维生素k3的结构及性状
中文名称: 甲萘醌
中文同义词: 2-甲基-1,4-萘醌2-甲萘醌β-甲萘醌2-甲基-1,4萘二酮2-甲基-1,4-萘酚喹酮2-甲基-1,4-萘酚喹酮/甲萘醌/维生素K32甲基萘醌,维生素K3甲奈醌
英文名称: Menadione
英文同义词: 2-METHYLNAPHTHOQUINONE2-METHYL-1,4-DIHYDRONAPHTHALENE-1,4-DIONE2-METHYL-1,4-NAPHTHOQUINONE2-METHYL-1,4-NAPHTHAQUINONEMENAPHTHONMENAPHTHONEMENADIONETHYLOQUINONE
CAS号: 58-27-5
分子式: C11H8O2
分子量: 172.18
白色结晶或结晶性粉末,几乎无臭,有吸湿性,遇光变色。易溶于水,微溶于乙醇,不溶于乙醚和苯。
维生素K1化学名为叶绿基甲萘醌,维生素K3化学名为亚硫酸氢钠甲萘醌。
维生素K1属于一种多环芳香酮,叶绿基甲萘醌是一种脂溶性维生素,对空气和潮湿稳定,但在阳光下会被分解。在天然绿色植物中广泛存在。
维生素K3属于促凝血药,多为白色或类白色结晶粉末,吸湿后结块。
扩展资料:
维生素K能促进血液正常凝固。尽管人体需要量少,但新生儿却极易缺乏。缺少它,可能导致凝血功能减弱,严重时会流血不止,甚至死亡。
维生素K多以叶绿醌的形式,存在于绿色蔬菜、动物肝脏、鱼类、肉、乳制品之中,植物油中也含有少量。其中,绿叶蔬菜含量最高。一般绿叶蔬菜颜色越深,维生素K的含量也就越高。其他食物如豌豆、鸡蛋、鱼、奶制品、大豆油、肉类、水果、坚果、肝脏和谷类食物等也含有较丰富的维生素K。
参考资料来源:百度百科——维生素K1
参考资料来源:百度百科——维生素K3
中文名称:维生素K2
中文别名:维生素K2
英文别名:Vitamin K 2;Vitamin K2;Vitamin K2 (generic);2-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-3-methylnaphthalene-1,4-dione
CAS:11032-49-8
EINECS:234-264-5 (1)治疗和预防骨质疏松症,维生素K2生成骨蛋白质,再与钙共同生成骨质,增加骨密度,防止骨折。
(2)维生素K2可预防肝硬化进展为肝癌。
(3)治疗维生素K2缺乏性出血症,促进凝血酶原的形成,加速凝血,维持正常的凝血时间。
(4)具有利尿、强化肝脏的解毒功能,并能降低血压。 1934年,丹麦科学家首先发现维生素K,并证实其为脂溶性维生素。维生素K是一类具有叶绿醌生物活性的萘醌基团的衍生物。天然存在的有维生素K1、K2,维生素K1广泛存在于绿色植物中,是食物中维生素K的重要来源;维生素K2主要由肠道细菌合成。人工合成的有维生素K3、K4、K5、K7等。在动物体内具有生物活性的是维生素K2,而维生素K1和维生素K3都要转化为维生素K2才能起作用。三种维生素K的形式都在肝中转化成维生素K2,并和胃肠微生物合成的维生素K2一起被吸收利用。维生素的每日需要量甚少(常以毫克或微克计),如人每天约需VA0.8-1.7mg、VB11-2mg、VB21-2mg、泛酸3-5mg 、VB62-3mg、VPP10-20mg、生物素0.2mg、叶酸0.4mg、VB121 μg、VD0.01-0.02mg、VE14-24mg、VC60-100mg、维生素K2婴儿10~20μg及成人70~140μg.
然而由于许多食物中富含维生素K及肠道细菌能合成维生素K。健康成人和年长儿童一般不会因膳食供给不足发生维生素K缺乏。由于维生素K能迅速改善由于维生素K缺乏引起的出血,几十年来维生素K一直用于治疗出血的抗凝剂,似乎不作为人体内一种重要营养物被关注。近40 年来,尤其近20年来,由于血清维生素K2及维生素K2缺乏诱导蛋白检测技术的突破,全球各地相继报道了众多的有关婴儿维生素K2缺乏引起出血的文章认为维生素K2缺乏是世界性婴儿出血疾病和死亡的重要原因。
由神经科学家Patrik Verstreken领导的一个研究小组利用维生素K2成功消除了导致帕金森氏症的一个遗传缺陷的影响。他的研究发现为帕金森氏症患者带来了新希望。相关论文发布在《科学》(Science)杂志上。
人类位于线粒体上的UBIAD1将维生素K1转化为维生素K2。维生素K2被广泛认为是一种凝血辅助因子,但在细菌中它是一种膜结合电子载体。而人们还不知道维生素K2是否在真核细胞也发挥着类似的载体功能。研究者认为果蝇UBIAD1/Heix是pink1的调节基因,在帕金森疾病中pink1基因突变会影响线粒体功能。研究发现维生素K2对于果蝇线粒体中的电子转运是必要的。维生素K2能恢复Heix突变引起的严重线粒体缺陷。维生素K2与泛醌ubiquinone类似都能在果蝇线粒体中转运电子,生成更多有效三磷酸腺苷(ATP)。维生素K2能作为线粒体电子载体,帮助恢复ATP的正常生产,rescue线粒体功能障碍。 易造成的新生儿出血:
哪些新生儿、婴儿最易于发生维生素K缺乏造成的出血呢?
