10%的1.6-己二醇怎么配
直接加氢催化剂大都以Sn 和过渡金属元素(如Ru,Rh,Pd,Pt,W,Re,Ir 等)作为活性组分。
Mitsubishi Chemical 公司发明了6%Ru-5%Sn-2%Pt 催化剂(载体为活性炭;其中的数值均为质量分数,下同),并以己二酸(8.5 g)、ε-己内酯(11.5 g)、水(30 g)为原料,于230 ℃、15 MPa 条件下反应3 h,采用直接加氢法制备了1,6-己二醇。用滴定法分析羧基含量,计算出己二酸的转化率为99.7%,1,6-己二醇产率为96.3%。该催化剂以Ru 和Sn 为活性组分,通过添加Pt 进一步提高了催化剂活性,具有较高的选择性并且催化剂稳定性较好。
旭化成株式会社发明了一种由混合二元酸(己二酸生产过程中的副产品,含有丁二酸、戊二酸和己二酸等)制备1,4-丁二醇、1,5-戊二醇和1,6-己二醇混合物的方法。以混合二元酸为原料,在水、H2 和催化剂5%Ru-3%Sn-5%Rh/活性炭存在下,于180 ℃、15 MPa 下加氢制备了二元醇混合物,1,4-丁二醇、1,5-戊二醇及1,6-己二醇的产率分别为75%,98%,96%。他们还提出了二元醇混合物的分离方法。这种由二元酸混合物直接加氢制备二元醇混合物的路线具有一定的实用性。
Rennovia 公司发明了双金属负载型催化剂,其中3.9%Pt-0.7%W@SiO2 型催化剂的效果最好。在催化剂用量40 mg、浓度为0.8 mol/L 的己二酸水溶液200 μL、压力4.6 MPa、温度120 ℃的条件下反应2.5 h,己二酸转化率为100%,1,6-己二醇产率为88%。中国石油化工股份有限公司等发明一种可将己二酸直接加氢还原为1,6-己二醇的催化剂(活性组分包括Ru,Re,In,Ir 等,Ru 含量为0.01~0.1 g/mL,载体为活性炭)。在高压釜内依次加入100 g 己二酸、200 mL 水、2 mL 催化剂,分别通入氮气和H2 各置换3 次,然后再通入H2 升压至5 MPa,在180 ℃条件下反应5 h,1,6-己二醇产率为96%。Ru 的添加使得催化剂活性和1,6-己二醇产率均得到较为明显的提高。
Nagendra 等利用1-丙基磷酸酐(T3P)-NaBH4体系将T3P 活化的羧酸直接加氢制备1,6-己二醇。先将烷基或芳基酸溶解于四氢呋喃中冷却至0 ℃,再加入二异丙基乙胺、50%(w)T3P 的乙酸乙酯溶液,混合搅拌5 min,然后保持温度不变,加入NaBH4,继续搅拌。反应结束后,蒸发溶剂,用乙酸乙酯进行萃取,有机物依次用10%(w)的Na2CO3 溶液、水、饱和食盐水洗涤,蒸发溶剂得到粗产物。其中,己二酸直接加氢制备1,6-己二醇的产率为84%。该方法简单,产物易分离,在加入NaBH4 之前不需要预过滤步骤,且产率较高。
1.2 己二酸酯类衍生物加氢制备1,6-己二醇
该工艺主要分为两步。首先,己二酸发生酯化反应得到己二酸酯类衍生物(如己二酸二甲酯、己二酸二丁酯、己二酸二烷基酯等),然后己二酸酯类衍生物通过加氢还原得到己二醇,工艺路线见图2。该工艺的难点在于加氢催化剂的研制。
沈阳工业大学等以己二酸为原料,经酯化和催化加氢制备1,6-己二醇。在酯化阶段,他们发明了一种酯化催化剂(活性组分为12-磷钨酸、12-硅钨酸、硝酸钯、氯化钌等,载体为活性炭)。在110 ℃、0.5 MPa 时,己二酸与甲醇在该催化剂作用下发生酯化反应得到己二酸二甲酯(酯含量大于99.5%,选择性大于99%,己二酸转化率大于99%)。在加氢阶段,他们提出了一种固体负载型加氢催化剂(活性组分为硝酸钯、氯铂酸钾、三氯化钌、七氧化二铼、高铼酸铵等,载体为Al2O3)。在210 ℃、2.5 MPa、H2 流量2×104 L/h的条件下,己二酸二甲酯经过催化加氢得到1,6-己二醇(其中,己二酸二甲酯的转化率和1,6-己二醇的选择性均大于99%),催化剂使用周期大于两年,从而使得该工艺成本较低。
程光剑提出以己二酸为原料,经酯化、催化加氢制备1,6-己二醇。在酯化阶段,采用DNW型强酸树脂催化剂为酯化催化剂,在自行设计的反应装置上实现了连续酯化反应,己二酸转化率达98%以上。在加氢阶段,采用共沉淀法制备了DL 系列和CH 系列催化剂,通过筛选,发现CH-07 型催化剂效果最优。在210~230 ℃、4~8 MPa、氢酯摩尔比为150~300,己二酸二甲酯空速小于0.5 h-1 的条件下,己二酸二甲酯的转化率高于98%,1,6-己二醇的选择性大于95%,在中试实验中CH-07 型催化剂的催化性能更好,己二酸二甲酯的转化率达99%以上,1,6-己二醇选择性达到96%以上。进一步制备了(5%~60%)CuO-(25%~60%)ZnO-(10%~30%)Al2O3催化剂,在150~250 ℃、2.5~10.0 MPa、氢酯摩尔比为50~350 条件下,加氢反应转化率大于99%,选择性大于96%,精馏后得到的1,6-己二醇的纯度为99.0%。随后,再次改进制备了主要成分及含量为CuO 37.2%(w),ZnO 53.7%(w),A12O3 8.9%(w)的催化剂,在温度225 ℃、压力6.0 MPa、氢酯摩尔比175、原料体积空速0.3 h-1 的优化工艺条件下,己二酸二甲酯转化率为100.0%,1,6-己二醇选择性为97.9%。上述系列非贵金属加氢催化剂在氢酯比、操作压力等方面显示了一定的优势,具有较好的工业应用价值。
Yuan 等研制了一种Cu-Zn-Al-500 型催化剂,在215 ℃、5.0 MPa 条件下,通过己二酸二甲酯加氢得到1,6-己二醇,己二酸二甲酯的转化率为99.2%,1,6-己二醇选择性为99.2%,其反应网络见图3。该催化剂主要由晶态CuO,ZnO 和非晶态Al2O3 组成。其中,非晶态Al2O3 为CuO 和ZnO晶体的分散提供了较大的比表面积,有助于介孔的形成。这种催化剂表面含有较多的Cu 组分,有利于提高催化剂活性,表面和亚表面的Cu/Zn 质量比对保持Cu-Zn-Al 催化剂的活性起着重要作用。随后,一些研究者对Cu-Zn-Al 催化剂的影响因素进行了研究。梁吉虎等得到己二酸二甲酯加氢制备1,6-己二醇的最优反应条件为:压力2.5 MPa,温度250 ℃,氢酯摩尔比150∶1,酯原料空速0.50 h-1,所制1,6-己二醇的产率达到96%以上。杨幸川等得到的最优条件是压力27 MPa,温度280 ℃,反应时间5 h,以正丁醇为溶剂,催化剂用量为己二酸二甲酯质量的5%,此时己二酸二甲酯的转化率为94.05%,1,6-己二醇的选择性为74.88%。尚开龙等研究得到的最优条件是Cu 质量分数为40%,n(Zn)∶n(Al)为2.7∶1,陈化时间2 h,焙烧温度450 ℃,己二酸二甲酯的转化率和1,6-己二醇的产率分别为98.46%,72.99%。魏晓霞等则对中国石油化工股份有限公司抚顺石油化工研究院自行开发的DNW 型耐温树脂酯化催化剂和FHE-1 型加氢催化剂催化己二酸酯化、加氢制备1,6-己二醇的工艺进行了研究,得到的最优条件是:酯化温度85 ℃,加氢反应温度210~220 ℃,加氢反应压力4.0~8.0 MPa,己二酸二甲酯空速0.2~0.4 h-1,H2 与己二酸二甲酯摩尔比大于310∶1。在此条件下,己二酸转化率为100%,己二酸二甲酯转化率可达98%以上,1,6-己二醇的选择性大于90%。
