建材秒知道
登录
建材号 > 甲苯 > 正文

高氯酸的配制与标定

多情的滑板
心灵美的天空
2022-12-22 07:39:28

高氯酸的配制与标定

最佳答案
健康的金针菇
敏感的小蚂蚁
2026-02-01 02:43:32

高氯酸滴定液(0.1mol/L) HClO4=100.46 10.05g→1000ml

【配制】 取无水冰醋酸(按含水量计算,每1g水加醋酐5.22ml)750ml,加入高氯酸(70~72%)8.5ml,摇匀,在室温下缓缓滴加醋酐23ml,边加边摇,加完后再振摇均匀,放冷,加无水冰醋酸适量使成1000ml,摇匀,放置24小时。若所测供试品易乙酰化,则须用水分测定法(附录ⅧM第一法)测定本液的含水量,再用水和醋酐调节至本液的含水量为0.01~0.2%。

【标定】 取在105℃干燥至恒重的基准邻苯二甲酸氢钾约0.16g,精密称定,加无水冰醋酸20ml使溶解,加结晶紫指示液1滴,用本液缓缓滴定至蓝色,并将滴定的结果用空白试验校正。每1ml的高氯酸滴定液(0.1mol/L)相当于20.42mg的邻苯二甲酸氢钾。根据本液的消耗量与邻苯二甲酸氢钾的取用量,算出本液的浓度,即得。如需用高氯酸滴定液(0.05或0.02mol/L)时,可取高氯酸滴定液(0.1mol/L)用无水冰醋酸稀释制成,并标定浓度。本液也可用二氧六环配制。取高氯酸(70~72%)8.5ml,加异丙醇100ml溶解后,再加二氧六环稀释至1000ml.标定时,取在105℃干燥至恒重的基准邻苯二甲酸氢钾约0.16g,精密称定,加丙二醇25ml与异丙醇5ml,加热使溶解,放冷,加二氧六环30ml与甲基橙-二甲苯蓝FF混合指示液数滴,用本液滴定至由绿色变为蓝灰色,并将滴定的结果用空白试验校正。即得。

【贮藏】 置棕色玻瓶中,密闭保存。

最新回答
健康的板栗
糟糕的野狼
2026-02-01 02:43:32

宜城市星名商贸有限公司是2008-01-18注册成立的有限责任公司(自然人独资),注册地址位于湖北省襄阳市宜城市雷河工业园区。

宜城市星名商贸有限公司的统一社会信用代码/注册号是914206846703663278,企业法人杨明星,目前企业处于开业状态。

宜城市星名商贸有限公司的经营范围是:化工原料及化工产品(危险化学品仅限经营:盐酸、硫酸、甲苯、高氯酸按、丙酮、硝酸、硝酸钠、硝酸钾、硝酸钙、硝酸镁、硝酸锶、硝酸铵、液氨、氢氧化钠、乙二醇丁醚、邻二甲苯、间二甲苯、对二甲苯、甲醇、甲酰二甲胺、甲醛溶液、甲酸、乙酸酐、亚硝酸钠、碳酸二甲酯、碳酸乙酯、四氢呋喃、氟化氢[无水]、氟硅酸钠、氟乙酸甲酯、甲基叔丁基醚、丙烯醛[稳定的]、氯化亚砜、乙二酸二甲酯、马来酸酐、对硝酸钾苯、硝酸钡、邻硝基甲苯、间甲酚、间苯二酚、对硝基苯酚、双氧水、硝酸铝批发(票面)(经营期限到2022年9月28日止)。(涉及许可经营项目,应取得相关部门许可后方可经营)。

通过爱企查查看宜城市星名商贸有限公司更多信息和资讯。

甜甜的银耳汤
务实的红牛
2026-02-01 02:43:32
现在不是很多地方有人摆摊卖这种东西吗,叫所谓“褪字灵”的。

关键词〕消字;消字灵;褪色剂;涂改液

〔中图分类号〕DF795.3〔文献标识码〕A〔文章编号〕1004-5619(2000)04-0246-02

在司法鉴定中常涉及到涂改、修改各种票据、遗嘱和其它法律文书等的检验鉴定。以确定其是否已经涂改?涂改前是否使用过褪色剂?为何种褪色剂等,目前国内仅有很少作者作过介绍〔1-3〕,相关教材中也很少涉及此内容,故本课题针对浙江省某市消字灵的实际情况,对其进行成分剖析研究。

1 实验条件

HNO3;HCl;Na3〔Co(NO2)6〗;Na2SO4;KOH(以上均为分析纯)。

GC-9A(配浙江大学色谱工作站);傅立叶红外光谱仪;X衍射光谱仪。

2 消字灵市场现状

目前,消字灵主要是通过“地下”渠道流入使用者。“消字灵”因地域不同可有不同的俗名:消字灵、褪色灵、褪色剂、消褪剂和涂改液等,它会因应用的载体(纸张)成分和书写色料不同有不同的配方组合,即消字灵套装,有一瓶、两瓶药水一套的,也有三瓶一套的,表1为不同字迹所用配方组合举例。

表1 不同字迹的消字灵配方组合

字迹

组合瓶数

适用范围

普通墨水

2(或1)

蓝黑、红墨水

圆珠笔

2

各种颜色圆珠笔油

复写纸

3

各种颜色复写纸油墨

炭素墨水

1

炭素墨水、墨汁

由于消字灵中的化学成分易受温度、光强度等因素的影响,其中几种成分易挥发,故消字灵的贮存时间一般很短,常温下(25℃)最多保存十余天。

3 有效成分剖析

3.1 纯蓝、蓝黑、红墨水和圆珠笔笔迹消字灵的成分分析

钢笔墨水是最常用的书写墨水之一,其中纯蓝、蓝黑和红墨水一直是人们惯用的墨水,随着进口、国产签字笔的广泛应用,染料墨水也加入到了此行列;圆珠笔虽然不能作为存档的书写工具,但属于日常生活中最为常用书写工具,故这两类笔迹是消字灵使用的主要部分,应用此类消字灵主要有两种,效果也有所不同。两种消字灵为:A(两瓶一组)和B(一瓶一组)。笔者采用化学和仪器等方法分析其中的主要成分〔4〕。

