请问UHMW一PE是什么材料,就什么名字!
根据美国菲利普石油公司的划分方法,分子量在150万以上的聚乙烯称为“UHMWPE”既Ultra-high molecular weight PE ,中文称超高分子量聚乙烯。
楼上说的分子量100万是不对的
高密度聚乙烯的分子数量和高分子量聚乙烯的分子数量不同,前者通常在10-50万分子量,后者在100-500万分子量。在使用中,高密度作为防腐型为主,同时耐轻量磨损,高分子量聚乙烯的为耐磨性为主,耐磨损性比碳钢高6-8倍,同时抗冲击性能优良。但是在制作上,高密度聚乙烯加工成型方便,可制作各种内衬,高密度聚乙烯成型困难,加工难度很大,只能做形状简单的部件。
我的QQ号359624395.我也是使用这些材料做产品,对这些高分子材料的一些使用场合和性能有些了解,如果需要可以和我交流。
超高分子量聚乙烯(UHMW-PE英文全称是ultra-high molecular weight polyethylene pipe)是由乙烯、丁二烯单体在催化剂的作用下,聚合而成的平均分子量大于200万的热塑性工程塑料。该材料综合性能可长期在-269至+80℃条件下工作,被称为"令人惊异"的工程塑料,超高分子量聚乙烯工程塑料(UHMW---PE)管道技术在我国日渐成熟,越来越多的工程采用了这种管道,成为一种价格适中性能优良的新型热塑性工程塑料。
【1】极高的耐磨特性,UHMW-PE制品的独特分子结构,使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,钢管的4-7倍。
【2】极高的耐冲击性,在现有的工程塑料中本产品的冲击韧性值最高,本产品按GB1843标准,进行悬臂梁冲击实验达到无破损。
【3】优良的化学稳定性,本产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。
【4】良好的自润滑性,由于本产品内含蜡状物质,且自身润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960),因此不但能运动自如,且保护相关工件不磨损或拉伤。
【5】独特的耐低温性,本品耐低温性能优异,其耐冲击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。
【6】不易结垢性,本品由于摩擦系数小和无极性,因此具有很好的表面非附着性。
【7】耐环境应力开裂性最优弹性模量是PE100的1.5倍以上; 抗疲劳强度>50万次。
关键词:超高分子量聚乙烯 改性 加工应用
超高分子量聚乙烯(UHMW-PE)是粘均分子量大于150万的热塑性工程塑料。国外一些公司生产的超高分子量聚乙烯相对分子质量已高达600万以上,目前德国公司的产品已高达1000万。虽然它的分子结构排列与普通聚乙烯完全相同,但由于它具有非常高的相对分子质量(普通聚乙烯的相对分子质量仅为2万~30万),从而赋予它许多普通聚乙烯没有的优异性能。具有其它塑料无可比拟的耐磨、耐冲击、耐腐蚀、耐低温、自润滑、吸收冲击能和卫生无毒等综合特性,近年来这种新型塑料制品在欧美各国得到广泛使用,需求量越来越大。同样,在我国超高分子量聚乙烯制品应用也越来越广泛,是我国“十五”计划《优先发展的高新技术产业化重点领域指南》的推广项目。
超高分子量聚乙烯优异性能
1.极高耐磨性:UHMW-PE的耐磨性居塑料之冠并超过某些金属,图1为UHMW-PE与其它材料耐磨性比较,这样高的耐磨性以至于用一般塑料磨耗实验法难以测试其耐磨程度,因而采用砂浆磨耗测试装置。UHMW-PE的耐磨性与分子量成正比随着分子量的升高其耐磨性越好.