王东辉等对己二酸二甲酯的加氢催化剂进行了改性。将脱水至一定程度的粉体湿料、黏结剂(硅溶胶,质量分数为0.30%)、黏合剂(羟丙基甲基纤维素,质量分数为8.00%)、增强剂(短切玻璃纤维,质量分数为0.11%)、适量水和助剂按一定比例混合,进行捏合、挤条、切粒、干燥、焙烧,得到 CuO-NiO-Mo2O3/Al2O3 催化剂。然后,在280 ℃、8 MPa、H2 流量4 L/h 条件下,将催化剂还原活化4 h。催化加氢的反应条件为:220 ℃,8 MPa,液态空速0.4 h-1,氢酯摩尔比200,在此条件下制备的己二酸二甲酯的转化率达到99%以上,1,6-己二醇选择性达到97%以上。
烟台万华聚氨酯股份有限公司公开了一种己二酸二甲酯气相加氢合成1,6-己二醇的方法,并提出了相应的加氢催化剂(50.9%CuO-10.5%Al2O3-12.9%MnO-25.7%SiO2)。该催化剂经还原活化后,在微型反应器中于210 ℃、6.00 MPa、酯流量0.027 mL/min、H2 流量730 mL/min的条件下进行活性测试,结果表明,己二酸二甲酯的转化率为93%,1,6-己二醇产率为82%,1,6-己二醇选择性为88%。他们通过微波辐射法将Cu及其他金属化合物负载在介孔分子筛上。由于微波辐射加热速度快且平稳,可以在较短的时间内使活性物质均匀地负载在载体上,从而改善了催化剂的 物理性能和催化性能。
Jiang 等发 明 了Ru-Sn-Co/Al2O3 加 氢催化剂。该催化剂还原活化2 h 后,在220 ℃、5.0 MPa 条件下将己二酸二甲酯催化加氢10 h 得到1,6-己二醇。己二酸二甲酯转化率为99.5%,1,6-己二醇选择性为99.5%。与复合氧化物催化剂的复杂制备工艺相比,虽然该加氢催化剂为贵金属催化剂,但制备工艺更简单。
Huels Aktsengesellschaft发明了一种铜铬系列加氢催化剂(44.9%CuO-45.8%Cr2O3-9.1%BaO-0.2% (Al2O3+SiO2+SrO)),在182 ℃、30.0 MPa 条件下将己二酸二丁酯催化加氢制备1,6-己二醇,产率为92.98%。该催化剂较好地解决了酯类加氢反应条件苛刻、催化剂活性易下降等问题。李存等也对己二酸二丁酯加氢制备1,6-己二醇进行了研究,他们采用共沉淀法制备了Cu 基催化剂(主要成分为CuO,ZnO,Al2O3),虽然1,6-己二醇的产率仅为28.72%,但是他们使用了更廉价的反应原料和催化剂。
上海戊正工程技术有限公司将γ-Al2O3在80~120 ℃条件下干燥后,与铜镍锌可溶性盐溶液混合,通过浸渍法制备了WZD09 型催化剂(12.77%Cu-4.08%Ni-2.21%Zn@γ-Al2O3)。他们采用微型固定床反应器,在210 ℃、20 MPa、空速0.3 kg/(L·h)、氢酯比100 的条件下将己二酸二烷基酯转化为1,6-己二醇。己二酸二烷酯的转化率为99.5%,1,6-己二醇的选择性为98.5%。该催化剂制备方法较为简单,条件温和,使用前无需活化。
1.3 酯类混合物催化加氢制备1,6-己二醇
德国巴斯夫股份公司的研究人员发明了一系列以二元酸溶液酯化所得的C6 酯混合物为原料进行催化加氢制备1,6-己二醇的工艺及催化剂。其中,巴斯夫股份公司提出加氢催化剂为Cu基催化剂时,以60%CuO-30%Al2O3-10%Mn2O3为催化剂,在220 ℃、2.2 MPa 条件下反应效果最好,酯转化率达99.5%,1,6-己二醇选择性高于99%。上述发明的重点在于1,6-己二醇的提纯方法,在蒸馏前将酯类混合物进行加氢可以有效地减少1,4-环己二醇的含量且不损失1,6-己二醇的产率,可以得到纯度大于99%的1,6-己二醇。巴斯夫股份公司改进了1,6-己二醇的制备方法,以己二酸酯和6-羟基己酸酯为原料,使用主要含Cu,Mn,Al 的无铬催化剂,在180 ℃、4.5 MPa、氢酯摩尔比280∶1,空速0.1 kg/(L·h)条件下进行加氢反应。当采用纯己二酸二甲酯为原料时,己二酸二甲酯的转化率为100%,1,6-己二醇的选择性为98.1%。该方法实现了酯类混合物的气相加氢,且酯转化率和醇选择性高,催化剂具有较长的寿命。
Celanese 公司则将环己烷氧化过程产生的混合物通过酯化、加氢两个步骤制备了1,6-己二醇。随后,一些研究者也对此进行研究,先将混合物进行萃取分离,然后在一定的温度、压力、酯化催化剂或者无催化剂条件下进行酯化反应,再将酯化产物进行催化加氢,最后精制可得到纯度超过99%的1,6-己二醇。其中,巴斯夫股份公司发明的加氢催化剂为70%CuO-25%ZnO-5%Al2O3。在220 ℃、22 MPa 条件下,酯转化率为99.5%,1,6-己二醇选择性超过99%,该工艺的酯转化率和醇选择性都较高,而且是以环己烷氧化制备环己酮/环己醇过程中产生的副产物为原料。
2 生物基原料制备1,6-己二醇
生物基原料制备1,6-己二醇是近年来兴起的工艺,主要采用可再生资源为原料制备1,6-己二醇,具有环境友好的特点,因此有很好的应用前景。
2.1 山梨醇裂解制备1,6-己二醇
郸城财鑫糖业有限责任公司提出可在镍/钴催化剂作用下,将山梨醇水溶液(山梨醇质量分数为30%~50%,pH控制为11~13)在180~230 ℃、8~11 MPa 条件下进行加氢裂解得到1,6-己二醇和其他产物。裂解混合物经过脱水、分离精制后可得到单一的1,6-己二醇产品。
2.2 左旋葡萄糖酮制备1,6-己二醇
纳幕尔杜邦公司开发了用左旋葡萄糖酮制备1,6-己二醇的方法。将Pt/W/TiO2(Pt 负载量占催化剂总质量的4%,Pt 与W 的摩尔比为1∶1)催化剂、底物左旋葡萄糖酮置于反应釜中,先在60 ℃、5.52 MPa 条件下反应2 h,然后将温度提高至180 ℃再反应4 h,1,6-己二醇的产率为62%。