种类A为紫色液体和无色液体各一瓶,两者pH值均为中性。取紫色液体少量,以浓HCl酸化,加热挥干,再以少量的去离子水溶解,滴加Na3〔Co(NO2)6〗溶液,结果产生亮黄色沉淀,示有K+。紫色液体少量,加入浓HNO3少量,震荡后放置,出现褐色沉淀;另取紫色液体少量,小火加热挥干,得紫色晶体,进行FIR的检测,于920~890nm处有一强吸收峰,400~380nm处有一弱吸收峰。综上所述,上述紫色溶液为高锰酸钾溶液。

无色溶液有两种,一种与种类B相同(检验方法见下),另一种溶液为中性,经加热后会产生气泡,根据其能与强氧化剂高锰酸钾溶液发生反应,此溶液为过氧化氢。

种类B为无色溶液,pH为酸性,与高锰酸钾溶液混合变成无色溶液;与氯化钙溶液反应生成白色沉淀,此沉淀不溶于醋酸。另取少量无色溶液,小火加热挥干,得无色晶体,进行FIR的检测,得到与HO2CCO2H.2H2O相同的红外光谱图,结合其还原性的特点,此溶液为草酸溶液。其它特性见表2中A、B。

表2 各种字迹的消字灵主要成分

种类

组合

主要成分

消褪效果

载体荧光破坏情况

A

2

KMnO4-H2O2(草酸)

很好

严重

B

1

草酸

较好

一般

C

3

混苯+A

很好

严重

D

1

HClO4

很好

一般

3.2 复写纸字迹消字灵成分分析

复写纸的成分主要为颜料(或染料)和连结料〔5〕,红、蓝、黑等色使用不同的色料,例如蓝色的色料主要有油蓝、油紫、铁蓝和酞菁蓝,连结料主要以大量的蜡为分散体,还有较多的磷酸三甲酯增塑剂和凡士林、有机胶质等。热敏(压敏)复写纸是目前越来越广泛使用的复写纸,案件中尚未发现,有关其检验鉴定方面的研究有待进行。普通复写纸的字迹消字是当前消字的主要对象,由于其成分相对固定,所配制的消字灵效果较好。

三瓶一组合的复写字迹消字灵是蓝黑墨水消字灵外加一种能溶解有机染料的溶剂,该溶剂为油性物质,以气相色谱分析条件:FID检测器,2% OV-17 Chromsorb W AW DMCS 60-80目,2.1m,INJT=250℃,CITP=150℃,H2:0.6atm,Air:0.6atm,N2:30ml/min,RANGE=1。测得其成分为甲苯、二甲苯的混合物,主要为甲苯。其它特性见表2中C。

3.3 炭素墨水字迹的消字灵成分分析

炭素墨水的成分比较简单,其成色剂主要是炭黑。炭黑稳定,因此经常使用于文件存档记载。市售炭素墨水的消字灵是一瓶一组的无色液体,其pH为强酸性,以棉签醮取少量时棉纤维溶解;另取该消字灵少量,滴加KOH溶液至中性,挥干溶液,其固体残渣进行X衍射光谱检验,结果其图谱与KClO4相同,故该消字灵为简单的无机酸高氯酸。因其属于危险物品,不易在普通化试商店购得,故消字灵市场上每瓶的数量较少,一般为1~2ml,且价格特别贵。其特点见表2中D。

4 讨论

4.1 消字灵成分复杂,且其成分变化较大

经过对市售消字灵的调查,消字灵因配制者的素质、配制方法和原料来源的不同,其成分不尽相同。有些配制者为提高消字效果或消字后长期不留残痕,在其中加入一些辅助剂,如在A组中,KMnO4中加酸(HCl、HNO3),在C组中加入其他有机溶剂等。综观这些消字灵,其主要的特点是具有氧化-还原能力的物质,或者具有较强渗透、挥发性的物质。这些物质放置的时间一长,自身就会发生化学反应。A组中KMnO4会产生MnO2沉淀,C组的成分会迅速挥发,这些结果易造成消字灵过快失效,刺激了地下市场的需求量。综观所有消字灵,其来源相对简单,原料的价格很低,比如混苯可用香蕉水代替,价格低廉,毒性较低,又很容易得到,所以是不法分子的首选材料。

4.2 消字灵不是万能的“神水”

(1)根据目前市场上消字灵的掌握情况,部分字迹尚不能完全消褪。随着科技的发展,文件、合同和票据等使用胶印、打印的情况越来越多,这些字迹的消字比较困难,效果也不佳,即使字迹有部分消褪,要重新更改或添加文字就相当困难,因为存在制作机器和色料等技术问题。

(2)消字灵在消褪字迹的同时,往往容易不同程度地破坏载体。在一般人看来,用消字灵消褪的字迹不易察觉,许多时候能够混蒙过关,但是只要仔细观察或者用仪器进行鉴定,不难看出许多破绽。第一,经过任何溶剂涂擦的载体(纸张或文件),其局部表面会发生皱折,与同类的载体相比,整个面积缩小。第二,不同的消字灵因其成分的特点,消字后或多或少会在载体上留下痕迹,它随着时间的推移,这种痕迹会变得越来越明显,或黄或灰。第三,根据本文研究结果,消字灵涂擦在载体上本身没有荧光反应,但消字灵能够与大部分荧光素发生化学反应生成无荧光的物质,故使用过消字灵的载体往往局部不发荧光,这可以通过对光或紫外光观察。

4.3 部分使用过消字灵消褪的字迹,经实验证明可以重现

消字灵消褪字迹的原理比较简单,当消字时药剂涂擦不重时,原有字迹的化学反应物尚遗留在原来的位置,我们可以通过反应的可逆性,涂擦化学溶剂进行重新显现,以揭示字迹的本来面目〔3〕。

4.4 自制消字灵经实验证明与市场上得到的效果相同

尽管消字灵在外观和包装上千差万别,但其主要成分不变。笔者按照本文实验结果配置了各种消字灵,经消字试验比较,其结果几乎与市场上购得的消字灵完全相同,这再一次证明本文剖析结果的正确性。

曾经的花瓣
优美的夏天
2026-02-01 02:43:32
中药化学成分的预试验

系统预试法——应用一些简单的定性试验,对中药中所含各类化学成分作全面检查.

单项预试法——根据需要,有重点的检查某类成分或某药效成分.

方法:试管反应+薄层层析检查

中草药主要来源于植物.植物的化学成分较复杂,有些成分是植物所共有的,如纤维素、蛋白质、油脂、淀粉、糖类、色素等.有些成分仅是某些植物所特有的,如生物碱类、甙类、挥发油、有机酸、鞣质等.

