气相色谱法测定氯乙醇看不见峰是怎么回事
色谱不出峰有几个原因要去排查:
1.检测器对被测物没有响应,尤其是选择性的检测器类似FPD或NPD对这类化合物可能没有响应。
2.灵敏度不够,导致无响应,需加大进样浓度。
3.色谱柱对被测物无吸附,跟溶剂一起出峰了,氯乙醇是极性的化合物应选用极性柱做分离柱。
4.检测器故障,先用其他化合物走一下排除检测器是否有问题。
4.样品没有进入进样口,可能是注射器没有吸入样品,也可能注射器没有把样品打入进样口,需要仔细观察进样器的进样程序。
氯乙醇 取氯乙醇适量,精密称定,加正己烷溶解并定量稀释成每1ml中约含22μg的溶液;精密量取2ml,置盛有正己烷24ml的分液漏斗中。精密加水2ml,振摇提取,取水溶液作为对照溶液。另取胶囊适量,剪碎,称取2.5g,置具塞锥形瓶中,加正己烷25ml,浸渍过夜,将正己烷液移至分液漏斗中,精密加水2ml,振摇提取,取水溶液作为供试品溶液。照气相色谱法(Ⅴ E)检查,用10%聚乙二醇-20M)柱,柱长2m,在柱温110℃下测定。供试品溶液中氯乙醇的峰面积或峰高不得超过对照溶液峰面积或峰高。(此项适用于环氧乙烷灭菌的工艺)
文档序号:15228680发布日期:2018-08-21 19:05阅读:2818来源:国知局
导航: X技术>最新专利>测量装置的制造及其应用技术
本发明属于水处理技术领域,特别是涉及一种水中2-氯乙醇顶空气相色谱-质谱联用测定方法。
背景技术:
2-氯乙醇是无色或淡黄色液体,微具醚香味;分子量为80.52;蒸汽压为1.33kpa/30.3℃;闪点为60℃;熔点为-63℃;沸点为129℃;溶于水、酸、乙醚;相对密度(水=1)为1.20;相对密度(空气=1)为2.78;是重要的有机溶剂和有机合成原料,常用于制造乙二醇、环氧乙烷,及医药、染料、农药的合成等。
2-氯乙醇与硫化钠反应可得硫代二甘醇,是纺织品的印染溶剂,亦是还原染料,聚亚基二氯的增塑剂。2-氯乙醇可合成二氯乙基缩甲醛,是生产聚硫弹性体的原料之一。2-氯乙醇与乙炔反应可生成氯乙基乙烯基醚,是生成聚丙烯酸性体的原料。在医药工业中,2-氯乙醇用于磷酸哌嗪、呋喃唑酮、四咪唑、驱蛔灵和普鲁卡因等的生产,在农药生产中用作杀虫剂1059的原料。由2-氯乙醇经氨化、氯化可得2-氯乙胺盐酸盐,这是一种药物中间体,用于制造驱虫净。
2-氯乙醇有毒,对人体眼、上呼吸道具刺激性,其蒸气比空气重,能与水互溶,由于医药、染料、农药等领域生产用水量大,产生大量含2-氯乙醇的废水,直接排放对环境、人体健康有巨大危害,因此,需要对废水进行处理。
水中2-氯乙醇含量的测定对其处理工艺设计至关重要,目前,见诸报道的测定水中2-氯乙醇的检测方法均为气相色谱法。例如中国专利申请cn201410512679.2公开了一种快速检测明胶中的2-氯乙醇的方法,通过使用聚乙二醇2000填充色谱柱db-wax检测2-氯乙醇,可缩短操作时间。其它一些气相色谱法检测2-氯乙醇主要区别在于所选用的仪器型号、柱子类型不同。
然而,单纯的气相色谱法检测2-氯乙醇仍然存在响应值低,灵敏度不够高的缺点。因此,本发明基于现有技术的缺陷,开发出一种水中2-氯乙醇顶空气相色谱-质谱联用测定方法,该方法采用顶空气相色谱-质谱联用,能够有效的提高响应值,缩短检测时间,提高检测灵敏度。
技术实现要素:
本发明的目的在于提供一种水中2-氯乙醇顶空气相色谱-质谱联用测定方法,使用毛细管色谱柱,响应值大,检测时间短,灵敏度高。
为了实现上述目的,本发明采用的技术方案为:
一种水中2-氯乙醇顶空气相色谱-质谱联用测定方法,包括如下步骤:
1)样品溶液的配制:在顶空瓶中加入水样和氯化钠密封;
2)标样溶液的配制:在顶空瓶中加入不同浓度的2-氯乙醇和氯化钠密封;
3)绘制标准曲线:采用顶空气相色谱-质谱联用对步骤2)配制的标样溶液进行分析,以浓度为横坐标,峰面积为纵坐标绘制标准曲线;
4)对样品溶液进行检测:采用顶空气相色谱-质谱联用对样品溶液进行分析,得到峰面积,将峰面积代入标准曲线的回归方程中,得到水中2-氯乙醇的浓度。
进一步地,所述步骤2)中的2-氯乙醇溶液浓度分别为1mg/l、5mg/l、10mg/l、50mg/l、100mg/l、500mg/l。
进一步地,所述顶空气相色谱-质谱联用中顶空进样器的平衡温度为60~90℃,平衡时间为30~40min;进样一次,每次进样量1ml;定量环/压力控制阀温度为80~110℃;传输线温度为120~160℃。
