acetal和POM有什么区别吗
1、定义不同
acetal:乙缩醛,危险化学品。无色易挥发液体,有芳香气味。主要用作溶剂,以及用于有机合成和化妆品、香料的制造。人体吸入、口服或经皮吸收,对机体可能产生危害。具有刺激性。另外,对于环境亦有一定危害。
POM:聚甲醛(英文:polyformaldehyde)热塑性结晶聚合物。被誉为“超钢”或者“赛钢”,又称聚氧亚甲基。英文缩写为POM。通常甲醛聚合所得之聚合物,聚合度不高,且易受热解聚。可用作有机化工、合成树脂的原料,也用作药物熏蒸剂。
2、用途不同
acetal:可作溶剂使用,也用于染料、塑料、香料的合成和保护醛基的有机合成中。用作重要的酒类添加剂;用作溶剂使用;用于香料;用作染料中间体;用作树脂增塑剂;
用作镇静剂、催眠剂;用作Grignard反应的溶剂等;制备香料(GB 2760—1996规定为允许使用的食品用香料)和催眠剂的原料。
POM:多聚甲醛为高甲醛含量的固态甲醛,呈固体颗粒状、便于贮存和运输。在较高的温度下能变成甲醛蒸气,易于代替高浓度甲醛参与各种反应,有利于化工、制药等化学合成及其他工业领域的应用,特别是在要求使用无水甲醛作原料的合成方面,用途广泛。
主要有以下几方面农药:合成乙草胺、丁草胺和草甘膦等;涂料:合成高档汽车用漆;树脂:合成脲醛树脂、酚醛树脂、聚缩醛树脂、蜜胺树脂、离子交换树脂等及各种粘合剂;造纸:合成纸张增强剂;铸造:翻砂脱膜剂、合成铸造粘合剂;养殖业:薰蒸消毒剂。
有机原料:用于制备季戊四醇、三羟甲基丙烷、甘油、丙烯酸、丙烯酸甲酯、甲基丙烯酸、N-羟基甲基丙烯酰胺、烷基苯酚、甲基乙烯基酮等。其他:医药及消毒。
3、生产方法不同
acetal:由乙醛和乙醇在无水氯化钙和少量的无机酸存在下作用而得油状物,经无水碳酸钾干燥,再经分馏,收集101-103.5℃馏分,
即为成品,生缩合反应为: CH3CHO+2C2H5OH→(CaCl2)CH3CH(OC2H5)2 精制方法:主要杂质有乙醇、乙醛、三聚乙醛、过氧化物等。精制时可用碱性过氧化氢在40~45℃处理1小时。加入氯化钠到饱和,分出有机层。用无水碳酸钾干燥后过滤,加入金属钠蒸馏。
也可以用碱性过氧化氢在65℃搅拌使醛氧化,然后用水洗涤,无水碳酸钾干燥,过滤,加金属钠蒸馏。
POM:不同的生产工艺可以制造出不同种类的均聚甲醛和共聚甲醛。
均聚甲醛,要制造均聚甲醛,首先要制造无水甲醛。主要方法是首先通过水合甲醛(甲二醇,HCH(OH)2)与乙醇的反应生成甲醛缩(二乙氧基甲烷,CH2(OC2H5)2),再将甲缩醛与水的混合物通过萃取或真空蒸馏的方法脱水,然后通过加热甲缩醛的方式释放其中的甲醛。
此时甲醛在阴离子催化下开始聚合,然后通过乙酸酐进行封端处理,得到稳定的均聚甲醛。
共聚甲醛,要制造共聚甲醛,首先要把甲醛转化为三氧杂环已烷(特别是1,3,5-三氧杂环己烷,又称三聚甲醛)。
参考资料来源:百度百科-pom
参考资料来源:百度百科-乙缩醛
这个,首先看它的官能团
1、分子式为分子式HCON(CH3)2,所以为酰胺。酰胺是一种很弱的碱,它可与强酸形成加合物,如CH3CONH2·HCl,很不稳定,遇水即完全水解。酰胺也可形成金属盐,多数金属盐遇水即全部水解,但汞盐(CH3CONH)2Hg则相当稳定。酰胺
乙氧酰胺苯甲酯