各类化学成分均具有一定的特性,一般可由药材的外观、色、嗅、味等作为初步检查判断的手段之一.如药材样品折断后,断面不油点或挤压后有油迹者,多含油脂或挥发油;有粉层的多含淀粉、糖类;嗅之有特殊气味者,大多含有挥发油、香豆精、内酯;有甜奈者多含糖类;味若者大多含生物碱、甙类、苦味质;味酸者含有有机酸;味涩者多含有鞣质等等.

中草药所含化学成分均为多类的混合物,分析时常常互相干扰,不易得到正确结果.因此需根据中草药所含各种化学成分的溶解度、酸碱度、极性等理化性质,再用各类成分的鉴别反应加以鉴别.

一、 预试溶液的制备

1、 水提取液——糖、多糖、有机酸、皂苷、酚类、鞣质、氨基酸、多肽、蛋白质……

2、 乙醇提取液——酚类、鞣质、有机酸、香豆素、强心苷、黄酮、蒽醌、甾体……

3、 5%HCl-乙醇提取液——生物碱

4、 石油醚提取液——甾体、萜类、脂肪油……

(一)鉴别注意事项

1.根据各灰成分不同性质,选用适宜的溶剂提取,以保证等成分能被提取出来.

2.检品提取液的浓度应足以达到各该反应的灵敏度.

3.检品提取液的酸碱度(pH)值应不致影响鉴别反应中所需要的pH值.相差甚大时应事先调节.

4.提取液较深时,常易影响观察鉴别反应的效果,此时可适当稀释,或进一步提纯.

5.鉴别反应时应注意防止多类成分的相互干扰,以免出现假阳性,或颜色不正等情况.最好在化学鉴别的同时,做空白试验和对照试验(用已知含某类成分的中草药或纯品做阳性对照).

6.在鉴别试验中,如果某一类成分的几个鉴别反应结果不一致时(即有的呈阳性反应,有的呈阴性)则应进行全面分析.首先应注意呈阳性反应的试验是否属于该类成分的专一反应,否则应检查其他类成分能否产生该反应,从多方面加以判断.但也应注意,某些反应只能对某一类成分中的某个化学基团呈性反应,如检查黄酮类的盐酸――镁粉试验,它只对黄酮类中的羟基黄酮类(黄酮醇类)反应明显,其余类的黄酮类则不甚明显,但也不能轻易否定不是黄酮类,为了避免孤立和片面的下结论,一定要全面考虑综合分析.

中草药化学成分一般鉴别试验屯只是一个初步判断,最后确证尚需进一步提纯,以鉴定后才能予以肯定.

(二)鉴别方法

1、 氨基酸、多肽、蛋白质

(1)加热沉淀试验:加热煮沸 →混浊或沉淀 (蛋白质)

+5%H2SO4(不加热)→混浊或沉淀

(2)双缩脲反应:+40%NaOH,1%CuSO4 →紫色、红色或紫红色(多肽、蛋白质)

(3)茚三酮反应:+0.2%茚三酮试液 →蓝或蓝紫色(氨基酸、多肽、蛋白质)

(4)吲哚醌反应:+吲哚醌试液 →各种颜色(氨基酸)

(5)Millon反应:+Hg,H2NO2 →红色(蛋白质分子中有酪氨酸组成)

(6)Hopkins-Cole反应:+乙醛酸,浓硫酸 →各色(蛋白质分子中有色氨酸组成)

(7)氨基酸的薄层层析检查:吸附剂——硅胶G

展开剂—— n-BuOH,n-BuOH:HAc:H2O

显色剂——0.25%茚三酮试液 →紫红色斑点

(1)加热或矿酸试验:取检品的水溶液1ml于试管中,加热至沸或加5%盐酸,如发生混浊或有沉淀示含有水溶性蛋白质.

(2)缩二脲试验:取检品的水溶液1ml,加10%氧化钠溶液2滴,充分摇匀,逐渐加入硫酸铜试液,随加摇匀,注意观察,如呈现紫色或紫红色示可能含有蛋白质和氨基酸.

凡蛋白质结构中含有两个或两个以上肽键(-CONH-)者均有此反应,能在碱性溶液中与Cu2+生成仙络合物,呈现一系列的颜色反应,二肽呈蓝色,三肽呈紫色,加肽以上呈红色,肽键越多颜色越红.

(3)茚三酮试验,取检品的水溶液1ml,加入茚三酮试液2-3滴,加热煮沸4-5分钟,待其冷却,呈现红色棕色或蓝紫色(蛋白质、胨类、肽类及氨基酸).

氨基酸与茚三酮的水合作物作用,氨其酸氧化成醛、氨和二氧化碳,而茚三酮被还原成仲醇,与所后成的氨及另一分子茚三酮缩合生成有蓝紫色的化合物.

【注】①茚三酮试剂主要是多肽和氨基酸的显色剂,反应在1小时内稳定.试剂溶液pH值以5-7为宜,必要时可加吡啶数滴或醋酸钠调整. ②此反应非常灵敏,但有个别氨基酸不能呈紫色,而呈黄色,如脯氨酸.

(4)氨基酸薄层层析检出反应:

①吸附剂:硅胶G.

②展开剂:(1)正丁醇:水(1:1)(2)正丁醇:醋酸:水(4:1:5)

③显色剂:0.5%茚三酮丙酮溶液,喷雾后于1100烘箱放置5分钟,显蓝紫允或紫色.

2、 皂苷

(1)泡末试验:振摇 →大量持续性泡末

+0.1M HCl 二管泡末高度相同(三萜皂苷)

+0.1M NaOH 碱管高于酸管(甾体皂苷)

(2)溶血试验:+2%红血球悬浮液 →溶血

(3)Lieberman—Burchard反应:+醋酐-浓硫酸—— 紫红色(三萜皂苷)

黄-红-紫-污绿(甾体皂苷)

(1)泡沫试验:取检品的水溶液2ml于带塞试管中,用力振摇3分钟,即产生持久性蜂窝状泡沫(维持10分钟以上),且泡沫量不少于液体体积的1/3.

【注】常用的增溶剂吐温、司盘,振摇时均能产生持久性泡沫,要注意区别.