2.极强耐冲击性:UHMW-PE的冲击强度在所有工程塑料中名列前茅图2表示为与其它工程塑料冲击强度比较,从图2可看出的耐冲击性如此之高,以至于采用通常冲击试验方法难以使其断裂破坏,其冲击优异度随分子量的升高而提高,在分子量为150万时达到最大值,然后随分子量的继续升高而逐渐下降。此外,它在反复冲击后表面硬度更高。
3.优异自润滑性:有极低的磨擦因数(0.05-0.11)故自润滑性优异,从表可以看出的动磨擦因数在水润滑条件下是PA66和POM的1/2,在无润滑条件下仅次于自润滑最好的聚四氟乙烯(PTFE)当它以滑动或转动形势工作时,比钢和黄铜添加润滑剂的润滑性还要好,因此在磨擦学领域被誉为成本性能非常理想的磨擦材料。
4.优良耐化学药品性:具有优良的耐化学药品性,除强氧化性酸液外,在一定温度下和浓度范围内能耐各种腐蚀性介质(酸、碱、盐)及有机介质(荼溶剂除外)在 20℃至80℃的80种有机溶剂中浸渍30d外表无任何反常现象,其它物理性能也几乎没有变化。
5.优异冲击能吸收性:UHMW-PE具有优异的冲击能吸收性,冲击能吸收值在所有的塑料中最高,因而噪声阻尼性很好,具有优良的消音效果。
6.良好耐低温性:UHMW-PE具有优异的耐低温性能,在液氦温度(-269℃)下仍具有延展性,因而能够用作核工业的耐低温部件,值得指出的是,它在液氮中(-196℃)也能保持优异的冲击强度。这一特性是其它塑料所没有的。
7.卫生无毒性: UHMW-PE卫生无毒,完全符合日本卫生协会的标准,并得
到美国食品及药物行政管理局和美国农业部认可,可用于接触食品和药物。
8.不粘性: UHMW-PE表面吸附力非常微弱,其抗粘附能力仅次于塑料中不粘性最好的PTFE,因而制品表面与其它材料不易粘附。
9.憎水性: UHMW-PE吸水率很低,一般小于0.01%,为PA66的1%,因而成型加工前不必干燥,制品在潮湿环境中不会因吸湿而发生尺寸变化。
10.较低的密度:UHMW-PE比其它工程塑料的密度都低,因而其制品非常的轻便。
11.其它性能: UHMW-PE还具有优良的电气像性能比HDPE更优良耐环境应力裂性比HDPE更好的耐疲劳性及耐辐射性能力。
超高分子量聚乙烯纤维是当今世界上第三代特种纤维,强度高达30.8cN/dtex,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将超高分子量聚乙烯(UHMW-PE)纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。超高分子量聚乙烯(UHMW-PE)纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
超高分子量聚乙烯是一种高分子化合物,很难加工,并且具有超强的耐磨性、自润滑性,强度比较高、化学性质稳定、抗老化性能强,所以在辨别真假高分子聚乙烯时,一定要注意它的这几项特性,具体辨别方法如下:
1.称重法则:纯超高分子量聚乙烯制成的产品的比重在0.93-0.95之间,密度较小,能浮于水面。如果不是纯正的聚乙烯材料,将会沉入水底。
2.温度测量:纯正的超高分子量聚乙烯产品,在摄氏200度时是不会熔化, 不会变形,但会变软。如果不是纯正的超高分子量聚乙烯材料在摄氏200度时是会有变形的。
3.目视方法:真正的超高分子量聚乙烯表面平整、均匀、光滑而且切面密度非常均匀,如果不是纯正的聚乙烯材料色泽暗淡而且密度不匀。
4.边缘测试法:纯正的超高分子量聚乙烯翻边端面圆润、均匀、光滑,如果不是纯正的聚乙烯材料翻边端面有裂纹,且在加热后翻边时会出现掉渣现象。
由于超高分子量聚乙烯(UHMW-PE)熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。超高分子量聚乙烯(UHMW-PE)的加工技术得到了迅速发展,通过对普通加工设备的改造,已使超高分子量聚乙烯(UHMW-PE)由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 1.压制烧结
(1)压制烧结是超高分子量聚乙烯(UHMW-PE)最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法
(2)超高速熔结加工法,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。
2.挤出成型
挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。
60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。我国于1994年底研制出Φ45型超高分子量聚乙烯(UHMW-PE)专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。
(3)注塑成型
日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了超高分子量聚乙烯(UHMW-PE)的螺杆注塑成型工艺。我国1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用超高分子量聚乙烯(UHMW-PE)托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。
