱氢酶)→草酰乙酸。
丙酮酸(羧化酶)→草酰乙酸。
草酰乙酸(转氨酶)→天冬氨酸。
草酰乙酸(磷酸烯醇式丙酮酸羧化激酶)→磷酸烯醇式丙酮酸。
本题出自《2016年农大801植物生理学与生物化学考研真题》,问主是考研党吧o(* ̄︶ ̄*)o准备的时候问主可以参考《中国农业大学801植物生理学与生物化学历年考研真题汇编》这本书,或者加入16中国农业大学考研群 201215580。最后,祝考研顺利!
因是把少量草酰乙酸或苹果酸加入到切碎的鸡胸肌悬浮液中,刺激该制剂消耗氧,当测定氧的消耗量时,其氧的消耗量大约是使加入草酰乙酸或苹果酸完全氧化所需的氧消耗量的7倍
为什么草酰乙酸会刺激氧的消耗
为什么氧的消耗量比加入的草酰乙酸完全氧化所需的氧消耗量大得多?
记住是
最后传递给辅酶NADP。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP带走。一分子NADP可携带两个氢离子。这个NADPH+H离子则在暗反应里面充当还原剂的作用。
植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与【H】及ATP提供的能量反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与暗反应。
(一)光合色素和电子传递链组分
1.光合色素
类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l, 在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。
叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。几类色素的吸收光谱不同,特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。
2.集光复合体(light harvesting complex)
由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。
3.光系统Ⅱ(PSⅡ)
吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。
4.细胞色素b6/f复合体(cyt b6/f complex)
可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。
5.光系统Ⅰ(PSI)
能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。
(二)光反应与电子传递
P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。
2H 2O→O2 + 4H+ + 4e-
在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统Ⅱ。
P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原
以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。
(三)光合磷酸化
一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+ 经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。
ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。
(四)暗反应
C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。
C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。
景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。
[编辑本段]
【发现进程】
古希腊哲学家亚里士多德认为,植物生长所需的物质全来源于土中。
1627年,荷兰人范·埃尔蒙做了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。他没有认识到空气中的物质参与了有机物的形成。
1771年,英国的普里斯特利发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。他做了一个有名的实验,他把一支点燃的蜡烛和一只小白鼠分别放到密闭的玻璃罩里,蜡烛不久就熄灭了,小白鼠很快也死了。接着,他把一盆植物和一支点燃的蜡烛一同放到一个密闭的玻璃罩里,他发现植物能够长时间地活着,蜡烛也没有熄灭。他又把一盆植物和一只小白鼠一同放到一个密闭的玻璃罩里。他发现植物和小白鼠都能够正常地活着,于是,他得出了结论:植物能够更新由于蜡烛燃烧或动物呼吸而变得污浊了的空气。
1779年,荷兰的英恩豪斯证明只有植物的绿色部分在光下才能起使空气变“好”的作用。
1804年,法国的索叙尔通过定量研究进一步证实二氧化碳和水是植物生长的原料。
1845年,德国的迈尔发现植物把太阳能转化成了化学能。
1864年,德国的萨克斯发现光合作用产生淀粉。他做了一个试验:把绿色植物叶片放在暗处几个小时,目的是让叶片中的营养物质消耗掉,然后把这个叶片一半曝光,一半遮光。过一段时间后,用典蒸汽处理发现遮光的部分没有发生颜色的变化,曝光的那一半叶片则呈深蓝色。这一实验成功的证明绿色叶片在光和作用中产生淀粉。
1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。他把载有水绵和好氧细菌的临时装片放在没有空气的暗环境里,然后用极细光束照射水绵通过显微镜观察发现,好氧细菌向叶绿体被光照的部位集中:如果上述临时装片完全暴露在光下,好氧细菌则分布在叶绿体所有受光部位的周围。
1897年,首次在教科书中称它为光合作用。
20世纪30年代,美国科学家鲁宾和卡门采用同位素标记法研究了“光合作用中释放出的氧到底来自水,还是来自二氧化碳”这个问题,得到了氧气全部来自于水的结论。
20世纪40年代,美国的卡尔文等科学家用小球藻做实验:用C14标记的二氧化碳(其中碳为C14)供小球藻进行光合作用,然后追踪检测其放射性,最终探明了二氧化碳中的碳在光合作用中转化成有机物中碳的途径,这一途径被成为卡尔文循环
因为线粒体内膜上缺乏相应的转运蛋白。
然后草酰乙酸跨内膜转运一般有以下几种我简单说一下:
1、苹果酸-天冬氨酸穿梭途径中,草酰乙酸脱氢形成苹果酸进入线粒体基质侧,或转氨形成天冬氨酸从基质侧进入溶胶。
2、三羧酸转运体系,也就是柠檬酸-苹果酸-丙酮酸穿梭途径,草酰乙酸形成苹果酸或进一步形成丙酮酸进入线粒体基质侧,或同乙酰辅酶a合成柠檬酸进入胞质溶胶。
3、乙醛酸循环里草酰乙酸还可以通过多步反应形成琥珀酸进入线粒体,又通过柠檬酸循环形成草酰乙酸。
三羧酸循环的一个环节。是在苹果酸脱氢酶的催化下由苹果酸生成的,它与乙酰辅酶A缩合生成柠檬酸,开始新的循环。在丙酮酸羧化酶的作用下,由丙酮酸与CO2生成,另外,也在转氨酶(EC 2.6.1.1)的作用下由天冬氨酸生成。已知也可作为琥珀酸脱氢酶的抑制剂。
扩展资料:
草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。
作为α-酮酸,其酮基碳可受亲核进攻,例如:草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;作为β-酮酸,草酰乙酸稳定性不强,易脱羧。
例子有:苹果酸在苹果酸酶催化下经过草酰乙酸,发生氧化脱羧生成丙酮酸;糖异生中,草酰乙酸在磷酸烯醇式丙酮酸羧化激酶作用下转变为磷酸烯醇式丙酮酸。
线粒体的化学组分主要包括水、蛋白质和脂质,此外还含有少量的辅酶等小分子及核酸。蛋白质占线粒体干重的65-70%。线粒体中的蛋白质既有可溶的也有不溶的。可溶的蛋白质主要是位于线粒体基质的酶和膜的外周蛋白;不溶的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶。
线粒体中脂类主要分布在两层膜中,占干重的20-30%。在线粒体中的磷脂占总脂质的3/4以上。同种生物不同组织线粒体膜中磷脂的量相对稳定。含丰富的心磷脂和较少的胆固醇是线粒体在组成上与细胞其他膜结构的明显差别。
参考资料来源:百度百科——草酰乙酸