(2)溶血试验:取试管4支,分别加入滤液0.25、0.5、0.75 ml,然后依次分别加入生理盐水2.25、2.0、1.75、1.5 ml,使每一个试管中的溶液都成为2.5ml, 再将各试管加入2%的血细胞悬液2.5ml,振摇均匀后,同置于370水浴或25-270的室温中注意观察溶血情况,一般观察3小时即可,或先滴红细胞于显微镜下,然后滴加检液看血细胞是否消失.如有溶血现象示正反应.

【注】①鞣质对血红细胞有凝集作用,干扰溶血试验的观察,应事先除去(可用取胜酰胺粉吸附或用明胶沉淀). ②检液应为中性溶液.

(3)醋酐浓硫酸试验(Liebrmann Burchard反应)取检品的水溶液置蒸发皿中,于水浴上蒸干,残渣加入少量冰醋酸使溶解,再加入醋酐浓硫酸(19:1)试液,呈现红紫色并变成污色绿色(甾类、三萜类成分或皂甙)

(4)区别甾体皂甙和三萜皂甙:取带塞试管两支,各盛检品的水溶解1 ml,1支加0.1N盐酸溶液2ml,另一支加0.1N氢氧化钠溶液2ml用力振摇1分钟(需左右手交替振摇各半分钟),观察两管泡沫的多少,若两管泡沫体积相同或酸管多,示含三萜式皂甙;若加碱管泡沫多于加酸管示含甾示含甾体皂甙.

三萜皂甙为酸性皂甙在酸性水溶液中形成较稳定的泡沫;甾体皂甙为中性皂甙在碱笥溶液中能形成较稳定的泡沫.

浓硫酸、高氯酸、高氯酸-香草醛、浓硫酸-香草醛等的显色原理主要是使羧基脱水,增加双键结构,再经双键位移,双分子缩合等反应生成共轭双键系统,又在酸作用下形成阳碳离子盐而显色

3、 糖和苷

(1)斐林试剂:+硫酸铜、酒石酸钾钠 —— 砖红色沉淀(还原糖)

(—)+1%HCl +NaOH 沉淀(苷元)

△30min 上清液(+)(多糖、苷)

(2)Molish反应:+α-萘酚-浓硫酸 →紫红色环

(3)银镜反应:+0.1N硝酸银、5N氨水 →银褐色(还原糖)

(4)薄层层析检查::吸附剂——硅胶G或纤维素

展开剂—— n-BuOH:Pd:H2O;15%HAc

显色剂—— 苯胺-邻苯二甲酸

(1)碱性酒石酸铜试液:取检品的水溶液1-2ml(如为醇溶液须将醇蒸发除去),加入碱笥酒石酸铜试液1ml,于沸水浴上加热5分钟,产生棕红色或砖红色氧化亚铜沉淀,示有还原糖.

还原糖能使二价铜盐(蓝色)还原成氧化亚铜,醛糖的醛基氧化成羧基:

【注】①如检液呈酸性,应先碱化. ②此反应所产生的沉淀由于条件不同,其颜色也不同,质点上的呈黄色,质点大的呈红色.有保持性胶体存在时,也常产生黄色沉淀. ③职样品中含有其他醛、酮及还原较强的其他成分,或中划药制剂中附加的抗氧剂、;葡萄糖等均可显阳性反应.

(2)α萘酚试验(Molisch紫环反应):取检品的水溶液1ml,加5%萘酚试液数滴振摇后,沿管壁滴入5-6滴浓硫酸,使成两液层,待2-3分钟后,两层液面出现紫红色环(糖、多糖或甙类).

多糖类遇浓硫酸被水解成单糖,单糖被浓硫酸脱水闭环,形成糠醛类化合物,在浓硫酸存在下与α萘酚发生酚醛缩合反应,生成紫红色缩合物.

【注】①甙的分子结构中含有糖基,一般属于单糖类,如葡萄糖,鼠李糖、半乳糖,但也有含二分子糖(双糖)或多分子糖(多糖).在上述反应条件下,甙被水解成单糖,因此甙萘酚试验,系分子中糖部分的反应. ②由于此反应较为灵敏,如有微量滤纸纤维或中草药粉末存在于溶液中,都能产生上述反应.故滤过时应加注意.

(3)多糖的确证试验:取检品的水溶液5ml于水蒸发至干,加入1ml蒸馏水,再加入乙醇5ml,如出现沉淀,滤过收集后用少量热乙醇洗涤,再将沉淀物溶于3ml蒸馏水中,做下例试验.

①碘试验:取检品的不溶液1ml,加碘试液1滴,观察颜色变化,如呈蓝黑色为地衣糖;紫黑色为糊精;蓝色加热消失,冷后蓝色再现为淀粉.

②多糖水取检品的水溶液1ml,加入稀盐酸5滴,置沸水浴中加热10-15分钟,然后用10%氢氧化钠液中和至中性,再加新配制的碱性酒石酸铜试淮4滴,另取检液1ml,不加酸水解直接加入上述试液4滴,两管同置水浴上煮沸5-6分钟.如果水解后生成棕红色常常物的量比未经水解的多,则示有多糖.

多糖水解后产生单糖,利用单糖的还原性,使铜离子还原成氧化亚铜.

4、 酚类和鞣质

(1)FeCl3试剂:+1%FeCl3试液 →蓝、暗绿或蓝紫色

(2)三氯化铁-铁氰化钾试剂:喷洒→蓝色斑点

(3)香草醛-盐酸试剂:喷洒 →红色(间苯二酚、间苯三酚)

(4)重氮盐试剂:+对硝基苯胺、亚硝酸钠 →红色

(5)薄层层析检查:吸附剂——硅胶G或纤维素

展开剂—— n-BuOH:HAc:H2O;15%HAc

显色剂——1% FeCl3试液

1%三氯化铁-1%铁氰化钾试液 →蓝、绿或黑色

鞣质与酚类的区别:+明胶 —— 沉淀

上清液 +1%FeCl3试液 →蓝、暗绿或蓝紫色

(1)三氯化铁试验:取检品的水溶液1ml,加三氯化铁试液1-2滴,呈现绿色、污绿色、蓝黑色或暗紫色(可水解鞣质显蓝一蓝黑色,缩合鞣显绿色一污绿色).

鞣质均是多羟基酚的衍生物,即多元酚,能和三价铁离子发生颜色反应生成复杂的络盐.

【注】此反应如遇有矿酸或有机酸、醋酸盐等存在,能阻碍颜色的生成.硝基酚类对三氯化铁试剂无明显反应.