(4)吹塑成型
超高分子量聚乙烯(UHMW-PE)加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。超高分子量聚乙烯(UHMW-PE)吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 1. 冻胶纺丝
(1)发展过程
以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的超高分子量聚乙烯(UHMW-PE)纤维。
(2)纺丝过程
超高分子量聚乙烯(UHMW-PE)冻胶纺丝过程简述如下:溶解超高分子量聚乙烯(UHMW-PE)于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此超高分子量聚乙烯(UHMW-PE)大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中超高分子量聚乙烯(UHMW-PE)折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。
(3)应用
超高分子量聚乙烯(UHMW-PE)纤维是当今世界上第三代特种纤维,强度高达30.8cN/dtex,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将超高分子量聚乙烯(UHMW-PE)纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。超高分子量聚乙烯(UHMW-PE)纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
2. 润滑挤出(注射)
润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。
(1)自润滑挤出(注射)
超高分子量聚乙烯(UHMW-PE)的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。
有专利报道:将70份石蜡油、30份超高分子量聚乙烯(UHMW-PE)和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。
(2)共润滑挤出(注射)
超高分子量聚乙烯(UHMW-PE)的共润滑挤出(注射)有两种情况,一是采用缝隙法将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分。
如:生产超高分子量聚乙烯(UHMW-PE)薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对超高分子量聚乙烯(UHMW-PE)进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。
玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,超高分子量聚乙烯(UHMW-PE)仍有相当高的冲击强度。 超高分子量聚乙烯(UHMW-PE)树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。
为了解决超高分子量聚乙烯(UHMW-PE)的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是2.2.2中介绍的润滑挤出(注射)。 共混法改善超高分子量聚乙烯(UHMW-PE)的熔体流动性是最有效、最简便和最实用的途径。这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,超高分子量聚乙烯(UHMW-PE)树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。
(1)与低、中分子量PE共混
超高分子量聚乙烯(UHMW-PE)与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善超高分子量聚乙烯(UHMW-PE)的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使超高分子量聚乙烯(UHMW-PE)共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利指出,在超高分子量聚乙烯(UHMW-PE)/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。
(2)共混形态
超高分子量聚乙烯(UHMW-PE)的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的超高分子量聚乙烯(UHMW-PE)/LDPE共混物,两组份各自结晶,不能形成共晶,超高分子量聚乙烯(UHMW-PE)基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。