(1)出生前妊娠母亲接受抗惊厥药(鲁米那、苯妥英钠),抗凝血药(肝素、双香豆素、法华令),抗结核药(雷米封,利福平),化疗药物(环磷酰胺、6-巯基嘌呤等)。这些药可加快体内维生素K的降解氧化,阻断维生素K的还原,是导致早发性新生儿出血病的主要原因。
(2)婴儿肝胆系统疾病和代谢性疾病,如先天性胆道闭锁,胆管扩张,胆汁淤积,新生儿肝炎,乳儿肝炎,巨细胞包涵体病毒感染,α-抗胰蛋白酶缺乏症等。这些疾病造成肝细胞损害,凝血因子合成减少,加上胆汁分泌到肠道减少或缺乏,维生素K吸收障碍,引起维生素K缺乏。
(3)胃肠道感染,腹泻尤其是慢性腹泻婴儿,由于腹泻时肠道菌丛紊乱,肠道内的正常菌丛减少,合成维生素K2的功能受阻。肠炎时肠道维生素K的吸收不良,大便排出增加,使维生素K缺乏。
(4)长期使用抗生素,较长时间使用β-内酰氨类抗生素如头孢类抗生素,抑制肠道正常菌丛繁殖和合成维生素K2,抑制凝血因子的羧化反应,使凝血因子活性降低,产生凝血因子低下性出血。
维生素K2缺乏性出血按其发生时间分为:
( 1 )早发新生儿出血,发生在新生婴儿出生后24小时以内,
( 2 )典型新生儿出血,生后1-7天,
( 3 )迟发性出血,生后8天-12个月。
维生素K 缺乏性出血可以发生在任何部位,早发性出血头部血肿较多,典型新生儿出血胃肠道出血较多,迟发性出血颅内出血较多。颅内出血是维生素K2缺乏症最严重的临床表现,是造成婴儿死亡和残疾的重要原因,颅内出血病死率高达15-50%。我们在国内七省调查病死率为30.3%。幸存者约有50%留有神经系统后遗症,造成儿童终生残疾。
易导致骨质疏松和动脉钙化:
(1)膳食维生素K(K1、K2)摄入普遍偏低。国外调查显示普通成人平均膳食维生素K总摄入量为男82μg/d,女59μg/d,明显低于国际通行的成人维生素K膳食推荐摄入量男120μg/d,女90μg/d的标准,大部分人存在维生素K亚临床缺乏。(2)维生素K摄入不足是导致中老年骨质疏松及骨折的独立风险因素。年龄越高,维生素K摄入越低,中老年人的平均维生素K摄入量远低于《中国居民膳食营养素参考摄入量》中维护骨骼健康2μg/kg的维生素K摄入水平。维生素K摄入不足及衰老造成的内源性K2转化偏低,致使中老年人体组织中K2浓度显著下降,从而诱发钙紊乱疾病如骨质疏松、动脉钙化等。(3)维生素K2摄入不足,将严重影响骨钙素的羧化及钙在骨骼的矿化活性,即使健康成人也有大约10-30%的骨钙素处于低羧化状态,从而有损骨骼健康。(4)当绝经妇女的血浆维生素K2浓度低于1.10±0.07 ng/ml时将导致低骨密度,诱发及动脉钙化风险。骨质疏松及骨折。当每天维生素K2摄入低于32.7μg时,将显著增加心脏病。
K2缺乏性出血临床特点:
(1)发病前多完全健康,发育正常、无外伤史,常为突然发生。
(2)多为母乳喂养婴儿。
(3)年龄以3月以内为主,国内调查97.4%出现在3个月以内。
(4)母亲孕期患病、服药;婴儿患有肝胆疾患、黄疸、腹泻、肺炎者易于发生维生素K缺乏出血。
(5)颅内出血婴儿表现为突然出现的面色苍白、拒奶、尖叫、呕吐、嗜睡或昏迷,前囟饱满或隆起,颅骨缝开裂,四肢抽搐、双眼上翻或凝视、瞳孔散大或不等大。维生素K缺乏出现的颅内出血可以单独出现,也可以同时伴有其它部位的出血。如:皮肤瘀斑、鼻出血、消化道出血、肌肉注射部位出血、肺出血等。肌肉注射部位出血不止,是维生素K缺乏的特异性表现 。
此外,体外合成的VitK3(2-甲基-1,4-萘醌)本身不具备活性,在体内肝中可被烷化为MK4而有生物活性。 VitK是萘醌的衍生物,耐热、耐酸,为脂溶性维生素,不溶于水,但易被阳光和碱所破坏。
VitK1为鲜黄色油状物,VitK2为鲜黄色结晶,可溶于甲醇、丙酮、苯、石油醚、氯仿等,VitK3为黄色结晶,溶于四氯化碳、氯仿、植物油、丙酮、苯和乙醇。
VitK的衍生物如VitK3磷酸酯,琥珀酸酯或亚硫酸氢盐均为水溶性,而甲基荼氧醌乙酸酯对光不敏感。
英文名称:Vitamin C ,Ascorbic Acid
性质
分子式:C6H8O6;分子量:176.12u;CAS号:50-81-7;酸性,在溶液中会氧化分解。
物理性质
外观:无色晶体;熔点:190 - 192℃;沸点:(无);紫外吸收最大值:245nm;荧光光谱:激发波长-无nm,荧光波长-无nm;
维生素性质
溶解性:水溶性维生素;推荐摄入量:每日60毫克;最高摄入量:引起腹泻之量;
缺乏症状:坏血病;过量症状:腹泻;主要食物来源:柑桔类水果、蔬菜等
维生素C主要生理功能
1、 促进骨胶原的生物合成。利于组织创伤口的更快愈合;
2、 促进氨基酸中酪氨酸和色氨酸的代谢,延长肌体寿命。
3、 改善铁、钙和叶酸的利用。
4、 改善脂肪和类脂特别是胆固醇的代谢,预防心血管病。
5、 促进牙齿和骨骼的生长,防止牙床出血。;
6、 增强肌体对外界环境的抗应激能力和免疫力。
药物作用
维生素C在体内参与多种反应,如参与氧化还原过程,在生物氧化和还原作用以及细胞呼吸中起重要作用。从组织水平看,维生素C的主要作用是与细胞间质的合成有关。包括胶原,牙和骨的基质,以及毛细血管内皮细胞间的接合物。因此,当维生素C缺乏所引起的坏血病时,伴有胶原合成缺陷,表现为创伤难以愈合,牙齿形成障碍和毛细血管破损引起大量瘀血点,瘀血点融合形成瘀斑。