(2)明胶试验:取检品的水溶液1ml,加氯化钠明溶液2-3滴,即生成白色沉淀物.

鞣质有凝固蛋白的性能.

(3)溴试验:取检品的水溶液1ml,加溴试液1-2滴,生成白色或沉淀物,示可能含有酚或儿茶酚鞣质.

【注】过多的溴会阻碍鞣质的沉淀,因此溴水不宜多加.

(4)香草醛一酸试验:取检品的水溶液点于滤纸片上,干后,喷雾或滴加香草醛一盐酸试液,呈现红色斑点(多元酚类物质).

(5)鞣质、酚类薄层层析检出反应:

①吸附剂:聚酰胺;硅胶;硅胶;石膏:水(5:1:7)调成状,涂成薄板,1050烘干45分钟.

②展开剂:乙醇:醋酸(100:2);正丁醇:乙酸乙酯:水(5:4:1);苯:甲醇(95:5).

③显色剂:10%三氯化铁溶液;1%三氯化铁乙醇溶液与1%铁氰化钾水溶液(1:1)显蓝一紫色斑点.

5.黄酮及其甙类

(1)盐酸-镁粉反应:+HCl-Mg →红色

(2)三氯化铝反应:+AlCl3 →黄色

(3)浓氨水反应:+NH3 →亮黄或橙色

(4)薄层层析检查:吸附剂——聚酰胺或硅胶G

(1)盐酸一镁(或锌)粉试验:取检品的乙醇溶液1ml,加放少量镁粉(或锌粉),然后加浓盐酸4-5滴,置沸水浴中加热2-3分钟,如出现红色示有游离黄酮类或黄酮甙(以同法不加镁或粉做一对照,如两管都显红色则有花色素存在.如继续加碳酸试液使成碱笥即变成紫色双转变为蓝色,即证明含花色素).

黄酮类的乙醇溶液,在盐酸存在的情况下,能被镁粉还原,生成花色甙元而呈现红色或紫色反应(个别为淡黄色、橙色、紫色或蓝色).这是由于酮类化合物分子中含有一个碱性氧原子,致能溶于稀酸中被还原成带四价的氧原子即锌盐.本法是鉴别黄酮类的一个反应.但花色素本身在酸性下(不需加镁粉)呈红色,应加以区别.

【注】①此反庆仅在化学结构中,第三位上带羟基的酮醇类显色较明显,而其它黄酮烷酮类均不甚明显.因此试验呈阴性反庆是不能做出否定的结论,尚需结合其他实验再做结论. ②试验应在醇中进行,水分多会影响颜色的生成.此反庆较慢,有时需置水浴上加热,以促使反应的进行.

(2)荧光试验:

①三氯化铝试验:取检品的乙醇溶液点于滤纸片上(干后再点1次,使其浓度庥中),干后,喷雾1%三氯化铝乙醇试液,在紫外光灯下观察,呈现黄色、绿色、橙色等荧光为黄酮类;呈现天蓝色或黄绿色;荧光,则为二氢黄酮类.这是区别二氢黄酮类化合物的一种鉴别反应.

②硼酸丙酮枸橼酸丙酮试验:取检品的乙醇溶液1ml,在沸水浴上蒸干加入饱和硼酸丙酮溶液及10%枸橼酸丙酮溶液各0.5ml,蒸去丙酮后,在紫外光灯下观察,管内呈现强烈的绿色荧光(黄酮或其甙类).

(3)碱液试验:取检品的乙醇溶液点于滤纸片上(干后,再点一次,使其溶液集中),干后,喷1%碳酸钠溶液或在氨蒸气中熏几分钟,呈现亮黄、绿或橙黄色.如将氨气熏过的滤纸露置空气中,颜色逐渐裉去而变为原有的颜色(黄酮或其甙类).

5、 生物碱

(1)沉淀反应——碘化汞钾试剂 →白色或浅黄色沉淀

碘化铋钾试剂 →橘红色沉淀

碘—碘化钾试剂 →浅棕或暗棕色沉淀

硅钨酸试剂 →浅黄或黄棕色沉淀

磷钨酸试剂 →浅黄色沉淀

磷钼酸试剂 →白色或淡黄色沉淀

苦味酸试剂 →黄色结晶或非结晶形沉淀

鞣酸试剂 →棕黄色沉淀

氯化金试剂 →黄色结晶

氯化铂试剂 →白色结晶

雷氏铵盐 →红色无定形沉淀

(2)薄层层析检查:吸附剂——碱性氧化铝(Ⅲ级,干法铺板)

硅胶G(稀碱湿法铺板)

展开剂——氯仿:甲醇

显色——UV;碘化铋钾

6、 有机酸

(1)PH试纸检查

(2)溴酚兰试液:喷洒→蓝色背景黄色斑点

(3)薄层层析检查:吸附剂——硅胶G或酸性氧化铝

展开剂—— C6H6:EtOH

显色剂——0.1%溴酚兰试液→黄色

7、甾体

(1)Lieberman—Burchard反应:+醋酐-浓硫酸 →黄-红-紫-污绿

(2)氯仿-浓硫酸反应:+氯仿-浓硫酸 氯仿层→红或青色

硫酸层→绿色荧光

(3)五氯化锑或三氯化锑反应:+SbCl3或SbCl5 →红色

(4)薄层层析检查:吸附剂——中性氧化铝或硅胶G

展开剂—— C6H6-MeOH;CHCl3-MeOH

显色剂—— 10%磷钼酸 →蓝-蓝紫色

5%三氯化锑试液 →红、棕红或绿色

9、香豆素、内酯

(1)开闭环反应:+1%NaOH→澄清 +2%HCl→混浊

(2)异羟污酸铁反应:+7%盐酸羟胺、10%KOH △ +稀HCl、1%FeCl3 →红色

(3)重氮盐试剂:+对硝基苯胺、亚硝酸钠 →红色

(4)薄层层析检查:吸附剂——酸性硅胶G或硅胶G 或酸性氧化铝

展开剂—— 甲苯-乙酸乙酯-甲酸(5:4:1)

显色剂—— UV→蓝色荧光

异羟污酸铁试液 →红色

10、强心苷

(1)Kedde试剂:+3,5-二硝基苯甲酸试液 →紫红色

(2)Baljet试剂:+碱性苦味酸试液 →橙或橙红色

(3)Legal试剂:+亚硝酰铁氰化钠试液 →紫红色

(4)K-K反应:+FeCl3/冰HAc、浓H2SO4→ 上层绿~蓝色 (2-去氧糖)