在强酸强碱存在下长时间加热,可水解成羧酸和氨(或胺)。酰胺在脱水剂五氧化二磷存在下小心加热,即转变成腈。酰胺经催化氢化或与氢化铝锂反应,可还原成胺。酰胺还可与次卤酸盐发生反应,生成少一个碳原子的一级胺。
酰胺可以通过羧酸铵盐的部分失水,或从酰卤、酸酐、酯的氨解来制取;腈也可部分水解,停止在酰胺阶段。
低分子液态酰胺如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺是优良的非质子极性溶剂,也可用作增塑剂、润滑油添加剂和有机合成试剂。长链脂肪酸酰胺,如硬脂酸酰胺可作纤维织物的防水剂,芥酸酰胺是聚乙烯、聚丙烯挤塑时的润滑剂。N,N-二羟乙基长链脂肪酸酰胺是非离子型表面活性剂,也是氯乙烯-乙酸乙烯酯共聚物的增塑剂。N-磺烷基取代的长链脂肪酸酰胺是合成纤维的柔软剂。二元羧酸与二元胺缩合聚合形成的聚酰胺是具有优异性能的合成纤维。
肉桂酰胺
酸碱性:酰胺一般是近中性的化合物,但在一定条件下可表现出弱酸或弱碱性。酰胺是氨或胺的酰基衍生物,分子中有氨基或烃氨基,但其碱性比氨或胺要弱得多。酰胺碱性很弱,是由于分子中氨基氮上的未共用电子对与羰基的π电子形成共轭体系,使氮上的电子云密度降低,因而接受质子的能力减弱。这时C-N键出现一定程度的双键性。 然而,氮上的电子云密度降低,却使N-H键的极性增加,从而表现出微弱的酸性。如果氨分子中有两个氢原子被一个二元酸的酰基取代,则生成环状的亚氨基化合物(酰亚胺)。由于两个羰基的吸电子作用,使亚氨基的N-H键极性明显增加,氮上的氢原子较易变为质子,而呈弱酸性。例如:
水解:酰胺在通常情况下较难水解。在酸或碱的存在下加热时,则可加速反应,但比羧酸酯的水解慢得多。 N-取代酰胺同样可以进行水解,生成羧酸和胺。
与亚硝酸反应:酰胺与亚硝酸作用生成相应的羧酸,并放出氮气。
特别的,N,N-二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶。它是化学反应的常用溶剂。纯二甲基甲酰胺是没有气味的,但工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物。名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而二个甲基都位于N(氮)原子上。二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行。 二甲基甲酰胺是利用蚁酸和二甲基胺制造的。二甲基甲酰胺在强碱如氢氧化钠或强酸如盐酸或硫酸的存在下是不稳定的(尤其在高温下),并水解为蚁酸与二甲基胺。
2、由于有羰基,所以一定条件下可以发生以下反应
缩合
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可与羟基发生可逆反应,生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护
与α-氢羟醛
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
卤代
烃基上的反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
加成