维生素C和坏血病有一段很长的历史渊源。希波克拉底是第一个提到坏血病的人。他描述当时士兵牙床溃烂、牙齿脱落。。。;早期的海上旅行引起了人们对坏血病的重视,船队离开港口3—4个月,船员往往会因此患上坏血病,人们开始发现这是由于海上旅行缺乏新鲜蔬菜和水果的缘故。1932年英国军医从柠檬汁中离析出具有抗坏血病的晶状物质,1933年瑞士科学家合成了维生素C,又叫做抗坏血酸。近代研究表明VC对人体健康至关重要:
1.胶原蛋白的合成需要维生素C参加,所以VC缺乏,胶原蛋白不能正常合成,导致细胞连接障碍。人体由细胞组成,细胞靠细胞间质把它们联系起来,细胞间质的关键成分是胶原蛋白。胶原蛋白占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑,并且有助于人体创伤的愈合。
2.坏血病。血管壁的强度和VC有很大关系。微血管是所有血管中最细小的,管壁可能只有一个细胞的厚度,其强度、弹性是由负责连接细胞具有胶泥作用的胶原蛋白所决定。当体内VC不足,微血管容易破裂,血液流到邻近组织。这种情况在皮肤表面发生,则产生淤血、紫癍;在体内发生则引起疼痛和关节涨痛。严重情况在胃、肠道、鼻、肾脏及骨膜下面均可有出血现象,乃至死亡。
3.牙龈萎缩、出血。健康的牙床紧紧包住每一颗牙齿。牙龈是软组织,当缺乏蛋白质、钙、VC时易产生牙龈萎缩、出血。
4.预防动脉硬化。可促进胆固醇的排泄,防止胆固醇在动脉内壁沉积,甚至可以使沉积的粥样斑块溶解。
5.是一种水溶性的强有力的抗氧化剂。可以保护其它抗氧化剂,如维生素A、维生素E、不饱和脂肪酸,防止自由基对人体的伤害。
6.治疗贫血。使难以吸收利用的三价铁还原成二价铁,促进肠道对铁的吸收,提高肝脏对铁的利用率,有助于治疗缺铁性贫血。
7.防癌。丰富的胶原蛋白有助于防止癌细胞的扩散;VC的抗氧化作用可以抵御自由基对细胞的伤害防止细胞的变异;阻断亚硝酸盐和仲胺形成强致癌物亚硝胺。曾有人对因癌症死亡病人解剖发现病人体内的VC含量几乎为零。
8.保护细胞、解毒,保护肝脏。在人的生命活动中,保证细胞的完整性和代谢的正常进行至关重要。为此,谷胱甘肽和酶起着重要作用。
谷胱甘肽是由谷氨酸、胱氨酸和甘氨酸组成的短肽,在体内有氧化还原作用。它有两种存在形式,即氧化型和还原型,还原型对保证细胞膜的完整性起重要作用。VC是一种强抗氧化剂,其本身被氧化,而使氧化型谷胱甘肽还原为还原型谷胱甘肽,从而发挥抗氧化作用。
酶是生化反应的催化剂,有些酶需要有自由的琉基(-SH)才能保持活性。VC能够使双硫键(-S-S)还原为-SH,从而提高相关酶的活性,发挥抗氧化的作用。
从以上可知,只要VC充足,则VC、谷胱甘肽、-SH形成有力的抗氧化组合拳,清除自由基,阻止脂类过氧化及某些化学物质的毒害作用,保护肝脏的解毒能力和细胞的正常代谢。
9.提高人体的免疫力。
白细胞含有丰富的VC,当机体感染时白细胞内的VC急剧减少。VC可增强中性粒细胞的趋化性和变形能力,提高杀菌能力。
促进淋巴母细胞的生成,提高机体对外来和恶变细胞的识别和杀灭。
参与免疫球蛋白的合成。
提高CI补体酯酶活性,增加补体CI的产生。
促进干扰素的产生,干扰病毒mRNA的转录,抑制病毒的增生。
10.提高机体的应急能力。人体受到异常的刺激,如剧痛、寒冷、缺氧、精神强刺激,会引发抵御异常刺激的紧张状态。该状态伴有一系列身体,包括交感神经兴奋、肾上腺髓质和皮质激素分泌增多。肾上腺髓质所分泌的肾上腺素和去甲肾上腺素是有酪氨酸转化而来,在次过程需要VC的参与。
进入人体的维生素C很快分布于个组织器官,在正常情况下,人体维生素C库为1500毫克。多余的大部分随尿排出,少部分随大便、汗及呼吸道排出。但是在感染情况下,人体所需的为平时的20---40倍之多,而且所有的药物都会破坏体内的VC。所以在人体有状态的情况下补充VC是非常有益的。美国著名营养学家戴维斯问过对营养学有研究的医生,是否应将VC当作家中常备药品,以便任何疾病初期都可以服用。大多数医生都说:“当然比任何阿司匹林安全多了”,第一次使用足够的量比连续使用小剂量有更好的效果。
维生素C是一种水溶性维生素(其水溶液呈酸性)化学式为C6H8O6,人体缺乏这种维生素C易得坏血症,所以维生素C又称抗坏血酸。维生素C易被空气中的氧气氧化。在新鲜的水果、蔬菜、乳制品中都含维生素C,如新鲜的橙汁中维生素C的含量在500mg/L左右
维生素C有防病作用
一项调查表明,每天稍增加一些水果与蔬菜的摄入,就可能起到防病作用。
维生素C可能对若干慢性疾病有保护作用。然而,从前瞻性的研究结果来看,维生素C与心血管病或癌症的关系,并非始终如一。为了评估血浆维生素C的水平与所有原因(心血管病、缺血性心脏病和癌症)死亡率之间的关系,英国剑桥大学临床医学院Khaw等,对19496名45~79岁成人,进行了4年的前瞻性调查。(Lancet 2001,357∶657)