界面红棕色

(5)薄层层析检查:吸附剂——硅胶G 或中性氧化铝

展开剂—— n-BuOH:HAc:H2O(4:1:5)

显色剂—— 碱性3,5-二硝基苯甲酸试液→紫红色

碱性苦味酸试液 →橙红色

11、蒽醌

(1)碱液反应:+10%NaOH →红色 +H2O2 →红色不褪 +H+ →红色褪去

(2)醋酸镁反应:+1%MgAc2 →红色

(3)薄层层析检查:吸附剂——硅胶G

展开剂——Pet:EtOAc

显色剂—— UV→黄色荧光

5%NaOH →红色

12、挥发油、油脂

(1)油斑检查:油斑挥发 →挥发油; 油斑不消失→油脂或类脂

(2)磷钼酸反应:喷洒5%磷钼酸试液 →蓝色(油脂、三萜、甾醇)

最后重点提醒:以上各试剂的配制方法最好参照药典来配制,原因一是上面写得很详细,二是药典中有个规定,药典上配制的溶液要是要用到乙醇的,如果没有指定用无水乙醇,一般是要用95%的乙醇的.

另外附一个试剂的配法:

氯化钠明胶试剂:(两者都是固体,刚开始我还真不知道怎样配,后来在药典才发现配方)2g氯化钠和1g明胶,再加上100g水,要求是现配的!

清爽的大侠
清脆的板凳
2026-02-01 02:43:32
甲苯是有机化合物,属芳香烃,结构简式为C6H5CH3。在常温下呈液体状,无色、易燃。它的沸点为110.8℃。甲苯温度计正是利用了它的凝固点比水很低,可以在高寒地区使用;而它的沸点又比水的沸点高,可以测110.8℃以下的温度。因此从测温范围来看,它优于水银温度计和酒精温度计。另外甲苯比较便宜,故甲苯温度计比水银温度计也便宜。

外向的大神
深情的裙子
2026-02-01 02:43:32
产率高

氧化还原法制备纳米铜研究报告

纳米铜粉制备工艺研究报告

纳米铜粉制备工艺研究报告

2011年10月18日,欧盟定义纳米材料是指一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。这种材料由于量子尺寸效应,表面效应,体积效应等特性而具备特殊的性能。近些年来,随着金属及其合金制备方法的提高,越来越纯及越来越小的金属颗粒被制备出来,纳米金属的研究迅速发展。研究发现,纳米金属材料具有较好的机械性能如屈服强度、拉伸强度等[1],以及优异的电学性能,磁学性能,光学性能等等。1铜在材料方面的应用

1.1 氧化铜的应用

铜是与人类关系非常密切的有色金属,铜是唯一能大量天然产出的金属,存在于各种矿石中;它在有色金属材料的消费中仅次于铝。其氧化物—CuO有着广泛的应用,除作为制铜盐的原料外,它还广泛应用于其他领域:如在催化领域,它对高氯酸钱的分解,一氧化碳、乙醇、乙酸乙醋以及甲苯的完全氧化都具有较高的催化活性,且对前4种反应的催化活性均排在金属氧化物之前列;在传感器方面,用CuO作传感器的包覆膜,能够大大提高传感器对CO的选择性和灵敏度;近年来,由于含铜氧化物在高温超导领域的异常特性,使CuO又成为重要的模型化合物,用于解释复杂氧化物的光谱特征。此外,它还用于玻璃、陶瓷的着色剂,油漆的防皱以及有机分析中测定化合物含碳量的助氧剂,甚至有望用作汽车尾气的净化材料[2]。

1.2纳米铜的应用

由于纳米铜粉具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应及介电限域效应等特点,因此它的物理化学性质也与传统材料大不相同。自1995年IBM的C K HU 等指出纳米铜粉由于其低电阻可以用于电子连接后,其性质引起了电子界的很大兴趣。纳米铜粉作为重要的工业原料,代替贵金属粉末在制作高级润滑油、导电浆料、高效催化剂等方面可大大降低工业成本,有着广阔的应用前景。

在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的质量。纳米氧化铜(VK-Cu01,99.9%)可作为常温脱硫剂的唯一组分。纳米氧化铜在常温25-30℃条件下脱硫精度高,硫容高达18.3%-28.7%。比同等条件下的分析纯氧化铜硫容的4.65倍,是纳米氧化锌硫容的4-8倍,是首选的常温脱硫剂。美国国家标准与技术研究院(NIST)的研究人员马克肯在润滑剂和制冷剂的标准混合物中加入适量的不同纳米粒子,发现在普通聚酯润滑剂上充分分散直径为30nm的氧化铜VK-Cu01粒子,并与普通的制冷剂(R134a)混合,可把制冷器的热传递提高50-275%。。M.M. Rashad等人[4]利用工业废料,采用水热法制得立方铁酸铜合金(CuFe2O4),结果表明在特定的温度条件下,其催化效率达到了95.9%,

- 1 -

纳米材料制备技术

饱和磁化率Ms为83.7 emu/g4。张熙凤等人[5]以表面活性剂为改性剂,抗坏血酸为还原剂,辅助微波的方法,以硫酸铜作为原料,制得了针状纳米铜,将该纳米铜添加到环氧树脂中显示出了很好的导电性能。

1.3纳米铜在生物材料方面的应用

美国学者报道了纳米制造技术在制造通过荧光示踪剂和抗体来识别生物分子的分光镜式

纤维探测器上的应用,并制备出了基于聚合物/聚合物染色多层结构的荧光探测器和基于聚合物/金纳米颗粒/抗原体的细胞质基因探测器,这两个探测器系统的性能在有限范围内相对于目标参照物都显示出精确而灵敏的反应[6]。S. Ashok Kumar等人[3]利用电化学的方法将纳米氧化铜沉积在ZnO薄膜上,制成能够选择性探测D(+)-葡萄糖的传感器Cu-NPs/ZnO复合电极,该电极具有较高的灵敏度,稳定性,回复性,选择性及快速响应性等。