与氢氰酸
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇。
与格氏试剂
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
与醇
(3)与醇的加成
常温下羰基可逆反应,与羟基发生可生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护
然后知道了这些反应,自己找到适合自己的试剂和方法就可以去除了。
有什么不会的再问吧
一种固体缓释性防腐阻垢剂(体),把它安装在抽油泵下端,当采出液流过时,它可以缓慢溶解,同时将其中的防腐阻垢有效成分一点点释放出来,达到缓蚀和阻垢的目的。进而可以避免抽油泵被垢层所卡死,延长了检泵周期。文中分析了油井采出液(即油田污水)结垢的各种原因。认为在高PH值情况下,钙、镁离子和硅酸盐离子极易通过吸附、结晶、沉降等过程形成结垢而适宜的温度、较缓的流速又对结垢起到加速的作用。对常用的无机化合物、有机化合物类阻垢剂的阻垢缓蚀机理进行了理论上的分析研究。通过实验确定了固体缓蚀阻垢剂的最佳配方。其中可溶性固体.........共40页
2、绿色阻垢剂的制备
研究了PASP的制备,探讨了各种反应的影响因素,表征了合成得到的产品,进一步对其阻垢性能进行了详细的静态和动态研究,探讨了PASP的阻垢机理及影响因素。主要研究工作如下:1.以马来酸(顺丁烯二酸)和氨水(质量分数25%)为原料,在一定的温度下进行缩合得到聚琥珀酰亚胺,然后在氢氧化钠水溶液的作用下水解成PASP的钠盐。避免了气体氨的使用,优化了合成工艺。分别对合成条件和水解条件进行了单因素研究,利用正交实验方法得到的最佳合成工艺条件为:加料摩尔比马来酸:氨=1:1.3(mol),干燥温度180℃,干燥时间1.5小时,脱水环化温度.........共78页
3、新型水质稳定剂_AADMP_的合成及其阻垢缓蚀性能
根据分子结构优化理论设计并合成了一种新型大分子有机膦羧酸类药剂——2—氨基己二酸—N,N—二甲叉膦酸(AADMP)。它综合了大分子有机膦酸和膦酰基羧酸的缓蚀阻垢剂的共同特点,保持了大分子有机膦酸和膦酰基羧酸两种水处理剂的分子结构特征,同时比低分子有机膦酸的含磷量大大减少,分子中增加了氨基酸基的结构,所以生物降解性能得到了改善,可代替目前使用的低分子有机膦酸类药剂,解决目前有机膦酸类水处理剂含磷量高,不易生物降解带来的环境难题,因此更加符合环保要求,可广泛使用在工业循环冷却水中。2—氨基己二酸、甲醛和亚磷酸在一定的条件下,合成了有机膦羧酸新型阻垢缓蚀剂——2—氨基己二酸—N,N—二甲叉膦酸分析了合成药剂的理化性质,选定甲醇作为.........共58页
4、锅炉水处理中高效阻垢剂
通过挂片法,实验测定了在总硬度为7mmol/L、碱度分别为3、4、5、6mmol/L时,无机阻垢剂碳酸钠(Na_2CO_3)和有机阻垢剂乙二胺四乙酸二钠(EDTA-Na_2)、氨基三亚甲基膦酸(ATMP)的阻垢率。并与有机药剂1,2-亚乙基二膦酸(HEDP)、水解聚马来酸酐(HPMA)和聚丙烯酸钠(PAAS)的阻垢效果进行对比,结果表明有机阻垢剂的阻垢效果远远好于无机阻垢剂。在有机阻垢剂中ATMP的阻垢效果相对较好。在此基础上,选定ATMP作为复合配方的主体有机药剂。通过多组分药剂的复合实验,提出了针对天津市锅炉给水的高效复合阻垢剂配方为ATMP/Na_2CO=20.3/100。同时,通过静态实验法研究了影.........共69页