2.3 5-羟甲基糠醛及其氢化制备1,6-己二醇
Hydrocarbon Research 公司提出用5-羟甲基糠醛制备1,6-己二醇。首先将纸张、木材、秸秆等在酸溶液中分解,然后进一步水解得到5-羟甲基糠醛;再将5-羟甲基糠醛和H2 在Raney-Ni(或铬)催化剂作用下,在100~200 ℃下反应得到2,5-二羟甲基四氢呋喃;最后,使用铬酸铜催化剂在固定床反应器中将2,5-二羟甲基四氢呋喃于200~350 ℃、6.89~137.89 MPa 下进行氢解得到1,6-己二醇。
NL Organisatie Voor Wetenschappelijk Onderzoek以Raney-Ni 为催化剂,甲醇为溶剂,将5-羟甲基糠醛与H2 在100 ℃、9 MPa 条件下反应14 h,得到产率为99%的2,5-二羟甲基四氢呋喃。然后以正丙醇为溶剂,CuCr 为催化剂,在260 ℃、10 MPa 条件下将2,5-二羟甲基四氢呋喃与H2 反应15 h,1,6-己二醇产率为22%。Tuteja 等采用Pd/ZrP 催化剂,以5-羟甲基糠醛为原料、甲酸为氢源,在常压、140 ℃条件下反应21 h,1,6-己二醇收率达42.5%。Rennovia 公司在H2 和催化剂3.9%Pt&1.3%Mo@Silica Cariact Q-10 存 在 下,于160 ℃、4.62 MPa 下反应5 h,将5-羟甲基糠醛还原成1,6-己二醇。5-羟甲基糠醛转化率为87%,1,6-己二醇产率为14%,1,6-己二醇选择性为16%。Xiao 等在装有Pd/SiO2+Ir-ReOx/SiO2 复合催化剂的固定床反应器中,在100 ℃、7 MPa、四氢呋喃水溶液(水与四氢呋喃的体积比为2∶3)为溶剂的条件下,将5-羟甲基糠醛催化加氢得到1,6-己二醇,1,6-己二醇产率为57.8%。5-羟甲基糠醛制备1,6-己二醇反应网络见图4。
一些研究者直接以2,5-二羟甲基四氢呋喃为原料制备1,6-己二醇。Merck 公司以亚铬酸铜为催化剂,甲醇为溶剂,在300 ℃、37.92 MPa条件下将2,5-二羟甲基四氢呋喃氢化11 h 制备1,6-己二醇,分离后产率为40.6%,重结晶收率为50.0%。Buntara 等以Rh-Re/SiO2 为催化剂,在压力1~8 MPa、温度120 ℃、水和酸催化剂存在的条件下,用2,5-二羟甲基四氢呋喃氢化20 h 制备1,6-己二醇,2,5-二羟甲基四氢呋喃转化率达100%,1,6-己二醇的选择性达86%。
还有的研究者以1,2,6-己三醇为原料通过加氢还原制备1,6-己二醇。Chia 等以Rh-ReOx/C 为催化剂,使1,2,6-己三醇在120 ℃、3.4 MPa条件下反应4 h 制备1,6-己二醇。虽然1,2,6-己三醇转化率只有8.1%,但是1,6-己二醇的选择性高达99.9%。Buntara 等以1,2,6-己三醇为原料,Rh-ReOx@SiO2 为催化剂,在180 ℃、8 MPa 条件下反应20 h,1,6-己二醇选择性为73%。Rennovia公司还指出,在含有Pt 的催化剂(ZrO2)存在下,于160 ℃、4.62 MPa 下反应2.5 h,可将1,2,6-己三醇转化为1,6-己二醇,1,2,6-己三醇转化率为91%,1,6-己二醇产率为61%、选择性为68%。
2017年,美国Rennovia 公司开发的糖制1,6-己二醇工艺中试成功。该工艺采用专有的催化剂技术,有望简化1,6-己二醇的生产工艺。
3 烯烃制备1,6-己二醇
3.1 丙烯制备1,6-己二醇
拜耳股份公司发明了一种由丙烯制备1,6-己二醇的方法。该方法包括3 个步骤:首先是丙烯通入含有甲醛、磷酸氢二钠、磷酸二氢钠的甲苯溶液中,在压力为2.2~15.0 MPa 条件下反应12 h 得到3-丁烯-1-醇,选择性为97%;然后在氩气保护下添加1,3-二苯基-4,5-二氢咪唑-2-亚基-三环己基膦-苄基钌-(Ⅳ)-二氯,在22 ℃、5.6 MPa 条件下反应18 h 得到3-己烯-1,6-二醇,产率为80%;最后加入乙醇和5%Pd/C 催化剂,在20 ℃、0.1 MPa 条件下反应1 h 得到1,6-己二醇,产率为90%。该方法虽然反应温度较低,但是流程复杂。
3.2 烯烃催化加氢甲酰化制备1,6-己二醇
巴斯夫股份公司发明了一种由1,3-丁二烯、CO、H2 制备1,6-己二醇的方法。将1,3-丁二烯与CO、H2(V(CO)∶V(H2)=1∶1)在120 ℃、28.0 MPa、甲醇为溶剂、三苯基膦改性铑化合物催化剂存在下进行第一次甲酰化反应,并分离去除铑化合物。将得到的3-戊烯二甲缩醛先与1,3-丙二醇、强酸性离子交换剂在60 ℃、0.016~0.017 MPa 条件下反应2 h,去除离子交换剂后将所剩反应混合物加入到高压釜中,然后以苯为溶剂、八羰基二钴和9-十二烷基-9-磷杂双环壬烷为催化剂,在170 ℃、8.11~11.15 MPa 条件下进行第二次氢甲酰化反应。将得到的产物在甲醇、水、Raney-Ni 存在下,在100 ℃、18.24 MPa 条件下氢化,然后在140 ℃、28.37 MPa 条件下继续氢化得到最终产物1,6-己二醇(产率为82%)。巴斯夫股份公司还提到,采用羰基钴作为氢甲酰化催化剂时,二烯烃只有一个双键发生甲酰化反应,另一个双键发生加氢反应,当采用三苯基膦改性的铑化合物作为催化剂时,可以得到两个双键都发生氢甲酰化的产物。
Mormul 等以丁二烯为原料,加入磷配体(6,6′-[(3,3′-二叔丁基-5,5′-二甲氧基-1,1′-二苯基-2,2′-二基)双(氧)]双(二苯并[d,f][1,3,2]二恶磷杂庚英)、Rh 催化剂(Rh 与丁二烯的摩尔比为1∶99)、乙二醇、含有甲苯的三氟乙酸溶液,在80 ℃、3.0 MPa 条件下反应2 h后升至120 ℃再反应18 h 得到1,4-双(1,3-二氧戊环-2-烯)丁烷,然后在Raney-Ni 催化剂存在下,在130 ℃、5.0 MPa 条件下搅拌反应16 h,1,6-己二醇的产率为52%。
联合碳化化学品及塑料技术公司发明了一种以4-戊烯醛/4-戊烯醇制备1,6-己二醇的方法。在高压反应釜中,加入二羰基乙酰基丙酮化铑(Ⅰ)等催化剂,以乙醇为溶剂及助剂,将4-戊烯醛/4-戊烯醇和H2/CO(V(CO)∶V(H2)=1∶1)在120 ℃、2.07 MPa 条件下反应2~4 h,1,6-己二醇产率为69%。
3.3 环己烯氧化、氢化制备1,6-己二醇