纳入的研究对象填写一份健康和生活方式的问卷调查表,并接受身体检查。研究者随访4年,追踪死亡原因。这些人按性别特异的血浆维生素C5分位值加以划分。研究者采用Cox比例风险模型确定维生素C与其它危险因素对死亡率的影响。
结果显示,血浆维生素C浓度,与男女两性所有原因(包括心血管病和缺血性心脏病等)的死亡率呈负相关。位于维生素C最高5分位组的死亡危险,为最低5分位组的一半(P<0.0001)。整个维生素C浓度分布,与死亡率连续相关。血浆维生素C浓度每上升20μmol/L(约相当于每天增加水果或蔬菜摄入量50克),所有原因死亡危险下降约20%(P<0.0001),且不受年龄、收缩压、血胆固醇、吸烟习惯、糖尿病和补充剂应用等的影响。在男性中,维生素C水平与癌症死亡率呈负相关;但在女性则不然。
发现历史
坏血病是几百年前就知道的疾病,但是一直到1911年才确定它是因为缺乏营养而产生的。在18世纪坏血病在远洋航行的水手中非常普遍,但也流行在长期困战的陆军士兵中,长期缺乏食物的社区,被围困的城市,监狱犯人,和劳工营中。例如140年前加州的淘金工人和90年前阿拉斯加的淘金工人都有大批的坏血病病例。
坏血病开始的时候症状是四肢无力,精神消退,烦躁不安,做任何工作都易疲惫,皮肤红肿。病人觉得肌肉疼痛,精神抑郁。然后他的脸部肿胀,牙龈出血,牙齿脱落,口臭。皮肤下大片出血看来像是严重的打伤。最后是严重疲惫、腹泻呼吸困难,骨折,肺脏或肾脏衰竭而致死亡。早年航海人员因坏血病死亡的灾难不可枚举,因为他们在航行时的食物是面饼和咸肉,含有很少的维生素C。
1497年7月9日到1498年5月30日,葡萄牙航海家达伽马(Vasco da Gama)发现绕过非洲到达印度的航线,他的160个船员中,有100人死于坏血病。
1519年,葡萄牙航海家麦哲伦率领的远洋船队从南美洲东岸向太平洋进发。三个月后,有的船员牙床破了,有的船员流鼻血,有的船员浑身无力,待船到达目的地时,原来的200多人,活下来的只有35人,人们对此找不出原因。
1536年法国探险家Jacques Cartier在发现圣劳伦斯河之后,溯流而上抵达魁北克过冬。探险队中24人死于坏血病,其它多人也都病重。有一位印第安人教他们饮用一种arbor vitae(Thuja occidentalis)树叶泡的茶,就治好了这些人。后来发现这种树的叶子里每100克含有50毫克的维生素C。
西班牙征服墨西哥的荷南·科尔蒂斯将军,在1536年占领下加州Baja California后,因为水手多数患坏血病而回师,以致没有继续侵占加州本部。1577年一艘西班牙大帆船漂流在马尾藻海海面上,发现时所有的船员都死于坏血病。
相对于在15世纪中国明朝的郑和多次率领下西洋的事迹记载,并无发现有大量船员因长期航行而染上坏血病而死,这与当时郑和船队带备蔬菜和水果有关,亦可见蔬菜和水果内的物质(后来发现是维生素C)对防治坏血病有很大的帮助。
1734年,在开往格陵兰的海船上,有一个船员得了严重的坏血病,当时这种病无法医治,其它船员只好把他抛弃在一个荒岛上。待他苏醒过来,用野草充饥,几天后他的坏血病竟不治而愈了。诸如此类的坏血病,曾夺去了几十万水手的生命。
1740年冬,英国海军上将George Anson率领961水手乘6艘船远征。1741年6月抵达Juan Fernandez岛时只剩下335人,半数以上的船员死于坏血病。当时海军上将John Hawkins发现长期航海时海员发生坏血病的机会和只吃干粮的时间成正比例。如果他们能够吃到新鲜食物,包柑橘类水果,就会迅速复原。因为新鲜的蔬菜水果是在船上最难保存的食物,所以英国海军致力研究发展其代用品。
1747年英国海军医官詹姆斯·林德在船上做了这个现在很著名的实验,12个严重的坏血病海员,大家都吃完全相同的食物,唯一不同的药物是当时传说可以治疗坏血病的药方。两个病人每天吃两个橘子和一个柠檬,另两人喝苹果汁,其它人是喝稀硫酸,酸醋,海水,或是一些其它当时人认为可治坏血病的药物。6天之后,只有吃柑橘水果的两人好转,其它人病情依然。Lind继续研究,1753年出版了《坏血病大全》(A Treatise on Scurvy)一书。
英国的著名探险家库克船长最为人称道的是他控制了可怕的坏血病。他在1768年到1780年间三次远航太平洋,他的船员有些生病,但是没有一人丧生于坏血病。而他同时许多其它探险船队中,坏血病依然猖獗。库克防治坏血病的贡献,使得伦敦皇家学会选他为会员,并授予他Coply奖章。每次航行靠岸时,库克都命令船员上岸购买水果蔬菜及绿色植物来补充营养。有一次他在旗舰Endeavour上带了7860磅的德国酸白菜Saukerkraut,船上70人一年航程中每人每周有两磅的供给。酸白菜含有丰富的维生素C,每100克含有50毫克的维生素C。
虽然在Hawkins上将之后有经验的航海家都知道用柠檬汁代替柑橘类水果,可以防治坏血病,但是柠檬汁价格贵,贮藏不易,船长和船公司都觉得宁信其无,可以不用就不用。对柠檬汁的效果,公众也是存疑,在医学界也是争议不断。