5、新型高效铜缓蚀阻垢剂研究
针对目前国内大多冷却水含膦水处理药剂污染环境、铜缓蚀剂需要专门预膜剂做预膜处理及多数铜缓蚀剂在以氧化性氯作杀生剂的冷却水体系中缓蚀性能下降等问题,研究开发出一种新型高效的铜缓蚀阻垢剂——CH。通过大量实验筛选优化配方组份,采用挂片失重法、线性极化法、极化曲线法、交流阻抗法、SEM、XPS、静态阻垢法等测试方法对添加CH的去离子水、自来水、含氯气的去离子水等介质中黄铜的腐蚀行为、常见离子对其缓蚀性能的影响、CH的阻垢性能进行了研究,探讨了CH的缓蚀性能、缓蚀机理及阻垢性能、阻垢机理。研究发现,CH缓蚀阻垢剂在被处理.........共72页
6、循环冷却水系统缓蚀阻垢剂的开发
冷却水在经过系统的热交换器、敞开式冷却塔及长短不一的管道传输后,会发生变温、蒸发浓缩、富氧化等一系列变化,造成设备腐蚀和结垢,传热效果大大下降,设备严重耗损。为达到节水节能,延长设备使用寿命的目的,必须解决循环冷却水系统腐蚀与结垢两大问题,添加缓蚀阻垢剂是最常用的解决方法,但目前应用的缓蚀阻垢剂,使用成本高、难以达到越来越严格的环保要求。2—羟基膦酰基乙酸(hydroxyphonoacetic acid,简称HPAA),属低膦系列的有机膦羧酸型水质稳定剂,具有良好的缓蚀阻垢性能。本文在前人研究的基础上,对HPAA的合成方法进行了改进,根据相关缓蚀理论对HPAA的分子结构进行了改进探索参照国家行业标准方法对HPAA的缓蚀性能、阻垢性能和稳定性能进行测试并.........共50页
7、一种耐高温固体缓蚀阻垢剂研制
在油田开发过程中,向油、气井中投加液体缓蚀阻垢剂是常用的一种防腐阻垢措施,但存在以下问题: ①、气举井产液量大且流速高,投加的液体药剂易被快速带出,药剂的有效保护周期短②、从油套环空加入的液体药剂难以到达工作阀以下井段,有30%—50%的管柱得不到保护③、投加液体药剂要动用高压注液泵、容器及载泵车等地面设备设施, 管理难度大④、液体药剂在油管壁上易粘附,造成不必要的损失。论述了以环境友好的聚天冬氨酸为阻垢剂主要成分,咪唑啉酰胺类缓蚀剂为缓蚀剂主要成分的一种固体缓蚀阻垢剂的研制过程。对这种固体缓蚀阻垢剂在水中溶解性、分散性、耐高温性、缓蚀效率、阻垢效率进行了研究分析,并从电化学的角度研究了它在金属表面的吸脱附行为。.........共76页
8、新型缓蚀_阻垢剂研究
设计了以水为溶剂,以马莱酸酐、丙烯酸、次亚磷酸钠为原料,过氧化氢为引发剂,添加催化剂一步合成的低磷有机聚膦羧酸型多元共聚物缓蚀阻垢剂的方法,最佳工艺条件及合适的物料比,并对产品进行了缓蚀阻垢性能的测试,总磷含量(以P0_4~(3-)计≤5%),经静态、动态实验及现场试验结果表明:该产品具有优异的缓蚀阻垢性能,含磷低,符合环保要求,具有广阔应用前景。这是一种分子结构中含有膦酰基和羧基的高分子聚合物,多种功能团的并存,使得该类物质性能兼具有有机聚膦酸聚合物和羧酸聚合物阻垢分散、缓蚀的特点,同时有结构稳定(含有C—P键),含磷低(P0_4~(3-)≤5%),毒性小、对环境无污染、与其它药剂配伍性能好等优点,非常适合在高硬度.........共85页