进一步地,所述顶空气相色谱-质谱联用中气相色谱中色谱条件为:进样口温度200℃,柱温40℃,保持3min,再以10℃/min升至200℃,保持1min,以20:1的分流比进样;载气为高纯氦气;柱流量1ml/min。
进一步地,所述顶空气相色谱-质谱联用中质谱条件为:电离方式ei,离子源温度230℃;四级杆温度150℃;辅助接口温度280℃;电子轰击电压70ev;sim和扫描模式检测扫描;sim模式定量离子为31,定性离子为43、49、80。
进一步地,氯化钠的用量为每个样品3~4g,准确量取并加入10ml标准溶液或样品后,振摇片刻,使氯化钠充分溶解。在顶空瓶中添加氯化钠可提高2-氯乙醇在顶空相中的浓度以提高实验灵敏度。
作为上述技术方案的优选,色谱柱选择db-5ms型毛细管色谱柱或其他等效色谱柱。
作为上述技术方案的优选,色谱柱为db-5ms毛细管色谱柱时,平衡温度为80℃,平衡时间为40min,定量环/压力控制阀温度为100℃;传输线温度为150℃。
作为上述技术方案的优选,氯化钠的用量为每个样品4g,标准溶液或样品体积为10ml。
作为上述技术方案的优选,检测步骤后还包括加标验证实验:在待测样品中加入2-氯乙醇,重复步骤4)进行检测,测定2-氯乙醇的含量,算出加标回收率,以确定实验的精确可靠性。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明所述的2-氯乙醇含量的检测方法较为灵敏,检出限低,为0.45mg/l;
(2)本发明所述的2-氯乙醇含量的检测方法抗干扰能力强,质谱可以用sim模式对2-氯乙醇进行检测,专属性好;
(3)本发明所述的2-氯乙醇含量的检测方法适用范围广,可用于检测复杂待测物中的2-氯乙醇的含量。
附图说明
图1水中2-氯乙醇的sim总离子流图;
图2水中2-氯乙醇的scan总离子流图;
图3水中2-氯乙醇测定在保留时间为2.740min的质谱图;
图4水中2-氯乙醇测定的工作曲线图;
图5对位酯废水在保留时间为2.740min的质谱图。
具体实施方式
以下具体实施例是对本发明提供的方法与技术方案的进一步说明,但不应理解成对本发明的限制。
在以下实施例中,顶空气相色谱-质谱联用中色谱条件为:进样口温度200℃,柱温40℃,保持3min,再以10℃/min升至200℃,保持1min,以20:1的分流比进样;载气为高纯氦气;柱流量1ml/min。
电离方式ei,离子源温度230℃;四级杆温度150℃;辅助接口温度280℃;电子轰击电压70ev;sim和扫描模式检测扫描。
氯化钠的用量为每个样品4g每个样品。
实施例1本实施例说明检出范围及检出限
标准曲线的测定:
每个顶空瓶中称取4g氯化钠。
称取0.9950g2-氯乙醇,用去离子水稀释定容至100ml,摇匀,制得浓度为9950mg/l的标准储备液,然后取10ml储备液用去离子水稀释定容至100ml,制得995.0mg/l的标准使用液,然后用去离子水分别稀释1000、200、100、20、10、2倍,得到浓度为0.995mg/l、4.975mg/l、9.95mg/l、49.75mg/l、99.75mg/l、497.5mg/l的标准溶液,分别准确取样10ml于含氯化钠的顶空瓶中,振摇片刻,使氯化钠充分溶解。
检测各浓度标准样品,得水中2-氯乙醇的sim总离子流图,见图1;水中2-氯乙醇的scan总离子流图,见图2;2.740min的质谱图,见图3;如图可知,2-氯乙醇的保留时间为2.740min。
2-氯乙醇的定量离子31的峰面积,以样品浓度为横坐标,峰面积为纵坐标,拟合得到浓度与峰面积对应的标准曲线(见附图4),线性方程为y=14467x-6590.4,r2=1。
检出限确定采用噪声法,3倍噪声对应的检出限浓度为0.45mg/l。
实施例2本实施例说明2-氯乙醇含量测定的准确性
标准曲线测定与实施例1相同。
将995.0mg/l的标准使用液稀释50倍,得到实际浓度为19.9mg/l的校正溶液,分别取4个样品,各准确量取10ml水样至含有4g氯化钠的顶空瓶中,振摇片刻后进行分析,得到定量离子31的峰面积分别为281309、281294、281300、281289,将平均值281298代入上述标准曲线中,得2-氯乙醇浓度为19.8997mg/l,计算得实际回收率为100.0%,说明本发明方法准确可靠。