White 等发明了一种环己烯氧化、氢化制备1,6-己二醇的方法。将环己烯在-78~20 ℃、醇为溶剂的条件下与臭氧发生氧化反应得到6-烷氧基-6-超氧化氢基-己醛,该产物先在0~15 ℃、0.10~0.34 MPa、Pt 为催化剂的条件下发生初步氢化反应,然后在35~50 ℃、0.34~1.03 MPa、Pt 为催化剂条件下发生进一步氢化反应(1~4 h),1,6-己二醇产率为95%。
3.4 环氧丁烯制备1,6-己二醇
巴斯夫股份公司通过环氧丁烯在置换催化剂RuCl2PCy3(Cy 为环己基)存在下,在温度为23 ℃、氩气保护、一定压力(至少能使环氧丁烯以液体形式存在)条件下反应23 h 脱去乙烯得到双环氧己烯Ia 和Ib(见图5),转化率为3.5%,双环氧己烯Ia 和Ib 的总选择性为15%。双环氧己烯Ia 和Ib 在还原催化剂(如Pd/C,Pt/C,Re/C,Cu/C,Cu/SiO2,Ni/C 等)存在下,于40~50 MPa、20~150 ℃下与H2 反应1~2 h,全部转化为1,6-己二醇。
3.5 1,5-己二烯硼氢化-氧化制备1,6-己二醇
硼氢化-氧化是烯烃制备伯醇的经典反应,多年来一直受到研究者的青睐。二烯烃同样可以通过硼氢化-氧化制备二元醇。Brown 课题组以四氢呋喃为溶剂,冰浴条件下(控制温度为0~5 ℃)将1,5-己二烯与乙硼烷反应一定时间,然后将产物加入到氢氧化钠与双氧水的混合溶液中,于室温条件下水解1 h,经过萃取、干燥得到1,6-己二醇,己二醇总产率为85%(1,6-己二醇、1,5-己二醇、2,5-己二醇质量比为69∶22∶9)。随后,他们在Shchegoleva 等以及自己工作的基础上,将1,5-己二烯与一氯硼烷在0 ℃、乙醚为溶剂条件下反应2 h,得到产率为92.6%的氯-硼杂环有机物,然后用碱性双氧水水解得到己二醇,其中,1,6-己二醇含量为91.3%(w),1,5-己二醇含量为7.4%(w),2,5-己二醇含量为1.3%(w)。Saegebarth将乙硼烷与1,5-己二烯按照摩尔比为3∶1 混合,在25 ℃下反应得到1,6-双(1-硼杂环庚烷)-己烷(总收率为82%),再经过碱性水解全部转化为1,6-己二醇。
4 结语
如何实现高效催化合成与环境友好相结合是研究者面临的难题,特别是具有工业应用价值的催化剂研制是关键环节。目前,工业化生产1,6-己二醇的工艺大都是采用1,6-己二酸酯化再加氢的方法,这种工艺可以有效地提高产品的纯度,降低副产品的生成,而且三废较少;但是在加氢过程中氢酯摩尔比较大,能耗较高,需要在高压条件下进行,过程经济性有待进一步提高。
以生物基原料代替传统的石油基原料制备1,6-己二醇具有巨大的发展潜力。目前虽然生物基原料路线的报道较多,但规模化工业应用还有待深入研究。此外,以烯烃为原料制备1,6-己二醇颇为值得探索。如尝试以1,5-己二烯为原料,用光催化方法直接水合制备1,6-己二醇,此方法会极大降低能耗,并且可以最大程度地降低对环境的污染;但是,目前这方面的光催化剂还未见报道,相关工作有待开展。
邻苯基苯酚(O-phenylphenol,英文缩写OPP)是一种重要的精细有机化工产品,由于邻苯基苯酚具有广泛的应用,随着以邻苯基苯酚为原料的新产品的不断开发,近几年来,国内外市场对邻苯基苯酚的实际需求量将大幅增长。
1、邻苯基苯酚(OPP)的特性及用途
邻苯基苯酚,为白色片状结晶,是重要的新型精细化工产品和有机中间体,广泛应用于杀菌防腐、印染助剂和表面活性剂,合成新型塑料、树脂和高分子材料的稳定剂和阻燃剂等领域,其具体用途如下:
A、防腐杀菌
由于邻苯基苯酚及其钠盐除莠活性很高,并且有广谱的杀菌除霉能力,而且无毒无味,是较好的防腐剂,可用于水果蔬菜的防霉保鲜,特别是用于柑桔类的防霉,也可用于处理柠檬、菠萝、瓜、果、梨、桃、西红柿和黄瓜等,可使腐烂降低最低限度。
B、合成纤维的染色载体
邻苯基苯酚及其水溶性钠盐可作聚酯纤维的染料载体,也可用作疏水性合成纤维氯纶、涤纶等采用载体染色时的载体。
C、合成新型含磷阻燃材料
由于含有机磷化合物的聚合材料在燃烧时,会在材料表面形成石墨状炭化膜,使聚合物与空气隔绝,具有良好的阻燃性能,阻燃效率高,并且挥发性低,耐油和耐水解性好,应用越来越广泛,并将逐步取代现今使用的无机和含卤素的阻燃材料。以邻苯基苯酚为原料,可以合成新型含磷阻燃中间体DOPO,主要有以下应用:
(1)合成阻燃聚酯
DOP0为原料与衣康酸反应,生成中间体ODOP-BDA,可部分代替乙二醇,得到新型含磷阻燃聚酯。研究表明,当PET和PEN中磷含量分别达到 0.75%和0.5%时,聚酯表现出良好阻燃效果。目前世界聚酯年生产量已达3000多万吨,若其中有5%是含磷阻燃聚酯,则需邻苯基苯酚50000t/a以上。
(2)合成阻燃环氧树脂
环氧树脂具有优异的粘接性能、电绝缘性能等优点,广泛应用于胶粘剂、电子仪表、航天航空、涂料及先进复合材料等领域,2004年世界上环氧树脂消费量已达20多万吨/年。DOPO与苯醌反应生成ODOPB,部分代替双酚A,形成新的具有阻燃性质的环氧树脂。研究表明,新合成的含磷阻燃环氧树脂,在P 含量为2.1%时,阻燃效果已优于含17.26%的Br阻燃环氧树脂,且不产生烟,同时热稳定性也优于未添加阻燃剂的环氧树脂。
(3)改进高聚物有机溶解性
以DOPO为原料,合成2DOPO-A部分代替合成聚酰胺的单体DABP,所得的新的聚酰胺可溶于NMP, DMAc, DMF, 和DMSO等溶剂,同时,在高温下的热稳定性和阻燃性也有显著提高。
(4)作为合成抗氧剂的中间体
台湾专利报道了用DOPO合成含磷的抗氧剂,用于不饱和聚酯、酚类和油脂的抗氧剂,台塑集团用于电脑的铜基薄板,并且具有良好的热稳定性。
(5)合成高分子材料的稳定剂
日本专利报道了DOPO合成的高分子材料的稳定剂,在聚乙烯、聚丙烯、聚氯乙烯加工时添加此化合物,能改善高分子化合物在热加工时的稳定性。
(6)合成发光母体
有机发光二极管是重要的光电子材料,Sun等人以DOPO衍生物为单体,合成具有发光性质的聚合物,DOPO衍生物起到发射团作用,能发射波长为325-350nm的蓝光,可应用于有机发光二极管。
D、作为合成新型高聚物的单体
酚醛树脂具有力学强度高、电绝缘性能好、耐热性能优良、难燃等优点,被广泛用于制备玻璃钢、模塑料、涂料、粘合剂等,但是,酚醛树脂也存在缺点,如耐热性差等,以邻苯基苯酚代替苯酚,合成新的酚醛树脂,此树脂具有高的热稳定性和低吸水性。
E、合成新型药物
据有关报道用邻苯基苯酚合成用于胆固醇酯水解抑制剂、抗痉挛药物、消炎药及镇痛药和某些皮肤病用药。
F、其他应用