9、新型聚合物阻垢剂的合成
水处理技术作为一门跨学科跨专业的综合性技术,必将发挥独特和重要的作用。在冷却水中采用水质稳定技术是节水、节能的必由之路。根据丙烯酸聚合物阻垢剂的特点,使用过硫酸铵((NH_4)_2S_2O_8、次亚磷酸钠(Na_2PO_3)构成的氧化——还原型引发剂,水为溶剂,合成了新型可用于处理工业循环冷却水的丙烯酸(AA)—丙烯酰胺(AM)—二甲基二烯丙基氯化铵(DMDAAC)两性型三元共聚物。经试验测定,该产品在具有较高的阻垢效果的同时,还具有一定的杀菌效果,基本实现了一剂多效,通过自由基水溶液聚合生成了一系列两性型共聚物阻垢剂.........共60页
10、循环水系统缓蚀阻垢剂的研究
为明确研究重点,调查了大庆油田天然气公司八座循环水场的运行现状,以及冷换设备的更换情况;分析了循环水场补充水源的水质;从电化学角度和无机化学的难溶盐的离子浓度积及络合理论,简明系统的论述了循环水的结垢和腐蚀机理,以及缓蚀阻垢机理。然后,将研究重点定位于研发循环水交流的缓蚀阻垢剂。在不同温度和不同药剂浓度下,首先系统的评价了单项药剂PBTCA(2—膦酰基—丁烷—1,2,4三羧酸)、HPAA(2—羟基膦酰基乙酸)、HL—1(三元共聚物)和HL—2(三元共聚物)对不同水源水的静态阻垢性能,也系统的评价了这些药剂的缓.........共55页
11、绿色阻垢剂聚环氧琥珀酸的合成及阻垢研究
以顺丁烯二酸酐为原料,通过环氧化和开环聚合的方法合成了一种聚环氧琥珀酸(PESA)。整个合成过程分两步进行研究:环氧琥珀酸(ESA)的合成和聚环氧琥珀酸的合成。在第一步反应中,利用紫外一可见分光光度法测得了产物中未反应的马来酸和副产物酒石酸的含量,间接求出了环氧琥珀酸的收率;通过设计系统研究了各工艺参数对环氧琥珀酸收率的影响,得到了优化的环氧琥珀酸合成工艺。在此基础上,加入引发剂使ESA聚合得到了PESA,同样进行了系统的实验,以产物的最终阻垢率为考察目标,研究了影响因素与产物阻垢性能之间的关系,最终得到了较好的聚环氧琥珀酸的合成工艺。利用红外光谱表征了环氧琥珀酸.............共70页
12、有机阻垢缓蚀剂作用机理的研究
运用量子化学(QC)、分子动力学(MD)方法研究了循环冷却水常用阻垢缓蚀剂的作用机理,共分两大部分。第一部分,结合实验结果及理论模型,确定了方解石、硬石膏、羟基磷灰石这三种常见的成垢晶体作为底物,采用量子化学、分子动力学方法系统地考察了羧酸类均聚及共聚物、多胺基多醚基亚甲基膦酸的阻垢机理,有机膦酸的阻垢缓蚀机理;第二部分,研究了吡啶及其衍生物对铝、BTA及其羧基烷基酯衍生物对铜、咪唑及咪唑啉类衍生物对铁的缓蚀机理。运用MD方法对聚羧酸类阻垢分散剂与方解石、硬石膏、羟基磷灰石晶体的相互作用进行了动态模拟。发现6种聚羧酸分子阻方解石垢的能力强弱依次为AA-MA>HPMA>AA-HPA>PAA>AA-MAE>PMAA.........共175页13、一种用于处理循环冷却水的复合缓蚀阻垢剂
14、用于高温高密度测试液的复合缓蚀剂
15、一种处理中高硬度循环水的复合缓蚀阻垢剂
16、一种处理低硬度循环水的复合缓蚀阻垢剂
17、一种油田用注水缓蚀剂
18、一种铜缓蚀剂及其生产方法