实施例3本实施例说明对位酯生产废水中2-氯乙醇含量的测定
标准曲线测定与实施例1相同。
首先,对位酯生产废水用去离子水稀释1000倍,准确量取10ml水样至含有4g氯化钠的顶空瓶中,振摇片刻后进行分析。得到样品在2.740min处质谱图如图5,可知,2.740min左右的峰为2-氯乙醇的峰。
定量离子31的峰面积为342854,带入上述标准曲线得到样品中2-氯乙醇浓度为24.15mg/l,乘以样品的稀释倍数,可得原水样中2-氯乙醇浓度为24150mg/l。
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。
完
液体压强产生原因:受重力、且有流动性。
影响因素:
1.由于液体具有流动性,它所产生的压强具有如下几个特点:
(1)液体除了对容器底部产生压强外,还对“限制”它流动的侧壁产生压强。固体则只对其支承面产生压强,方向总是与支承面垂直。
(2)在液体内部向各个方向都有压强,在同一深度向各个方向的压强都相等。同种液体,深度越深,压强越大。
(3)计算液体压强的公式是p=ρgh。可见,液体压强的大小只取决于液体的种类(即密度ρ)和深度h,而和液体的质量、体积没有直接的关系。
(4)密闭容器内的液体能把它受到的压强按原来的大小向各个方向传递。与重力无关。
由上可以看出,两者区别表现在产生原因以及各自的影响因素等方面。
环氧乙烷。
乙二醇的生产技术主要是石油路线,环氧乙烷直接水合法为工业规模生产乙二醇较成熟的生产方法。环氧乙烷和水在加压(2.23MPa)和190~200℃条件下,在管式反应器中直接液相水合制的乙二醇,同时副产品一缩二乙二醇、二缩三乙二醇和多缩聚乙二醇。
乙二醇的应用
乙二醇为无色、无臭、有甜味的粘稠液体,可用于制造树脂、增塑剂、合成纤维、化妆品、炸药、溶剂、抗冻剂等。乙二醇具有醇类的化学性质,如能生成醚、酯,能被氧化,能缩合。它与硝酸反应生成乙二醇二硝酸酯(一种炸药)。
乙二醇主要用作汽车抗冻剂和飞机发动机致冷剂,另外,还可合成涤纶纤维等高分子化合物。乙二醇二硝酸酯与硝化甘油联合使用可使炸药的冻点降低。乙二醇还可作为药品和塑料的原料及高沸点溶剂。
1)氯醇法
分两步反应,第一步是将乙烯和氯气通入水中,生成2-氯乙醇。第二步是用碱(通常为石灰乳)与2-氯乙醇反应,生成环氧乙烷。
乙烯经次氯酸化生成氯乙醇,然后与氢氧化钙皂化生成环氧乙烷粗产品。
2)氧化法
可分为空气法和氧气法两种。前者以空气为氧化剂,后者用浓度大于95%(体积)的氧气作为氧化剂。此外也有用富氧空气为氧化剂的。氧化法的工业生产流程分为反应、环氧乙烷回收及环氧乙烷精制三个部分。
这两种生产方式都不涉及H2S 气体,所以不排放硫化氢。
乙二醇是危险品,为第一类危险品。
乙二醇(ethylene glycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG。化学式为(CH2OH)2,是最简单的二元醇。乙二醇是无色无臭、有甜味液体,对动物有毒性,人类致死剂量约为1.6 g/kg。
乙二醇能与水、丙酮互溶,但在醚类中溶解度较小。用作溶剂、防冻剂以及合成涤纶的原料。乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,也用于细胞融合;其硝酸酯是一种炸药。
与乙醇相似,主要能与无机或有机酸反应生成酯,一般先只有一个羟基发生反应,经升高温度、增加酸用量等,可使两个羟基都形成酯。如与混有硫酸的硝酸反应,则形成二硝酸酯。酰氯或酸酐容易使两个羟基形成酯。
扩展资料:
乙二醇制法:
一、氯乙醇法
以氯乙醇为原料在碱性介质中水解而得,该反应在100℃下进行。
二、环氧乙烷水合法
环氧乙烷水合法有直接水合法和催化水合法,水合过程在常压下进行也可在加压下进行。常压水合法一般采用少量无机酸为催化剂,在50~70℃进行反应。
三、目前有气相催化水合法
以氧化银为催化剂,氧化铝为载体,在150~240℃反应,生成乙二醇。
四、水和反应制法
环氧乙烷与水在硫酸催化剂作用下进行水合反应,反应液经碱中和、蒸发、精馏即得成品。或者环氧乙烷和水在一定温度和压力下制得乙二醇,同时副产二乙二醇、三乙二醇和多乙二醇。反应液经蒸发浓缩、脱水、精制得合格产品和副产品。
参考资料来源:百度百科—乙二醇