邻苯基苯酚还可合成用于合成压敏和热敏纸张的显影剂,邻苯基苯酚与于BCl3反应可得到用于润滑油的抗氧剂和抗疲劳剂。由邻苯基苯酚与甘油反应制得的化合物,可用于纤维的改性,含氯有机化合物的稳定剂,合成树脂反应性稀释剂及改性剂,同时也是反应中间体。
综上所述,邻苯基苯酚用途十分广泛,随着邻苯基苯酚的进一步研究和开发,它的应用领域将更加拓宽。
2、国外生产与市场状况
国外生产邻苯基苯酚的企业主要集中在日本、美国和德国,邻苯基苯酚工业化生产工艺及核心技术掌控在德国拜耳、日本三光、美国陶氏化学手中。美国陶氏化学公司是世界合成邻苯基苯酚最早的厂家,主要采用氯苯为原料生产;德国拜耳公司主要采用环己酮为原料,经过二聚脱氢生产邻苯基苯酚。
德国拜耳公司环己酮缩合脱氢法生产OPP工艺情况见下表1。
表1
项目
拜耳公司
环己酮单耗
1.5-1.55
环己酮缩合催化剂
浓硫酸
废水
有废水
脱氢催化剂使用时间
16000小时以上
副产氢气利用
完全利用
邻苯基苯酚含量
≥99.5%
邻苯基苯酚色泽
白色片状结晶
生产规模(t/a)
20000
3、国内生产与市场状况
我国邻苯基苯酚生产始于20世纪70年代后期。天津市卫津化工厂、上海染料化工厂、大连化工研究设计院等单位从磺化法生产苯酚的蒸馏残渣中回收邻苯基苯酚,提取纯度也能达到98%。但由于工艺落后、受原料来源限制,国内采用此工艺生产的企业并不多,产量有限。随着国内磺化法生产苯酚装置关停并转,邻苯基苯酚产量越来越少。国内需求主要依赖进口,严重制约了我国新型阻燃纤维和材料、LED发光母体、水果蔬菜保鲜、塑料热稳定剂等产业的发展。
20世纪90年代初期,伴随着国内外对邻苯基苯酚需求量逐渐增大,我国掀起了邻苯基苯酚开发热潮,国内不少科研机构开展了邻苯基苯酚生产工艺的研究。1992~1994年,中科院山西煤炭化学研究所曾进行过环己酮聚合脱氢合成邻苯基苯酚的研究;1993~1995年,北京化工研究院进行了环己酮聚合脱氢合成邻苯基苯酚的研究,在南京投资建设了1条生产线,但由于成本太高,产品卖不出去,现处于半停产状态;盐城市华业医药化工有限公司于1998年起对OPP进行技术调研和市场论证,2000年建立了OPP实验室,2001年,盐城市华业医药化工有限公司与国内二家大专院校合作开发成功了环己酮路线合成邻苯基苯酚新工艺,在催化剂活性上有了较大创新,通过离子交换法制得的钯ZSM-5分子筛Pd/H-ZSM-5和Pd/Mg-ZSM-5作为催化剂,在合成邻苯基苯酚过程中活性衰减速度明显降低,解决了该工艺催化剂的活性难题。2003年在国内首家建成了200t/aOPP中试生产装置并通过省级科技成果鉴定,2004年建立了盐城市OPP工程技术研究中心,致力OPP产业化研究和OPP应用研究,才在国内首次实现了大规模工业化的生产。2005年将开工建设10000t/a邻苯基苯酚项目,随着盐城华业医药化工有限公司10000t/a OPP项目的实施,从此将全面改写我国目前无机和含氯、含溴有机阻燃材料“三分天下”的市场竞争格局,凡与人类健康密切的领域氯、溴系列阻燃材料,将加速退出市场,阻燃材料产业技术升级换代势不可挡,阻燃材料将“四分天下”。
OPP作为重要的新型精细化学品和重要化工中间体。广泛应用于食品果蔬防腐保鲜剂,在欧美及日本被广泛应用于柑桔的防腐,可使腐烂降低到最低限度,美、英、日等国还允许用于蔬菜,苹果、梨、菠萝、水蜜桃、草莓等的防腐。该产品是强有力的杀菌剂、消毒剂、防腐保鲜剂、杀菌剂,杀结核菌、微生物抵制剂、防霉剂。美国环境保护局(EPA)允许使用的以邻苯基苯酚或其钠盐为主要成分的杀菌皂、杀菌除臭清洗剂、防腐保鲜剂品种有近两百种,并且认为该类产品是无毒的,另外还用于纤维素、蛋白质材料,包括木材,皮革、纸的防腐、增塑剂、阻燃剂等产品。需要指出的是,以上用途的邻苯基苯酚,仅限于采用环己酮工艺生产的,其它工艺生产的邻苯基苯酚是不能用于以上产品的使用。
4、邻苯基苯酚的生产工艺
邻苯基苯酚的生产方法目前主要有分离法和合成法。邻苯基苯酚(OPP)的生产方法可以分为分离法和合成法两种。
分离法从磺化法生产苯酚的蒸馏残渣中回收。其工艺过程如下:苯酚的蒸馏残渣含苯基苯酚40%左右,其他成分为苯酚、无机盐、水等。经真空蒸馏,分离出混位苯基苯酚馏分段,真空度为400~500mm汞柱,温度在65~75℃开始截取100℃以上,但不得超过135℃。再将混合物(主要是2-羟基联苯和4-羟基联苯)加热溶解于三氯乙烯中,经冷却、分离出4-羟基联苯结晶,经离心过滤、干燥得到4-羟基联苯。母液用碳酸钠溶液洗涤,再加稀碱液使2-羟基联苯成盐。静止分离后,取上层2-羟基联苯钠盐减压脱水,即得钠盐成品。由于受资源的限制,分离法生产邻苯基苯酚的产量非常有限。
合成法,国内外开发了许多用有机合成技术生产邻苯基苯酚的工艺方法,按照使用原料不同主要有以下几种:联苯抱氧法,将2-联苯抱氧(2-联苯撑氧,Diphenylene oxide)与金属钠一起在约200℃加热,然后用酸分解生成物,即得OPP氨基联苯重氮化水解法,将2-氨基联苯重氮化,然后水解而得联苯磺化水解法,将联苯用发烟硫酸磺化,用苛性钠进行碱熔,然后将所得产物进行酸化即得(除邻位产物外还有对位产物),单耗为联苯1.13t/t、发烟硫酸0.77t/t、烧碱0.59t/t环己酮缩合脱氢法,环己酮液相缩合成二聚酮,二聚酮气相催化脱氢成为OPP,再经蒸馏、重结晶得纯OPP氯苯、苯酚偶合法,以氯苯和苯酚为原料,采用相转移催化合成邻苯基苯酚。本文着重介绍目前工艺比较先进的环己酮缩合脱氢法生产邻苯基苯酚的生产工艺。
(1)生产工艺过程及说明
由环已酮为原料生产邻苯基苯酚工艺过程如下框图:
基本反应方程式见下图
环已酮缩合采用多釜串联连续化技术,环已酮和催化剂连续加入第一只反应釜进行反应,并依次进入第2、3只釜,生成的水由带水剂带出经分相后,带水剂回到各只釜,反应生成的水汇总后进入水洗装置用于连续水洗。分出的催化剂再循环进入第一只反应釜,水洗后的反应产物连续进入连续精馏装置,蒸出未反应的环已酮,再循环进入第一只反应釜反应。精双聚体计量后进入脱氢反应器反应,生成的粗OPP经过精馏去掉轻组份后,99%以上的OPP在混合釜中加入稳定剂后去连续切片和包装,另一部分需重结晶、离心和干燥得到99.5%以上的OPP产品。
(2) 关键工艺技术和创新点
邻苯基苯酚生产技术有以下关键技术和创新点:
(a)环己酮缩合采用超强固体酸催化剂和多釜串联连续化技术
环己酮缩合反应一般专利文献均采用浓硫酸作催化剂,反应温度在120℃,单程转化率在50%左右,总收率为85%,反应结束后用碱中和反应液,设备腐蚀严重,且有大量的废水,环境污染严重。