19、内燃机冷却液用缓蚀剂
20、用天然高分子制备缓蚀剂的方法
21、一种铁离子缓蚀剂
22、一种杀菌缓蚀剂
23、一种无磷缓蚀剂及其制备
24、一种用于循环冷却水的缓蚀剂组合物
25、一种用于去离子水质的缓蚀剂组合物
26、复合阻垢缓蚀剂
27、一种适合含氨氮污水回用于循环冷却水的复合阻垢缓蚀剂
28、用于高温酸性介质中的钢铁缓蚀剂及其制备方法
29、黑色缓蚀阻垢剂
30、环保型阻垢剂聚环氧丁二酸及其制备方法
31、环保型阻垢剂聚天冬氨酸的制备方法
32、一种水处理缓蚀阻垢剂及其制备方法
33、表面蒸发空冷专用缓蚀阻垢剂
34、用于锌锰干电池中的代汞缓蚀剂
35、用天然植物胶粉进行氮杂环化合物改性制备酸缓蚀剂方法
36、一种抑制钢铁在10%-25%食盐溶液中腐蚀的新型缓蚀剂
37、用于HCL-H2S-H2O的腐蚀体系中的缓蚀剂
38、一种用于HSn70-1黄铜的绿色环保型缓蚀剂
39、一种抗H2S与CO2联合作用下的缓蚀剂
40、一种抑制碳钢CO2腐蚀的水溶性缓蚀剂及其制备方法
41、一种油田用新型抗CO2腐蚀缓蚀剂
42、一种复合阻垢缓蚀剂及其在含氨氮污水回用于循环冷却水中的应用
43、一种金属缓蚀剂
44、一种除氧阻垢剂及其生产方法
45、一种用于络合铁脱硫溶液的缓蚀剂
46、衣康酸多元共聚高效阻垢剂及制备方法
47、含巯基杂环化合物与碱金属碘化物的复配缓蚀剂
48、两性杀菌缓蚀剂
49、用于水系统的缓蚀剂
50、气相缓蚀剂及其制备方法
51、一种绿色阻垢缓蚀剂
52、一种复合阻垢缓蚀剂及其应用
53、一种复合阻垢缓蚀剂及其应用
54、一种缓蚀剂组合物及其制备和应用
55、多功能缓蚀剂及其制备方法
56、固体缓蚀剂及其制备方法
57、钡锶阻垢剂
58、一种缓蚀剂、制备方法及用途
59、一种用于炼油装置高温部位设备的缓蚀剂
60、长效无磷循环冷却水缓蚀剂
61、井下固体防蜡阻垢剂
62、用于工业设备保护的气相缓蚀剂及其制备方法
63、一种有机或无机盐和复合盐类融雪剂的高效缓蚀剂
64、一种有机或无机盐和复合盐类融雪剂的高效缓蚀剂
65、锅炉用纳米改性高岭土类阻垢剂及制备方法
66、反渗透浓缩液中阻垢剂的电芬顿氧化方法
67、一种电池负极缓蚀剂的配制方法
68、一种含聚环氧琥珀酸的复合阻垢缓蚀剂及其应用
69、一种复合缓蚀阻垢剂及其在循环冷却水处理中的应用
70、一种用于处理循环冷却水的无磷复合阻垢缓蚀剂
71、一种复合无磷水处理缓蚀剂及其制备方法
72、冲灰水管道用阻垢剂
73、工业锅炉蒸汽凝结水系统缓蚀剂及其制造方法
74、一种石油化工工艺过程阻垢剂的评价方法
75、聚苯胺油井缓蚀剂
76、锌材专用气相缓蚀剂
77、生物可降解缓蚀阻垢剂聚天冬氨酸的制备方法
78、生物可降解缓蚀阻垢剂胺基聚环氧丁二酸的制备方法
79、吗啉衍生物气相缓蚀剂的制备方法
80、抗硫化氢腐蚀缓蚀剂
81、一种阻垢剂的制备方法
82、连铸软水、炼钢软水系统用缓蚀阻垢剂
83、一种酸性缓蚀剂
84、高效缓蚀阻垢剂
85、一种缓蚀阻垢剂
86、一种稳定型缓蚀阻垢剂
87、一种缓蚀剂及其制造方法
88、一种含生物法转化的二元酸产物的金属缓蚀剂
89、一种油井酸化缓蚀剂及制备方法
90、一种酸液缓蚀剂及其制备方法
91、酸液缓蚀剂及其制备方法
92、一种天然绿色酸洗缓蚀剂及其应用