1968 年智利的zipper 在小动物实验中发现铜、锌等金属盐有明显的抗生育作用。1969 年Tatum 和Zipper 合作,比较惰性T 形宫内节育器(IUD)和带铜丝T 形IUD 的临床效果,证明铜确实能增加避孕效果且铜的表而积与避孕效果之间存在肯定的关系,利用纳米金属铜/聚合物基复合材料来制作IUD,其中的铜纳米颗粒在宫腔液中除产生具有避孕作用的可溶Cu2+外,由于纳米金属铜颗粒的尺寸效应,它的其它主要腐蚀产物之一的Cu2O也必然处于纳米尺度,因其具有巨大的表面积所产生额外的表面能,使Cu2O 处于非常不稳定的状态,进而更有效地转化成Cu2+。另外,由纳米金属/聚合物复合材料制成的IUD,不存在因金属铜的断裂和脱落而不得不提前取出等问题,可以最大限度地利用金属铜[7]。正因为这两方面的原因,金属铜的有效利用率可以得到极大的提高。在使用年限不变的情况下,由纳米金属/聚合物复合材料制作IUD,由于金属铜的有效利用率的大幅提高,可以大大地减轻含铜IUD 的重量,从而减轻含铜IUD 带来的某些副作用;在含铜IUD 中金属铜的含量不改变的情况下,由纳米金属/聚合物复合材料制成的IUD,由于金属铜的有效利用率的大幅提高,它的使用年限也将比现在的含铜IUD 大大延长。

2纳米铜的制备方法

一般要求纳米铜粉产物纯度高,粒径分布均匀且较窄,颗粒未团聚,表面未氧化,结晶好,超细铜粉的制备方法大致可以分为物理法、物理化学结合法和化学法,采用不同的工艺条件可以制备出具有较大差异的铜粉。

2.1 物理法

球磨法:利用介质和物料间相互研磨和冲击,并辅以助磨剂或大功率超声粉碎来达到微粒的细微化[8]。谢中亚等人[9]采用高能行星球磨机对粗颗粒铜进行研磨,在不同的球磨参数下,通过磨球的撞击使粉粒变形、焊合、断裂等过程不断地重复进行,随着时间的延长,颗粒不断细化,得到了超细铜纳米颗粒。

等离子体法:等离子体法的反应速度快、生产区域大、操作简单,几乎可以制备任何纯金属超细粉。直流电弧等离子体法(DC) 、高频等离子体法(RF)及混合等离子体法(Hybridplasma) 。DC法在高温条件下操作,电极容易熔化而污染产物;RF法的能量利用率低,稳定性差;混合等离子体法将前两法结合起来,既有较大的

- 2 -

纳米铜粉制备工艺研究报告

等离子体空间,又有较高的生产效率,产品纯度高,方法稳定性好H. Suematsu等人[10]采用金属丝放电法(PWD),利用激光产生的瞬时高温使粗铜蒸发,然后冷凝,生成了铜纳米线,尺寸大概为50个纳米。

γ射线辐照法:γ射线辐照基本原理是将铜盐在γ射线下还原成铜粒子。γ射线使溶液生成溶剂化电子,不需要使用还原剂就可还原铜离子,经成核生长形成铜颗粒。γ射线的优点是在常温常压下易于操作,颗粒生成的同时进行保护,可以防止颗粒团聚,可规模化生产朱英杰等人[11]以CuSO4溶液为制备纳米铜原料,以十二烷基硫酸钠为表面活性剂,加入EDTA 二纳盐形成稳定的络合物,然后在Co源中辐照,水热处理数小时后即可得到金属纳米铜粉。

2.2化学法

溶胶-凝胶法:其过程是将金属有机醇盐或无机盐溶液水解,使溶质聚合成溶胶后再凝胶

固化,干燥后经磨细、煅烧得到纳米粒子。R. Thinesh Kumar,P. Suresh等人[12]采用一种称之为―Pechini‖的电输运的改进的溶胶-凝胶方法来制备纳米铜铝尖晶石氧化物,其过程:将硝酸铜及硝酸铝溶解在蒸馏水中,加入柠檬酸作为凝胶剂,室温下进行搅拌,调整溶液PH 值,600℃下焙烧,900℃下进行烧结,得到粒径为20-30nm的晶粒。

电解法:制备铜粉一种比较成熟且工业生产铜粉的常见方法。制备过程一般是间隔10~20min将沉积在阴极的铜粉刮掉,以避免颗粒长大。另外,还需经过球磨、分筛等工艺才能最终得到铜粉。超声电解法是改进的电解法,利用超声振动和空化作用产生高压或射流使沉积的铜颗粒脱离阴极表面,并以微小颗粒悬浮于电解液中。Ting-Kai Huang等[13]提到CuCl2溶解到CTAC及HNO3中,290 k温度下水浴加热,取溶液用碳电极中间加入直流电压电解,沿着碳电极就长出了宽为50nm、厚度为20nm、长度为10μm铜纳米带。

微乳法:两种互不相溶的溶液在表面活性剂作用下形成微乳状液,反应物在其中反应生成固相产物, 即双亲分子将连续介质分割成微小空间形成―微反应器‖,其成核、晶体生长、聚结、团聚等过程受到微反应器的限制,从而控制了纳米粒子的粒径,同时表面活性剂包膜也解决了纳米微粒团聚的问题,最终形成了包裹有一层表面活性剂的有一定凝聚态结构和形态的纳米粒子。

2.3 物理化学法

采用物理和化学相结合的方法,集物理方法和化学方法于一身,大量制备高纯铜及其合金纳米颗粒。

机械化学合成法:F. Shehata等[14] 采用两种不同路线合成了铜铝纳米复合材料,结论说明第三相更有助于合成颗粒更小的纳米复合材料。第一种是将铜加入到硝酸铝溶剂中,另外一种方法是将铜加入到硝酸铝及氢氧化铵的混合溶剂中,两种方法都是将混合液加热得到固体粉末,然后进行球磨,即可得到氧化铜及氧化铝的纳米材料。以氢气作为还原气氛还原氧化铜即可得到纳米铜颗粒。作者还进一步研究了将氧化铜及氧化铝在950℃,600Mpa的条件下进行烧结,第一种方法得到的CuAlO2尖晶石的尺寸为50nm,第二种方法得到的颗粒尺寸为30nm。另外Elina Manova等人[15]用二步法即共沉淀和机械球磨的方法制得了立方型铁钠米酸铜CuFe粉末。

- 3 -

纳米材料制备技术

雾化法:通过将金属熔融后压入喷嘴,再利用压缩空气、惰性气体或水把熔融的金属吹散成极小的金属颗粒珠。美国等工业发达国家已逐步采用雾化氧化还原技术生产低松装密度铜粉来取代电解法生产铜粉,所生产的铜粉既有电解铜粉低的松装密度,又有水雾化铜粉的良好流动性。