邻苯基苯酚采用一种超强固体酸作催化剂,用量2-3%,反应温度120℃左右,单程转化率60%,总收率90%以上,该催化剂可重复使用,完全是清洁生产工艺,解决了废水的产生。
采用多釜串联连续化技术克服了现生产操作麻烦、设备投资大等缺点,可实现全自动连续化。
(b) 高效的脱氢催化剂
脱氢催化剂以铂为主催化剂,添加2-3种助催化剂,其中一个为稀土元素,载在特制载体上的Pt0.5%-稀土5%的催化剂,以氢为载气,反应温度 350-370℃,以双聚体液相空速为0.2-0.4h-1的高负荷下,双聚体转化率达98%,选择性达93%以上,连续运转5000小时以上仍保持邻苯基苯酚收率90%以上。而国内的专利资料,催化剂负荷为0.2h-1,连续运转200小时,邻苯基苯酚效率已明显下降。
(c) 连续化产品精制技术
环己酮缩合产物采用薄膜蒸发+两塔连续精馏的精制技术。
脱氢产物采用高真空分子蒸镏技术和连续重结晶技术,连续重结晶将重结晶、离心分离、干燥和包装组成连续化系统,满足产品高纯度、生产安全和自动化的要求。
(d)高纯度的产品
邻苯基苯酚纯度可高达99.5%以上,满足出口和杀菌、防霉、保鲜剂领域的需要。
(e)特制的产品稳定剂
精制产品加入特制的稳定剂0.05-0.2%,使产品为白色片状结晶的色泽有了保证,满足了出口之需要。而不加上述稳定剂,产品放置不到一个月就变成淡红色。
(3)国内外同类技术、产品主要参数比较。
邻苯基苯酚由环己酮缩合、脱氢的合成方法生产,国内虽有少数单位发表了少量研究论文,但尚未见有工业化生产的报道。由环己酮合成邻苯基苯酚的生产技术,在国内由盐城华业医药化工有限公司首家建成了年产200吨邻苯基苯酚中试装置,于2002年12月一次试车成功,填补了国内空白,环己酮缩合采用超强固体酸作催化剂,环己烷作带水剂,总收率达90%以上,催化剂可循环重复使用。脱氢反应采用Pt-K-稀土/Al2O3催化制,脱氢转化率达98-100%,收率达90%以上,目前催化剂可稳定运转9000小时以上,OPP产品纯度达99.5%,产品已外销美国、德国、日本、印度和台湾等国家和地区。
国外采用环己酮合成邻苯基苯酚主要是德国拜耳公司,生产能力20000t/a,未见有工业化技术和水平的报道。经盐城市华业医药化工有限公司与该公司交流,拜耳公司环己酮缩合采用硫酸作催化剂,有大量废水,脱氢也采用贵金属铂催化剂,寿命为10个月左右,产品纯度≥99.5%,副产氢气已利用。盐城市华业医药化工有限公司公司生产的邻苯基苯酚与国内外产品质量及技术水平对比见下表2-1、表2-2、表2-3。
表2-1OPP主要质量指标与国外产品对照表
序号
指标名称
单位
盐城华业OPP
德国拜耳OPP
1
外观
/
白色片状晶体
白色片状晶体
2
OPP含量
%
99.5
99.5
3
熔点范围
℃
56-58
54-58
4
澄清度
0.1mol/l
无色透明液体
无色透明液体
5
氯离子
ppm
<50
<50
6
硫酸盐
ppm
<50
<150
表2-2 OPP生产工艺对照表
序号
指标名称
盐城华业
德国拜耳
日本三光
1
工艺路线
环已酮合成法
环已酮合成法
苯酚氯苯缩合法
2
成本
低
低
高
3
三废
无
有废水
有废水
4
缩合催化剂
固体超强酸
浓硫酸
无
表2-3盐城华业公司与拜耳公司技术水平对比表
华业公司
拜耳公司
环己酮单耗
1.6-1.65
1.5-1.55
环己酮缩合催化剂
固体超强酸
浓硫酸
废水
无废水
有废水
脱氢催化剂使用时间
9000小时
16000小时
副产氢气利用
未完全利用
完全利用
邻苯基苯酚含量
≥99.5%
≥99.5%
OPP色泽
白色片状结晶
白色片状结晶
生产规模(t/a)
10000
20000
价格(万元/t)
5.0
6.5
销售
全球
欧美
综上对比,本项目具有强大的性能价格比和广阔的市场前景、市场竞争优势明显。
结束语
随着邻苯基苯酚的应用领域不断拓展,国内外对邻苯基苯酚的需求量将逐年大幅度增长,主要用于生产抗氧剂和阻燃剂,杀菌防腐剂、生物杀虫剂、水果和蔬菜保鲜剂等。由于OPP国际市场需求的递增,韩国求购将会在3000t/a以上,日本求购将会在10000t/a以上,用于生产抗氧剂和电子产品中,欧美也提出了10000t/a 的需求,台湾一公司向我国寻求5000t/a的邻苯基苯酚,用于各类阻燃剂的生产。随着我国的入世,水果、蔬菜出口量增加,对其防腐杀菌保鲜要求提高,以及用于合成新型阻燃建材,邻苯基苯酚的需求量将有较大增长,预计到2006年我国国内需求量达5000t/a以上。可见邻苯基苯酚具有广阔的国内外市场。
目前我国邻苯基苯酚生产水平与世界先进水平相比较尚有差距,主要差距有以下几方面:(1)环己酮单耗偏高(2)脱氢催化剂寿命短, 由于是贵金属催化剂,它在总成本中占的比例较大(3)副产氢气未得到有效利用(4)邻苯基苯酚的下游产品尚未大力开发,拜耳公司利用本公司邻苯基苯酚开发的杀菌防腐剂在世界上具有垄断地位(5)生产规模小,德拜耳公司生产规模达20000t/a,因此我国邻苯基苯酚生产企业的综合经济效应差。因此,迫切需要我们一方面不断完善生产工艺,扩大生产规模,降低生产成本,建成具有自主知识产权的国际先进水平的万吨级OPP生产装置,提高我国在精细化工中的国际地位,构建民族产业技术高地;另一方面也需要生产企业不断开发下游产品,提高产品综合经济效益,以缩小与国外的差距。
本发明公开了一种合成正丁醇的方法,摩尔比为(2~20)∶1的氢气和1,2-环氧丁烷在装有催化剂的反应器内,1,2-环氧丁烷催化加氢生成正丁醇,所述的反应条件是反应温度为50~200℃,反应压力为1~10MPa,反应床层液体重量空速为0.1~3.0h-1。本发明流程简单、无污染。1,2-环氧丁烷的转化率可达到90%以上,产物正丁醇的选择性在70%以上。根据实际情况,既可连续生产,也可间歇生产。
还可以到http://www.sipo.gov.cn/sipo/zljs/default.htm
继续搜索,好多呢
【中文名称】甲醚;二甲醚;氧代双甲烷
【英文名称】dimethyl ethermethoxymethane
【CAS 登录号】115-10-6
【结构或分子式】
CH3-O-CH3
所有C、O原子均以sp3杂化轨道形成σ键。
【相对分子量或原子量】46.07
【分子式】C2H6O
【密度】相对密度1.617(空气=1)
【熔点(℃)】-138.5
【沸点(℃)】-24.5
【闪点(℃)】-41.4
【蒸气压(Pa)】663(-101.53℃);8119(-70.7℃);21905(-55℃)