1795年Lind去世,Lind人微言轻,他的实验结果也湮没无闻。但是另一位英国医生Gilbert Blane相信Lind的结果,1795年Blane因为是英王御医而被任命为英国海军医疗委员会委员,由于他的努力,英国海军部才通令每个海军官兵每天都必须饮用3/4盎斯柠檬汁。1796年英国海军中坏血病病例大幅降低。英国海军战力倍增,在1797年击败西班牙舰队,缔造了大英日不落帝国。
虽然英国海军部采用了柠檬汁,商业部却自行其是,因而坏血病在英国商船上仍然猖獗不止。70年之后,英国商业部在1865年才规定商船上的海员也必须每天服用柠檬汁。但那时还不知柠檬中的什么物质对坏血病有抵抗作用。
1907年Axel Holst 和Theodor Frolich发表使用天竺鼠做坏血病实验的论文。他们观察到老鼠和其它的动物都不会生坏血病,只有天竺鼠和人类相似,在禁绝新鲜蔬果后会产生坏血病。这是为什么现代的医药研究一定要用天竺鼠做实验,所得的结果才能推引到人类的疾病上。我们现在知道天竺鼠和灵长类(包括人类)都不能自己制造维他命C,其它的动物都能在肝脏或肾脏中制造维他命C。人类大多数的疾病,都很少见于其它动物。动物受伤和疾病之后都可以很快地自行复原,只有人类因为不能自行生产维他命C而需要医生的专业服务。
1912年,波兰裔美国科学家卡西米尔·冯克,综合了以往的试验结果,发表了维生素的理论。他认定自然食物中有四种物质可以防治夜盲症,脚气病,坏血病,和佝偻病。这些物质被丰克称为 “维持生命的胺素(Vitamine)”,因为拉丁文中的vita意思是生命。冯克以为这些物质都含有氮或胺基,所以加上胺素Amine的结尾。后来发现有些物质并不含氮,所以改称为Vitamin,中文称为维生素或维他命,四种物质分别被称为维生素A,维生素B,维生素C和维生素D。中文分别称为维生素甲,维生素乙,维生素丙,和维生素丁。后来发现的就依英文字母顺序一直排到维生素K。维生素B里面又发现有许多不同成份,就有了维生素B1,B2,B3,B6及B12等名称。
1920-1930年代,有机化学家群起研究维他命,试探在食物中分析维他命并决定它们的化学成份。
1928年匈牙利生化学家Albert Szent-Gyorgyi在英国化学家Frederick Gowland Hopkins的实验室中成功地从牛的副肾腺中分离出1克纯粹的维他命C。他也因为维生素C和人体内氧化反应的研究获得1932年的诺贝尔医学奖。1928年他发表论文,确定维生素C的化学分子式是C6H8O6,所以称之为Hexuronic acid。1929年他到美国Rochester, Minnesota的Mayo医院做研究,附近的屠宰场免费供给他大量的牛副肾,
http://baike.baidu.com/view/19636.htm
糖类化合物包括单糖、单糖的聚合物及衍生物。
单糖分子都是带有多个羟基的醛类或者酮类。
糖类化合物化学概念:单糖是多羟醛或多羟酮及他们的环状半缩醛或衍生物。多糖则是单糖缩合的多聚物。
分子通式:Cm(H2O)n
然而,符合这一通式的不一定都是糖类,是糖类也不一定都符合这一通式。
这只是表示大多数糖的通式。
碳水化合物只是糖类的大多数形式。我们把糖类狭义的理解为碳水化合物。
单糖
丙糖 例如:甘油醛
戊糖,五碳糖 例如: 核糖,脱氧核糖
己糖 例如: 葡萄糖,果糖(化学式都是C6H12O6 )
二糖
蔗糖、麦芽糖和乳糖
他们化学式都是(C6H12O6)2
多糖
淀粉、纤维素和糖原
他们化学式是(C6H10O5)n
具体讲解
分类:单糖、二糖、低聚糖(寡糖)、多糖、复合糖五种。
糖类化合物的生物学作用主要是:
1 作为生物能源
2 作为其他物质生物合成的碳源
3 作为生物体的结构物质
4 糖蛋白、糖脂等具有细胞识别、免疫活性等多种生理活性功能。
单糖-糖类种结构最简单的一类,单糖分子含有许多亲水基团,易溶于水,不溶于乙醚、丙酮等有机溶剂,简单的单糖一般是含有3-7个碳原子的多羟基醛或多羟基酮,其组成元素是C,H,O葡萄糖、果糖、半乳糖等。 葡萄糖是生命活动的主要能源物质,核糖是RNA的组成物质,脱氧核糖是DNA的组成物质。葡萄糖、果糖的分子式都是:C6H12O6。他们是同分异构体。
低聚糖(寡糖)-由2-10个单糖分子聚合而成。水解后可生成单糖。
二糖-二糖是由两分子单糖脱水而成的糖苷,苷元是另一分子的单糖。二糖水解后生成两分子的单糖。如乳糖、蔗糖、麦芽糖 。蔗糖和麦芽糖是能水解成单糖供能。它们的分子式都是:C12H22O11。也属于同分异构体。
三糖-水解后生成三分子的单糖。如棉子糖 。定粉是储蓄物质,纤维素是组成细胞壁,糖元是储能物质。
四糖
五糖
多聚糖-由10个以上单糖分子聚合而成。经水解后可生成多个单糖或低聚糖。根据水解后生成单糖的组成是否相同,可以分为:
同聚多糖-同聚多糖由一种单糖组成,水解后生成同种单糖。如阿拉伯胶、糖元、淀粉、纤维素等。 淀粉和纤维素的表达式都是(C6H10O5)n。但他们不是同分异构体,因为他们的n数量不同。其中淀粉n<纤维素n。
杂聚多糖-杂聚多糖由多种单糖组成,水解后生成不同种类的单糖。如粘多糖、半纤维素等。
复合糖(complex carbohydrate,glycoconjugate).糖类的还原端和蛋白质或脂质结合的产物。 几种糖的相对甜度:
果糖 175 (最甜的糖)
蔗糖 100
葡萄糖 74
麦芽糖 32各种糖化学性质:葡萄糖的醛基比较活泼,会发生半缩醛反应,形成半缩醛羟基并成一个吡啶环。这样分子构象能量较低,因此写成环状更科学、更合理。
另外,葡萄糖也可能在半缩醛反应时形成呋喃环,但是这种比例较低,在2%以下。
葡萄糖成环也并不是平面的,往往形成船形或椅型构象,这样更稳定。
半乳糖是葡萄糖的异构体,常见的D-半乳糖是D-葡萄糖的C4异构体。也就是说他们在4号碳上的羟基位置有所不同。
果糖中不含醛基,而是在二号碳上含有一个羰基,因此往往形成五元的呋喃环
二。脂肪脂肪的概念:脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的 称作油,而把常温下是固体的称作脂肪。脂肪所含的化学元素主要是C、H、O,部分还含有N,P等元素。
脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同。因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样。自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯。脂肪酸一般由4个到24个碳原子组成。脂肪酸分三大类:饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸。
脂肪在多数有机溶剂中溶解,但不溶解于水。 [编辑本段]脂类的分类脂肪是甘油和三分子脂肪酸合成的甘油三酯。
(1)中性脂肪:即甘油三脂,是猪油,花生油,豆油,菜油,芝麻油的主要成分
(2)类脂包括磷脂:卵磷脂、脑磷脂、肌醇磷脂。
糖脂:脑苷脂类、神经节昔脂。
脂蛋白:乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白。
类固醇:胆固醇、麦角因醇、皮质甾醇、胆酸、维生素D、雄激素、雌激素、孕激素。
在自然界中,最丰富的是混合的甘油三酯,在食物中占脂肪的98%,在身体中占如28%以上。所有的细胞都含有磷脂,它是细胞膜和血液中的结构物,在脑、神经、肝中含量特别高,卵磷脂是膳食和体内最丰富的磷脂之一。四种脂蛋白是血液中脂类的主要运输工具。 [编辑本段]脂肪的生物功能脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。
脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。
概括起来,脂肪有以下几方面生理功能:
1. 生物体内储存能量的物质并供给能量 1克脂肪在体内分解成二氧化碳和水并产生38KJ(9Kcal)能量,比1克蛋白质或1克碳水化合物高一倍多。
2. 构成一些重要生理物质,脂肪是生命的物质基础 是人体内的三大组成部分(蛋白质、脂肪、碳水化合物)之一。 磷脂、糖脂和胆固醇构成细胞膜的类脂层,胆固醇又是合成胆汁酸、维生素D3和类固醇激素的原料。
3. 维持体温和保护内脏、缓冲外界压力 皮下脂肪可防止体温过多向外散失,减少身体热量散失, 维持体温恒定。也可阻止外界热能传导到体内,有维持正常体温的作用。内脏器官周围的脂肪垫有缓冲外力冲击保护内脏的作用。减少内部器官之间的摩擦 。
4. 提供必需脂肪酸。
5. 脂溶性维生素的重要来源 鱼肝油和奶油富含维生素A、D,许多植物油富含维生素E。脂肪还能促进这些脂溶性维生素的吸收。
6.增加饱腹感 脂肪在胃肠道内停留时间长,所以有增加饱腹感的作用。 脂肪的生物降解:在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 [脂肪的生物合成: 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。
3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。化学及物理性质:分子量:
CAS号:
性质:羧基与脂烃基相连的酸。根据脂烃基的不同,可以分为(1)饱和脂肪酸(saturated aliphatic acid),含有饱和烃基的酸。例如甲酸HCOOH、乙酸CH3COOH、硬脂酸CH3(CH2)16COOH、软脂酸CH3(CH2)14COOH。(2)不饱和脂肪酸(unsaturated aliphatic acid),含有不饱和烃基的酸。例如丙烯酸CH2=CHCOOH,油酸CH3(CH2)7CH=CH(CH2)7COOH。(3)环酸 (alicyclic carboxylic acid),羧基与环烃基连接。例如环乙烷羧酸C6H11COOH。许多种脂肪酸的甘油三酯是油和脂肪的主要成分,因而可以从油和脂肪经水解制得。也可用人工合成。低碳数的是无色液体,有刺激气味,易溶于水。中碳数的是油状液体,微溶于水,有汗的气味。高碳数的是固体,不溶于水。脂肪酸能与碱作用而成盐、与醇作用而成酯。用于制肥皂、合成洗涤剂、润滑剂和化妆品等。 三。