93、高效酸洗缓蚀剂
94、耐高温高压缓蚀剂及生产方法
95、一种用于乙烯装置裂解气压缩机的阻垢剂及其使用方法
96、环境友好型硅钢专用气相缓蚀剂
97、低膦复合缓蚀阻垢剂
98、一种用于空调循环水系统的缓蚀剂及其使用方法
99、一种用于空调系统的缓蚀阻垢剂及其使用方法
100、一种用于工业冷却循环水系统的缓蚀剂
101、一种用于工业冷却水系统的缓蚀阻垢剂
102、一种用于锅炉的酸性缓蚀剂
103、用于加氢装置的缓蚀剂
104、一种低磷阻垢缓蚀剂及其应用
105、一种低磷复合阻垢缓蚀剂及其在水处理中的应用
106、硅藻土净水剂
107、尿胺衍生物气相缓蚀剂的制备方法
108、铜缓蚀剂
109、一种用于循环冷却水处理的复合阻垢缓蚀剂
110、一种无磷复合阻垢缓蚀剂及其在水处理中的应用
111、一种用于反渗透系统的复合阻垢剂及其应用
112、含有烷氧基的磷氧酸酯用作钢筋混凝土缓蚀剂的用途
113、磷-氧酸的含烷氧基的酯及其作为缓蚀剂和防火剂的用途
114、聚合物组合物--缓蚀剂
115、一种控制二氧化碳腐蚀的缓蚀剂及其制备方法
116、一种控制电偶腐蚀的缓蚀剂
117、无磷水质阻垢剂
118、用于加氢装置的阻垢缓蚀剂
119、一种抗氧化的锅炉缓蚀阻垢剂
120、多功能锅炉水处理阻垢剂
121、铜锌合金水处理缓蚀剂
122、铜镍合金水处理缓蚀剂
123、缓蚀剂浓度的测定方法
124、锅炉防垢缓蚀剂及其使用方法
125、用于炼油设备的阻垢剂
126、海水中铜镍合金用复合缓蚀剂的制备方法
127、一种新型高温酸化缓蚀剂及其制备方法
128、含磷有机废液在阻垢缓蚀剂上的应用
129、硫基缓蚀剂
130、一种三元协同缓蚀剂
131、一种抑制碳钢在海水中腐蚀的复配型绿色缓蚀剂
132、一种抑制碳钢在海水中腐蚀的成膜型绿色缓蚀剂
133、固体缓蚀剂配方、制备方法及其使用方法
134、一种评定阻垢剂性能的方法
135、用于半导体晶片清洗的缓蚀剂体系
136、高温缓蚀剂
137、一种用于循环冷却水处理的杀菌缓蚀剂
138、钼膦系复合缓蚀阻垢剂及其制备方法
139、一种缓释阻垢剂及其生产使用方法
140、一种用于抑制甲醇溶液中碳钢腐蚀的复合缓蚀剂及其应用
141、湿法磷酸生产用阻垢剂
142、基于多胺的缓蚀剂
143、一种高效多功能反渗透膜阻垢剂及其制备方法
144、可生物降解复合缓蚀阻垢剂及其制备方法
145、一种反渗透膜用阻垢剂
146、基于电导检测的阻垢剂性能快速自动评价装置
147、一种高温缓蚀剂及其制备方法和应用
148、一种成膜缓蚀剂及其制备方法
149、黑色金属气相缓蚀剂及其制备方法
150、酸洗缓蚀剂及其生产方法
151、缓蚀剂连续加注装置
152、一种适用于高氯高钙水质的缓蚀阻垢剂
153、一种用于循环冷却水处理的绿色环保型复合缓蚀阻垢剂
154、一种复合型阻垢缓蚀剂及其应用
155、一种抑制碳钢腐蚀的缓蚀阻垢剂
156、一种碳钢缓蚀剂及其应用
157、高效螯合型无汞非金属缓蚀剂
158、一种金属酸洗缓蚀剂及其制备方法
159、一种绿色高效酸洗缓蚀剂及其应用
160、一种抑制金属腐蚀的缓蚀剂及其制备方法
161、反渗透浓缩液中阻垢剂的内电解破坏方法
162、一种用于处理循环冷却水的低磷环保型复合缓蚀阻垢剂及使用方法
163、一种气相缓蚀剂的制备方法