【性状】
无色可燃性气体或压缩液体,有乙醚气味。
【溶解情况】
溶于水和乙醇。
【用途】
用作溶剂、冷冻剂等。
【制备或来源】
由甲醇脱水而得,也可由原甲酸在三氯化铁的催化下分解而得。
【其他】
临界温度128.8℃。临界压力5.32兆帕。凝固点-138.5℃。液体密度0.661
第三部分:危险性概述 -
危险性类别:
侵入途径:
健康危害: 对中枢神经系统有抑制作用,麻醉作用弱。吸入后可引起麻醉、窒息感。对皮肤有刺激性。
环境危害:
燃爆危险: 本品易燃,具刺激性。
第四部分:急救措施 -
皮肤接触:
眼睛接触:
吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:
第五部分:消防措施 -
危险特性: 易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。气体比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。
有害燃烧产物: 一氧化碳、二氧化碳。
灭火方法: 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、抗溶性泡沫、干粉、二氧化碳、砂土。
第六部分:泄漏应急处理 -
应急处理: 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。用工业覆盖层或吸附/ 吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。漏气容器要妥善处理,修复、检验后再用。
第七部分:操作处置与储存 -
操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂、酸类、卤素接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。
储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂、酸类、卤素分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。
第八部分:接触控制/个体防护 -
职业接触限值
中国MAC(mg/m3): 未制定标准
前苏联MAC(mg/m3): 未制定标准
TLVTN: 未制定标准
TLVWN: 未制定标准
监测方法:
工程控制: 生产过程密闭,全面通风。
呼吸系统防护: 空气中浓度超标时,建议佩戴自吸过滤式防毒面具(半面罩)。
眼睛防护: 戴化学安全防护眼镜。
身体防护: 穿防静电工作服。
手防护: 戴防化学品手套。
其他防护: 工作现场严禁吸烟。进入罐、限制性空间或其它高浓度区作业,须有人监护。
第九部分:理化特性 -
主要成分: 纯品
外观与性状: 无色气体,有醚类特有的气味。
pH:
熔点(℃): -141.5
沸点(℃): -23.7
相对密度(水=1): 0.66
相对蒸气密度(空气=1): 1.62
饱和蒸气压(kPa): 533.2(20℃)
燃烧热(kJ/mol): 1453
临界温度(℃): 127
临界压力(MPa): 5.33
辛醇/水分配系数的对数值: 无资料
闪点(℃): 无意义
引燃温度(℃): 350
爆炸上限%(V/V): 27.0
爆炸下限%(V/V): 3.4
溶解性: 溶于水、醇、乙醚。
主要用途: 用作致冷剂、溶剂、萃取剂、聚合物的催化剂和稳定剂。
其它理化性质:
第十部分:稳定性和反应活性 -
稳定性:
禁配物: 强氧化剂、强酸、卤素。
避免接触的条件:
聚合危害:
分解产物:
第十一部分:毒理学资料 -
急性毒性: LD50:无资料
LC50:308000 mg/m3(大鼠吸入)
亚急性和慢性毒性:
刺激性:
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料 -
生态毒理毒性:
生物降解性:
非生物降解性:
生物富集或生物积累性:
其它有害作用: 无资料。
第十三部分:废弃处置 -
废弃物性质:
废弃处置方法: 处置前应参阅国家和地方有关法规。建议用焚烧法处置。
废弃注意事项:
第十四部分:运输信息 -
危险货物编号: 21040
UN编号: 1033
包装标志:
包装类别: O52
包装方法: 钢质气瓶;磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱;安瓿瓶外普通木箱。
运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂、酸类、卤素、食用化学品等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,禁止在居民区和人口稠密区停留。铁路运输时要禁止溜放。
第十五部分:法规信息 -
法规信息 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第2.1 类易燃气体。
第十六部分:其他信息 -
参考文献:
填表部门:
数据审核单位:
修改说明:
其他信息:
【补充】
二甲醚又称甲醚,简称DME,在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。
二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。
二甲醚作为一种新兴的基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。
二甲醚还可以替代柴油作为燃料,目前需要解决的问题主要有二甲醚对塑料物质的腐蚀和柴油发动机油路的改装。
目前二甲醚(DME)的主要用途是用作抛射剂、制冷剂和发泡剂。其次是用作化工原料,生产多种有机化学品。如硫酸二甲酯、烷基卤化物、N,N-二甲基苯胺、乙酸甲酯、醋酐、碳酸二甲酯、二甲基硫醚、乙二醇二甲醚系列醚化物等。
二甲醚易压缩、易贮存、燃烧效率高、污染低,可替代煤气、LPG作民用燃料。同时,二甲醚具有较高的十六烷值,可直接用作汽车燃料替代柴油。二甲醚作为清洁燃料方面的发展前景潜力巨大,已经得到了国内外的广泛关注。
1 国内外市场分析
1.1 国外市场分析
目前世界上二甲醚的生产主要集中在美、德、荷兰和日本等国,2002年世界(不包括中国,下同)总生产能力为20.8万吨/年,产量为15万吨,开工率为72%。国外二甲醚的主要生产厂家有美国Dopnt公司、荷兰AKZO公司、德国DEA公司和United Rhine Lignite Fuel公司等,其中德国DEA公司的生产能力最大,生产能力为6.5万吨/年。