Vadhar发现,当采用两步共混法,即先在高温下将超高分子量聚乙烯(UHMW-PE)熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的超高分子量聚乙烯(UHMW-PE)/LLDPE共混物。
(3)共混物的力学强度
对于未加成核剂的超高分子量聚乙烯(UHMW-PE)/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。
用于超高分子量聚乙烯(UHMW-PE)的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。
我国制备了一种有效的流动剂(MS2),添加少量(0.6%~0.8%)就能显著改善超高分子量聚乙烯(UHMW-PE)的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。
另外,用苯乙烯及其衍生物改性超高分子量聚乙烯(UHMW-PE),除可改善加工性能使制品易于挤出外,还可保持超高分子量聚乙烯(UHMW-PE)优良的耐摩擦性和耐化学腐蚀性;1,1-二苯基乙炔、苯乙烯衍生物、四氢化萘皆可使超高分子量聚乙烯(UHMW-PE)获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。
我的是在山西中科天罡公司买的,生物材料用的。价钱看你用什么样的分子量
500万的是25元每千克。(不是广告)
祝你好运
超高分子量聚乙烯板材可做各种机械的零部件,包括食品机械的齿轮、蜗轮、蜗杆、轴承。化工中做泵、阀门、档板、滤板。下面我们就一起来了解下超高分子量聚乙烯板材的用途有哪些吧。
超高分子量聚乙烯板材的用途有哪些
超高分子量聚乙烯板材可做各种机械的零部件,包括食品机械的齿轮、蜗轮、蜗杆、轴承。化工中做泵、阀门、档板、滤板。医疗上,还可用于心脏瓣膜、短形外科零件,人工关节及节育植入体。体育上做滑冰地板、滚地球道、滑雪板、机动雪橇零件。超高分子量聚乙烯可以做高模量纤维,制造防弹衣、飞机座椅、海运、渔业用绳索等。
超高分子量聚乙烯具有许多优异的性能,然而如此优异的工程塑料却很少有人知道它的存在,这主要是由于以前对超高分子量聚乙烯的熔体特性研究不足,加工方法基本上还停留在落后的压制一烧结工艺上。近年来,随着超高分子量聚乙烯加工技术的不断发展,其制品已在许多领域中获得了成功的应用。
应用范围与聚酰胺、聚四氟乙烯相近,耐磨性超过碳钢,做齿轮、轴承、轴瓦、星轮、阀门、泵、导轨、密封填料、设备衬里、滑变板、人工关节等,纤维作防弹衣、绳索等。
超高分子量聚乙烯板材分类
食品级—白色:符合FDAFDA/USDA和3-A乳品指南。是优秀的高耐磨材料。
增强级—黑色:添加特殊非高高分子材料改性而成,磨擦系数和抗静电性能得到提高,在灰尘较多部件需要润滑的场所中使用非常有效。
抗静电级—黑色:用于容易积累静电的部件。
允许电流的部分传输,从而可以消除静电积累。
含油级—绿色:符合FDA/USDA,适用于食品和制药行业。含有油性添加剂,用来润滑接触的表面。适用于须减少磨擦阻力的转动件。不建议使用在灰尘多的环境中。
超高分子量聚乙烯板材的特点
1高耐磨性:在目前所有是工程塑料中UHMW-PE的耐磨性能最好,最引人注目。分子量越高材料就越耐磨,甚至超高许多金属材料(如碳钢、不锈钢、青铜等)。例如UHMW-PE管,在强腐蚀和高磨损条件下使用寿命是刚管的4-6倍,而且提高输送效率20%。充分展现了“节能、环保、经济、高效”的优越性。
2耐腐蚀性:在堿液中不受腐蚀,在75%的浓硫酸、20%的硝酸中能稳定,它对海水、液体洗涤剂也很稳定。
3极低的摩擦系数:静摩擦系数为007,自润滑性良好,是一种理想的轴承,轴套、滑块、衬里材料。选用UHMW-PE最为设备的摩擦部件,除可提高耐磨寿命外,还可以收到节能效果。
4抗冲击性:抗冲击性居塑胶之首,无论是外力强冲击,还是内部压力波动,都难以使其开裂。其冲击强度是尼龙66的10倍,
聚氯乙烯的20倍,聚四氟乙烯的8倍,特别是在低温环境,其冲击强度反而达到最高值,其柔韧性能为输送系统提供了极为安全可靠的保障。
一、UPE,Ultra-high molecular Weight Polyethylene的英文缩写,或写成UHMW-PE,即超高分子量聚乙烯。是指分子量在150万的线性结构聚乙烯,是综合性能最好的工程塑料。
二、特性:
1、UPE的耐磨、耐冲击、耐腐蚀、自润滑、吸收冲击能—这五个性能是现有塑料中最好的。
2、UPE耐磨性居塑料之冠,是普通碳钢的8倍。
3、UPE冲击强度列塑料之首,是ABS的6倍。
4、UPE自润滑性能相当于聚四氟乙烯,价格只有其1/8。
5、UPE耐腐蚀性能强,化学技术性能高。
6、UPE不粘性好,制品表面与其它材料不易相附。
7、UPE卫生无毒,耐低温,在液氮下具有延展性。
8、UPE的缺点是:胶粘性差,流动性差。
三、应用:因其所具有的优越性能,目前已在国民工业的各个部门得到了广泛应用。UPE已在纺织、造纸、包装、运输、机械、化工、采矿、石油、农业、建筑、电气、食品、医疗、体育等领域得到广泛应用,并开始进入常规兵器、船舶、汽车等领域。