164、长效环保型密闭循环冷却水缓蚀剂
165、一种环保型复合缓蚀阻垢剂
166、一种反渗透膜阻垢剂及其制备方法
167、一种溴化锂吸收式制冷机缓蚀剂及其制备方法
168、核电厂冷却水系统用缓蚀剂
169、一种钡锶阻垢剂
170、烯丙氧基聚醚阻垢剂及其制备方法
171、一种用于氨基酸基酸性气体吸收剂的复合缓蚀剂
172、一种无磷环保型缓蚀阻垢剂及其制备方法
173、一种荧光聚醚阻垢剂及制备方法
174、反渗透阻垢剂性能的动态测试方法
175、阻垢剂存在下阻滞反渗透膜结垢的切换流向方法
176、一种用于不锈钢管凝汽器的低磷阻垢缓蚀剂
177、高效马来酸酐系聚合物阻垢剂的制备方法
178、一种无磷缓蚀阻垢剂及其应用
179、基于透光率法评定阻垢剂性能的测量装置
180、一种酸化压裂用高温缓蚀剂
181、一种油井用清蜡防腐阻垢剂
182、羧甲基落叶松单宁生物降解型阻垢剂的制备方法
183、一种酸洗缓蚀剂及其制备方法
184、一种用于加氢精制装置的成膜性缓蚀剂
185、处理高浓缩倍数循环水的复合缓蚀阻垢剂
186、反渗透阻垢剂的阻垢性能评价方法
187、一种用于反渗透膜的缓蚀阻垢剂及制备方法
188、一种专用于乙烯压缩系统的缓蚀阻垢剂
189、一种无磷缓蚀阻垢剂及其合成方法
190、一种臭氧、硅藻精土联合应用净化污水的方法
191、缓蚀阻垢剂环氧琥珀酸 对环氧乙基苯磺酸共聚物及其制备方法
192、一种阻止工业水处理系统中二氧化硅垢沉积的复合阻硅阻垢剂
193、一种拟制水中二氧化硅垢沉积的环保型复合阻垢剂
194、一种用于加氢装置的阻垢剂及其制备方法和应用
195、一种工业循环冷却水的缓蚀阻垢剂
196、一种四元聚合型缓蚀阻垢剂及其制备方法
197、荧光标记聚醚羧酸类阻垢剂及制备方法
198、一种TRT专用缓蚀阻垢剂
199、反渗透膜阻垢剂及其制备方法
200、一种湿式除尘高炉煤气能量回收透平装置专用阻垢剂
201、用作缓蚀剂的吗啉衍生物与酮酸的配合物
202、一种用于冷冻液的缓蚀剂
203、铜缓蚀剂及其使用方法
204、一种含磷的三元共聚物水质阻垢剂
205、一种碱性锌系列电池中代汞缓蚀剂
206、灰水阻垢剂
207、热水锅炉防腐阻垢剂及其使用方法
208、用于软水密闭循环冷却系统的硅系缓蚀剂
209、一种油井酸化缓蚀剂及制备方法
210、一种用于处理循环冷却水的复合缓蚀阻垢剂
211、速溶复合缓蚀剂及复合生产工艺
212、低压锅炉用有机阻垢缓蚀剂及配制方法
213、膦系阻垢剂快速分解方法及装置
214、高压锅炉汽相缓蚀剂和制备方法
215、羧酸的氨基硅烷盐和硅烷酰胺缓蚀剂
216、用于铝合金的非铬酸盐缓蚀剂
217、硅酸盐被膜缓蚀阻垢剂
218、常温铜酸洗缓蚀剂
219、一种用于强腐蚀性水质的复合缓蚀阻垢剂
220、一种汽车冷却系统用的阻垢剂
221、一种抑制钢铁在盐水中腐蚀的新型缓蚀剂
222、一种抑制钢铁在海水中腐蚀的新型缓蚀剂
223、一种抑制钢铁在自来水中腐蚀的新型缓蚀剂
224、锅炉用缓蚀阻垢剂
225、制糖专用缓蚀剂及使用方法
226、多元复配阻垢缓蚀剂
227、一种低磷聚合物分散阻垢缓蚀剂及其制备方法
228、盐酸酸洗抑雾缓蚀剂及生产方法
229、一种用于软化水质循环水的复合缓蚀阻垢剂
230、用于在传热流体和发动机冷却剂中保护轻金属的缓蚀剂和协同抑制剂组合