乙酸乙酯皂化反应速率常数的测定
乙酸乙酯皂化反应速率常数的测定: CH3COOC2H5 +NaOH → CH3COONa +C2H5OH t = 0: c c 0 0。
t = t: c-x c-x x xt →∞: → → →c →c反应速率方程为积分得:只要测出反应进程中t时的x值,再将c代入上式,就可以算出反应速率常数k值。
用二级反应的方法测定乙酸乙酯皂化反应速率常数,要保证强电解质浓度与电导为正比例关系需要NaOH的浓度足够低,乙酸乙酯浓度如果低了,配制浓度的误差会增大,如果采用准一级反应的方法可以改善实验的结果。
相关内容:
二级反应的反应速度方程式为:dx/dt=k(a-x)(b-x),a与b分别为反应物开始时的浓度,x为生成物的浓度。二级反应的半衰期为1/(k*a) (只适用于只有一种反应物的二级反应。
两种反应物的二级反应的半衰期公式比较复杂,除包含速率常数k外,还与反应物起始浓度有关),即开始时反应物浓度愈大,则完成浓度减半所需的时间愈短。
二级反应最为常见,如乙烯、丙烯、异丁烯的二聚反应,乙酸乙酯的水解,甲醛的热分解等,都是二级反应。
1、用精度0.1g天平称量氢氧化钠固体,用新鲜纯水配制成一定体积的溶液,浓度约为0.01mol/L。用精度0.1mg天平准确称量邻苯二甲酸氢钾,对氢氧化钠溶液进行浓度标定。得到准确的浓度C0后,计算等摩尔量的分析纯乙酸乙酯体积V。
2、用乳胶管连接恒温水浴,开启恒温水浴,设定温度。
3、用大肚移液管准确量取50.00mL氢氧化钠溶液置于反应器中,磁力搅拌器缓慢搅拌,温度恒定后,测定电导率κ0。
4、计算出所需乙酸乙酯的用量,用量程为10~100μL的移液器量取。
5、磁力搅拌器速度开到最大,取下橡胶塞加入乙酸乙酯,同时计时,然后塞上橡胶塞。
6、持续快速搅拌约1min后,将搅拌速度减慢,保持慢速均匀搅拌。然后依次记录2,4,6,8,10,12,15,20,15,20,25,30,35,40min时刻的电导率κt。
7、清洗实验用品,用Origin软件处理实验数据。
1、电导法测定乙酸乙酯皂化反应的速率常数的步骤:
①调节恒温槽的温度在26.00℃;
②在1-3号大试管中,依次倒入约20mL蒸馏水、35mL 1.985×10-2mol/L的氢氧化钠溶液和25mL1.985×10-2mol/L乙酸乙酯溶液,塞紧试管口,并置于恒温槽中恒温。
③安装调节好电导率仪;
④k0的测定:
从1号和2号试管中,分别准确移取10mL蒸馏水和10mL氢氧化钠溶液注入4号试管中摇匀,至于恒温槽中恒温,插入电导池,测定其电导率k0;
⑤kt的测定:
从2号试管中准确移取10mL氢氧化钠溶液注入5号试管中至于恒温槽中恒温,再从3号试管中准确移取10mL乙酸乙酯溶液也注入5号试管中,当注入5mL时启动秒表,用此时刻作为反应的起始时间,加完全部酯后,迅速充分摇匀,并插入电导池,从计时起2min时开始读kt值,以后每隔2min读一次,至30min时可停止测量。
⑥反应活化能的测定:
在35℃恒温条件下,用上述步骤测定kt值。
2、pH法测定乙酸乙酯皂化反应的速率常数的步骤:
1).开启恒温水浴电源,将温度调至35℃.
2).配制纯乙酸乙酯溶液
配制0.0200mol/L乙酸乙酯溶液。先计算配制0.0200mol/L乙酸乙酯溶液100ml所需的分析乙酸乙酯(约0.1762g)量,根据乙酸乙酯温度与密度的关系式: ρ=925.54-1.68×t-1.95×10-3 t² 式中:ρ、t的单位分别为kg·m-3 和℃,计算该温度下对应的密度并换算成配准100ml 0.0200mol/L所需乙酸乙酯的体积,用0.5ml刻度移液管移取所需的体积,加到预先放好2/3去离子水的100ml容量瓶中,然后稀释至刻度,加盖摇匀备用。
3).测定35℃,起始浓度的pH值,C(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶液,准确加入20ml水,放入pH计,稳定后读数并记录。
4).测定35℃,t时刻对应的pH值,Ct(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶
液至测定管,准确加入20ml乙酸乙酯溶液至测定管另外一侧,放入pH计,记录不同时间t的pH值。每分钟测定一次,测25分钟。
5).重复上述操作,测定40℃时的pH值。
6).处理、计算反应速率常数k和表观活化能Ea。
CH3COOC2H5+OH-→CH3COO-+C2H5OH
设反应物乙酸乙酯与碱的起始浓度相同,则反应速率方程为:
r
=
=kc2
积分后可得反应速率系数表达式:
(推导)
式中:为反应物的起始浓度;c为反应进行中任一时刻反应物的浓度。为求得某温度下的k值,需知该温度下反应过程中任一时刻t的浓度c。测定这一浓度的方法很多,本实验采用电导法。
用电导法测定浓度的依据是:
(1)
溶液中乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导的数值。同时反应过程中Na+的浓度始终不变,它对溶液的电导有固定的贡献,而与电导的变化无关。因此参与导电且反应过程中浓度改变的离子只有OH-和CH3COO-。
(2)
由于OH-的导电能力比CH3COO-大得多,随着反应的进行,OH-逐渐减少而CH3COO-逐渐增加,因此溶液的电导随逐渐下降。
(3)
在稀溶液中,每种强电解质的电导与其浓度成正比,而且溶液的总电导等于溶液中各离子电导之和。
设反应体系在时间t=0,t=t
和t=∞时的电导可分别以G0、Gt
和G∞来表示。实质上G0是
NaOH溶液浓度为时的电导,Gt是
NaOH溶液浓度为c时的电导与CH3COONa溶液浓度为-
c时的电导之和,而G∞则是产物CH3COONa溶液浓度为
时的电导。即:
G0=K反c0
G∞=K产c0
Gt=K反c+K产(c0-
c)
式中K反,K产是与温度,溶剂和电解质性质有关的比例系数。
处理上面三式,可得
G0-
Gt=(K反-
K产)(c0-
c)
Gt-
G∞=(K反-
K产)c
以上两式相除,得
代入上面的反应速率系数表达式,得
k=
上式可改写为如下形式:
Gt=
+
G∞
以Gt对作图,可得一直线,直线的斜率为,由此可求得反应速率系数k,由截距可求得G∞。
二级反应的半衰期t1/2
为:
t1/2=
可见,二级反应的半衰期t1/2
与起始浓度成反比。由上式可知,此处t1/2
即是上述作图所得直线之斜率。
若由实验求得两个不同温度下的速率系数k,则可利用阿累尼乌斯(Arrhenius)公式:
ln=()
计算出反应的活化能Ea。
你恐怕要自己代入数值计算才可以得到
为了处理方便起见,设 乙酸乙酯 和氢氧化钠 起始浓度相等.先计算配制0.02M乙酸已酯100ml所需乙酸已酯的质量。在100ml容量瓶中加入20ml蒸馏水,用分析天平准确称重,然后用滴管滴入比计算量略重的乙酸已酯,加水至刻度,混合均匀后倒入干燥的锥形瓶中,再准确计算所称重量的乙酸已酯配成0.02mol.L-1溶液所需的体积,不足水量用刻度移液管补充加入。