维生素维生素又名维他命,是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。各种维生素的化学结构以及性质虽然不同,但它们却有着以下共同点:①维生素均以维生素原(维生素前体)的形式存在于食物中②维生素不是构成机体组织和细胞的组成成分,它也不会产生能量,它的作用主要是参与机体代谢的调节③大多数的维生素,机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得④人体对维生素的需要量很小,日需要量常以毫克(mg)或微克(μg)计算,但一旦缺乏就会引发相应的维生素缺乏症,对人体健康造成损害。维生素与碳水化合物、脂肪和蛋白质3大物质不同,在天然食物中仅占极少比例,但又为人体所必需。有些维生素如 B6、K等能由动物肠道内的细菌合成,合成量可满足动物的需要。动物细胞可将色氨酸转变成烟酸(一种B族维生素),但生成量不敷需要;维生素C除灵长类(包括人类)及豚鼠以外,其他动物都可以自身合成。植物和多数微生物都能自己合成维生素,不必由体外供给。许多维生素是辅基或辅酶的组成部分。
人和动物营养、生长所必需的某些少量有机化合物,对机体的新陈代谢、生长、发育、健康有极重要作用。如果长期缺乏某种维生素,就会引起生理机能障碍而发生某种疾病。一般由食物中取得。现在发现的有几十种,如维生素A、维生素B、维生素C等 ]维生素的发现 维生素的发现是20世纪的伟大发现之一。1897年,C.艾克曼在爪哇发现只吃精磨的白米即可患脚气病,未经碾磨的糙米能治疗这种病。并发现可治脚气病的物质能用水或酒精提取,当时称这种物质为“水溶性B”。1906年证明食物中含有除蛋白质、脂类、碳水化合物、无机盐和水以外的“辅助因素”,其量很小,但为动物生长所必需。1911年C.丰克鉴定出在糙米中能对抗脚气病的物质是胺类(一类含氮的化合物),它是维持生命所必需的,所以建议命名为“ Vitamine”。即Vital(生命的)amine(胺),中文意思为“生命胺”。以后陆续发现许多维生素,它们的化学性质不同,生理功能不同也发现许多维生素根本不含胺,不含氮,但丰克的命名延续使用下来了,只是将最后字母“e”去掉。最初发现的维生素B后来证实为维生素B复合体,经提纯分离发现,是几种物质,只是性质和在食品中的分布类似,且多数为辅酶。有的供给量须彼此平衡,如维生素B1、B2和PP,否则可影响生理作用。维生素B 复合体包括:泛酸、烟酸、生物素、叶酸、维生素B1(硫胺素)、维生素B2(核黄素)、吡哆醇(维生素B6)和氰钴胺(维生素B12)。有人也将胆碱、肌醇、对氨基苯酸(对氨基苯甲酸)、肉毒碱、硫辛酸包括在B复合体内。 维生素的概述及分类 维生素是人体代谢中必不可少的有机化合物。人体犹如一座极为复杂的化工厂,不断地进行着各种生化反应。其反应与酶的催化作用有密切关系。酶要产生活性,必须有辅酶参加。已知许多维生素是酶的辅酶或者是辅酶的组成分子。因此,维生素是维持和调节机体正常代谢的重要物质。可以认为,最好的维生素是以“生物活性物质”的形式,存在于人体组织中。
食物中维生素的含量较少,人体的需要量也不多,但却是绝不可少的物质。膳食中如缺乏维生素,就会引起人体代谢紊乱,以致发生维生素缺乏症。如缺乏维生素A会出现夜盲症、干眼病和皮肤干燥;缺乏维生素D可患佝偻病;缺乏维生素B1可得脚气病;缺乏维生素B2可患唇炎、口角炎、舌炎和阴囊炎;缺乏PP可患癞皮病;缺乏维生素B12可患恶性贫血;缺乏维生素C可患坏血病。
维生素是个庞大的家族,就目前所知的维生素就有几十种,大致可分为脂溶性和水溶性两大类。(详见下表)有些物质在化学结构上类似于某种维生素,经过简单的代谢反应即可转变成维生素,此类物质称为维生素原,例如 β-胡萝卜素能转变为维生素A;7-脱氢胆固醇可转变为维生素D3;但要经许多复杂代谢反应才能成为尼克酸的色氨酸则不能称为维生素原。水溶性维生素从肠道吸收后,通过循环到机体需要的组织中,多余的部分大多由尿排出,在体内储存甚少。脂溶性维生素大部分由胆盐帮助吸收,循淋巴系统到体内各器官。体内可储存大量脂溶性维生素。维生素A和D主要储存于肝脏,维生素E主要存于体内脂肪组织,维生素K储存较少。水溶性维生素易溶于水而不易溶于非极性有机溶剂,吸收后体内贮存很少,过量的多从尿中排出;脂溶性维生素易溶于非极性有机溶剂,而不易溶于水,可随脂肪为人体吸收并在体内储积,排泄率不高。分类 名称 发现及别称 来源 脂溶性 抗干眼病维生素(维生素A),亦称美容维生素 由Elmer McCollum和M. Davis在1912年到1914年之间发现。并不是单一的化合物,而是一系列视黄醇的衍生物(视黄醇亦被译作维生素A醇、松香油),别称抗干眼病维生素 鱼肝油、绿色蔬菜
水溶性 硫胺素(维生素B1) 由卡西米尔�6�1冯克在1912年发现(一说1911年)。在生物体内通常以硫胺焦磷酸盐(TPP)的形式存在。 酵母、谷物、肝脏、大豆、肉类
水溶性 核黄素(维生素B2) 由D. T. Smith和E. G. Hendrick在1926年发现。也被称为维生素G 酵母、肝脏、蔬菜、蛋类