3液相还原法制备纳米铜

化学方法合成纳米材料的方法之一,其原理是将还原剂加入到含铜盐的溶液中,在一定条件下,发生氧化还原反应,将铜离子还原成铜颗粒。常用的还原剂有甲醛、抗坏血酸、次亚磷酸钠、硼氢化钠/钾、水合肼、锌粉等。根据还原剂的不同,可分类为甲醛还原法、水合肼还原法、次亚磷酸钠还原法、抗坏血酸还原法、葡萄糖预还原法、锌粉还原法等,下面就其中几种制备方法作出总结。

3.1硼氢化钾还原法

早在2004年,国Kumar Niranjan, Jayanta Chakraborty[17]采用相同的还原剂,但制得了粒径为2~4nm的铜纳米材料。其制备方法可由下图1表示

图1 硼氢化钾还原法示意图

1 CuCl2·2H2O溶入到的HCl溶液中,制得50mM的CuCl2标准溶液,同样将NaHB4溶入到50 mM NaOH的氢氧化钠溶液中,制得硼氢化钠溶液。

2先将CuCl2加入到去氧水中中稀释,一会儿加入NaHB4溶液并立即用手进行振荡,在空气中可观察到溶液逐渐变红,说明铜粉被氧化。

3 相转移法制备纳米铜

将5ml的甲苯及20μL的正十二硫醇加入到10ml的铜胶体溶液中,充分震荡2分钟形成乳胶溶液。然后在此乳胶溶液中加入50mM HCl,并继续振荡1分钟,最后静置即可。

- 4 -

纳米铜粉制备工艺研究报告

3.2水合肼还原法

即用水合肼(N2 H4 ·H2O)还原铜盐的方法。兰州理工大学于梦娇等人[18]用水合肼(N2H4·H2O)还原五水硫酸铜(Cu2SO4·5H2O) ,添加适量的OP等作为表面活性剂,在超声的条件下,还原剂采用滴入的方式加入到硫酸铜与OP的混合溶液中。得到平均粒径约40nm,颗径分布较窄、呈球形,表面未氧化的纳米铜粉。Wanheng Lu等人[19]以钴盐与镍盐摩尔比为1:1的量及适量的表面活性剂溶解在乙二醇溶液中,水浴加热一段时间后,加入氢氧化钠及水合肼,溶液变蓝,立即加热搅拌20-30分钟。经过冷却,离心,洗涤,干燥即可得到60nm 大小的CoNi颗粒。

另外湖南大学的Y an Zhao等[23]对氧化还原的机理作了进一步地研究,提出了当

爱听歌的黄蜂
矮小的烤鸡
2026-02-01 02:43:32
甲苯引起的急性中毒主要表现为中枢神经系统的麻醉作用和植物神经功能紊乱症状,以及粘膜刺激症状,重者甚至抽搐、神志不清,有的可出现癔病样症状。慢性中毒常出现神经衰弱综合征,亦可致脑病及肝肾损害。女性可有月经异常。对血液系统的作用不明显。

短时间内吸入高浓度后,出现头痛、头晕、无力、面潮红、酒醉状态、恶心、呕吐、呼吸困难、眼和呼吸道刺激症状和四肢麻木等,严重时可出现抽搐、昏迷、心室纤颤、呼吸停止而即刻死亡。二甲苯对人体的慢性影响主要表现为头痛、头晕、乏力、睡眠障碍、食欲减退、鼻衄、齿龈出血、脱发、皮肤淤斑等,长期接触可有角膜炎、慢性皮炎,女性可出现月经异常。一般认为本品对人的血液系统影响轻微,且是一种可逆性变化。

无特效治疗方法。参见GBZ71《职业性急性化学物中毒诊断标准(总则)》的原则处理。可给葡萄糖醛酸或硫代硫酸钠以促进甲苯的排泄如合并心、肾、肝、肺等器官的损害,处理原则按GBZ74处理。

淡淡的宝贝
沉默的大米
2026-02-01 02:43:32
甲苯(TolueneMethylbenzene) CAS:108-88-3 分子式:C7-H8。 分子量:92.130。 理化性质:无色有折射力的易挥发的液体,气味似苯。相对密度0.866(20/4℃)。熔点-95~-94.5℃。沸点110.4℃。闪点4.44℃(闭杯)。自燃点480℃。蒸气密度3.1 4。蒸气压4.89kPa(30℃)。蒸气与空气混合物的限爆炸限1.27~7% 。几乎不溶于水,与乙醇、氯仿、乙醚、丙酮、冰醋酸、二硫化碳混溶。遇热、明火或氧化剂易着火。遇明火或与下列物质反应:(硫酸+硝酸)、四氧化二氮、高氯酸银、三氟化溴、六氟化铀,引起爆炸。流速过快(超过3米/秒)有产生和积聚静电危险。 侵入途径:可经呼吸道和消化道吸收,经皮肤吸收不易达到急性中毒剂量。 毒理学简介:人经口LDLo: 50 mg/kg。大鼠经口LD50: 636 mg/kg;吸入LC50: 49 gm/m3/4H。小鼠吸入LC50: 400 ppm/24H。兔经皮LD50: 14100 uL/kg。 对皮肤粘膜有刺激作用,高浓度时对中枢神经系统有麻醉作用。工业品中常含有苯等杂质,可同时出现杂质的毒作用。 进入体内的甲苯主要分布于富含脂的组织,以肾上腺、脑、骨髓和肝为最多。少量以原形经肺排出; 80~90%氧化成苯甲酸,并与甘氨酸结合形成马尿酸随尿排出;另有少量苯甲酸与葡萄糖醛酸结合随尿排出。 引起眼刺激的浓度为300ppm,吸入的MLC为200ppm,经口的MLD为50mg/kg。正常人尿中马尿酸的含量因膳食品种和吸收量的不同而有变化,且个体差异较大,故尿中马尿酸含量不能作为吸收指标和诊断指标。 临床表现:吸入较高浓度蒸气后有头晕、头痛、恶心、呕吐、四肢无力、意识模糊、步态蹒跚,重症者有躁动、抽搐或昏迷并伴有眼和上呼吸道刺激症状,可出现眼结膜和咽部充血。直接吸入液体后可出现肺炎、肺水肿、肺出血及麻醉症状。