水溶性 烟酸(维生素B5) 由Conrad Elvehjem在1937年发现。也被称为维生素P、维生素PP、包括尼克酸(烟酸)和尼克酰胺(烟酰胺)两种物质,均属于吡啶衍生物。菸硷酸、尼古丁酸 酵母、谷物、肝脏、米糠
水溶性 泛酸(维生素B3) 由Roger Williams在1933年发现。亦称为遍多酸 酵母、谷物、肝脏、蔬菜
水溶性 吡哆醇类(维生素B6) 由Paul Gyorgy在1934年发现。包括吡哆醇、吡哆醛及吡哆胺 酵母、谷物、肝脏、蛋类、乳制品
水溶性 生物素(维生素B7) 也被称为维生素H或辅酶R 酵母、肝脏、谷物
水溶性 叶酸(维生素B9) 也被称为蝶酰谷氨酸、蝶酸单麸胺酸、维生素M或叶精 蔬菜叶、肝脏
水溶性 氰钴胺素(维生素B12) 由Karl Folkers和Alexander Todd在1948年发现。也被称为氰钴胺或[[辅酶B12]] 肝脏、鱼肉、肉类、蛋类
水溶性 胆碱 由Maurice Gobley在1850年发现。维生素B族之一 肝脏、蛋黄、乳制品、大豆
水溶性 肌醇 环己六醇、维生素B-h 心脏、肉类
水溶性 抗坏血酸(维生素C) 由詹姆斯�6�1林德在1747年发现。亦称为抗坏血酸 新鲜蔬菜、水果
脂溶性 钙化醇(维生素D) 由Edward Mellanby在1922年发现。亦称为骨化醇、抗佝偻病维生素,主要有维生素D2即麦角钙化醇和维生素D3即胆钙化醇。这是唯一一种人体可以少量合成的维生素 鱼肝油、蛋黄、乳制品、酵母
脂溶性 生育酚(维生素E) 由Herbert Evans及Katherine Bishop在1922年发现。主要有α、β、γ、δ四种 鸡蛋、肝脏、鱼类、植物油
脂溶性 萘醌类(维生素K) 由Henrik Dam在1929年发现。是一系列萘醌的衍生物的统称,主要有天然的来自植物的维生素K1、来自动物的维生素K2以及人工合成的维生素K3和维生素K4。又被称为凝血维生素 菠菜、苜蓿、白菜、肝脏
特点维生素的定义中要求维生素满足四个特点才可以称之为必需维生素:
外源性:人体自身不可合成(维生素D人体可以少量合成,但是由于较重要,仍被作为必需维生素),需要通过食物补充;
微量性:人体所需量很少,但是可以发挥巨大作用;
调节性:维生素必需能够调节人体新陈代谢或能量转变;
维生素 特异性:缺乏了某种维生素后,人将呈现特有的病态。
根据这四个特点,人体一共需要13种维生素,也就是通常所说的13种必要维生素。 物理及化学性质:1.维生素e维生素E是一种脂溶性维生素,又称生育酚,是最主要的抗氧化剂之一。
成年人营养补充维生素每日参考用量:维生素a为1.5mg;维生素e为30mg
现在购买的许多保健品也是以mg为单位,这就存在IU(国际单位)与mg(毫克)的换算问题,以便于大家衡量和比较用量,恐怕高剂量会是弊大于利的。
对于不同的元素换算值不同(国际规定的):
维生素A:1IU=0.3ug而1000ug=1mg
维生素E:1IU=1mg
经过计算,正常成年人补充量:维生素A:1.5mg是5000IU;维生素E是30IU。
作用:维生素E在人体内作用最为广泛,比任何一种营养素都大,故有“护卫使”之称。在身体内具有良好的抗氧化性, 即降低细胞老化。保持红细胞的完整性,促进细胞合成,抗污染,抗不孕的功效
缺乏维生素E,会导致动脉粥洋硬化,血浓性贫血,癌症,白内障等其他老年腿行性病变疾病 ;形成疤痕;会使牙齿发黄;引发近视;引起残障、弱智儿;引起男性性功能低下;前列腺肥大等等。
来源:猕猴桃, 坚果(包括杏仁、榛子和胡桃)、向日葵籽、玉米、冷压的蔬菜油、包括玉米、红花、大豆、棉籽和小麦胚芽(最丰富的一种)、菠菜和羽衣甘蓝、甘薯和山药。莴苣、卷心菜、菜塞花等是含维生素E比较多的蔬菜。 奶类、蛋类、鱼肝油也含有一定的维生素E2.维生素c维生素cIUPAC中文命名
(R)-3,4-二羟基-5-((S)- 1,2-二羟乙基)呋喃-2(5H)-1常规分子式C6H8O6分子量176.12uCAS号50-81-7注释酸性,在溶液中会氧化分解物理性质外观无色晶体熔点190 - 192℃沸点无℃紫外吸收最大值:245nm荧光光谱激发波长:无nm
荧光波长:无nm维生素性质溶解性水溶性维生素推荐摄入量每日5mg最高摄入量引起腹泻之量缺乏症状坏血病过量症状腹泻主要食物来源新鲜水果、蔬菜等除非注明,物性数据来自标准条件下维生素C又称L-抗坏血酸,是高等灵长类动物与其他少数生物的必需营养素。抗坏血酸在大多的生物体可借由新陈代谢制造出来,但是人类是最显著的例外。最广为人知的是缺乏维生素C会造成坏血病。维生素C的药效基团是抗坏血酸离子。在生物体内,维生素C是一种抗氧化剂,因为它能够保护身体免于氧化剂的威胁,维生素C同时也是一种辅酶。但是由于维生素C是一种必需营养素,它的用途与每天建议使用量经常被讨论。当它作为食品添加剂,维生素C成为一种抗氧化剂和防腐剂的酸度调节剂。多个E字首的数字(E number)收录维生素C,不同的数字取决于它的化学结构 ,像是E300是抗坏血酸,E301为抗坏血酸钠盐,E302为抗坏血酸钙盐,E303为抗坏血酸钾盐,E304为酯类抗坏血酸棕榈和抗坏血酸硬脂酸,E315为异抗坏血酸除虫菊。