世界二甲醚的主要生产厂家
序号 厂家名称 生产能力(万吨/年)
1 Dopnt (美国) 3.0
2 DEA (德国) 6.5
3 United Rhine Lignite Fuel (德国) 3.0
4 AKZO (荷兰) 3.0
5 Sumitomo (日本) 1.0
6 DEA(澳大利亚) 1.0
7 Mitsui toatsu (日本) 0.5
8 Kang Sheng (日本) 1.8
9 NKK (日本) 1.0
合计 20.8
由于二甲醚的市场需求潜力十分巨大,在世界范围内,二甲醚的建设已经成为热点,一些大型二甲醚装置已在筹建之中。
二甲醚开发公司(由道达尔菲纳埃尔夫公司和日本8家公司组成的财团)计划建设能力为2500吨/天的商业化二甲醚装置。日本东洋工程公司完成了在中东建设单系列250万吨/年二甲醚装置的可行性验证,预计该装置可望于2005-2006年建成。BP公司、印度天然气管理局、印度石油公司将投资6亿美元建设180万吨/年商业化二甲醚生产厂,用以替代石脑油、柴油和LPG,建设工作已于2002年开始,定于2004年投产。日本财团(三菱瓦斯化学公司、日挥公司、三菱重工公司和伊藤忠商事)组成的合资公司将在澳大利亚建设140-240万吨/年的大规模二甲醚装置,定于2006年投产。
目前二甲醚的主要消费领域是作溶剂和气雾剂的推动剂,其它方面的消费不多。2002年全世界二甲醚的消费量为15万吨/年,预计到2005年需求量在20万吨/年左右。
二甲醚是一种性能优良、安全清洁的化工产品,发展前景被普遍看好。更为重要的是,作为一种新型、清洁的民用和车用燃料,被看作是柴油或LPG/CNG的优秀替代品,其作为燃料的市场需求增长将会是非常惊人的。
2000年全世界有400万辆LPG汽车、400万辆乙醇汽车、1百万辆CNG汽车,还有部分甲醇汽车。以美国为例,2000年美国使用替代燃料的汽车为42万辆,预计,到2005年美国使用代用燃料(LPG和CNG)的汽车将达到110万辆,2010年为330万辆,2015年达到550万辆。
目前美国替代燃料的消费量折合为当量汽油的话大约为100万吨(352×106加仑当量汽油),约占当年全部燃料消费量的0.2%。如果美国代用燃料的比例提高到5%的话,其需求量将达到2500万吨,可见代用燃料的市场前景是相当可观的。
亚洲地区是世界上柴油消费增长最快的地区,据国外研究机构预测,二甲醚作为替代燃料,2005年亚洲地区的年需求量达3000万吨。可见,由于二甲醚具有其它代用燃料不可比拟的优势,将会成为柴油的主要替代燃料,具有难以估量的市场前景。
1.2 国内市场分析
近年来,我国二甲醚的生产发展迅速,目前共有十几家生产企业,2002年总生产能力为3.18万吨/年,产量约为2万吨左右,开工率较低,约为63%。
我国二甲醚主要生产厂家及能力(单位:吨/年)
序号 厂家名称 生产能力
1 江苏吴县合成化工厂 2000
2 广东中山凯达精细化工有限公司 5000
3 成都华阳威远天然气化工厂 2000
4 上海石油化工研究院 800
5 江苏昆山 1000
6 陕西新型燃料燃具公司 5000
7 安徽省蒙城县化肥厂 2500
8 浙江诸暨新亚化工公司 1000
9 广东江门氮肥厂 2500
10 浙江义乌光阳化工实业有限公司 2500
11 上海申威气雾公司 1000
12
山东久泰化工科技股份有限公司 5000
13 湖北田力实业股份有限公司 1500
合计 31800
近年来国内二甲醚的建设已经形成热潮,有数家公司拟通过合资合作等方式引进技术建设大型二甲醚生产装置。
主要在建或拟建项目如下:
2001年4月份陕西新型燃料燃具有限公司与美国兆运资源有限公司签订联合开发“煤基一步法合成20万吨/年二甲醚超洁净燃料”工程协议书,工程总投资20.3亿元,美方投资90%。
宁夏83万吨/年煤基二甲醚项目,计划投资47.8亿元,计划利用国外资金,已与加拿大麦耐特联合公司签订了合作协议书,并依托美国空气动力公司的技术。
四川泸州天然气股份有限公司采用两步法工艺已经建成1万吨/年二甲醚装置,第二套10万吨/年二甲醚装置,也已经开工建设。
山东临沂鲁明化工有限公司正在建设3万吨/年二甲醚装置,采用自主开发的液相两步法工艺技术。
山东华星集团年产3万吨/年二甲醚项目于2004年8月开始动工,该装置采用两步法工艺。
山东兖州矿业集团公司计划建设60万吨二甲醚装置,拟引进国外一步法二甲醚工艺技术。
另外,国内还有很多地方提出建设二甲醚装置,如:西南石油天然气管理局、新疆、黑龙江双鸭山、大庆油田、陕西、兰州、安徽等。
国内二甲醚的主要用途是作为气溶胶、气雾剂和喷雾涂料的推动剂,每年消耗二甲醚 1.8万吨。由于我国气雾剂行业的发展较快,预计到2005年需二甲醚约3万吨,2010年为4万吨左右。另外我国二甲醚用于合成硫酸二甲酯等多种化工产品的消费量约为1.1万吨。
由于二甲醚的性质与液化气相近,易贮存、易压缩,因而可替代天然气、煤气、LPG作民用燃料。2002年我国LPG的表观消费量为1620万吨,同时中国自1990年开始大量进口LPG,2002年LPG进口量为626万吨。如果二甲醚的价格合适,假设二甲醚替代进口的LPG,以目前的进口量计算,需要燃料级二甲醚约1000万吨。随着人民生活水平的不断提高,对民用燃料的需求量将会有较大的增长,特别是对天然气、二甲醚、LPG等清洁能源的需求一定会有很大的增长,因此,二甲醚作为民用燃料的发展前景十分光明。
由于二甲醚具有优良的燃料性能,方便、清洁、十六烷值高、动力性能好、污染少、稍加压即为液体易贮存,作为车用柴油的替代燃料,有液化汽、天然气、甲醇、乙醇等不可比拟的综合优势。
2002年我国柴油的消费量为7662万吨,柴油消费的增长很快,预计2005年消费量将达到8290万吨左右,2010年将达约10100万吨。二甲醚作为良好的柴油替代燃料,按其对柴油的替代率为5%计算,2005年约需二甲醚约553万吨左右,2010年需674万吨左右。
综上所述,预计2005年我国二甲醚作为气雾剂和化工等方面的需求量将达到的需求量约为5-6万吨。二甲醚作为代用燃料方面的消费主要取决于二甲醚的供应,如果二甲醚的价格降到能与柴油或LPG相竞争的水平,相信二甲醚作为燃料的消费增长速度会很快,市场规模也是相当惊人的。
2 工艺技术分析
二甲醚的生产方法有一步法和二步法。一步法是指由原料气一次合成二甲醚,二步法是由合成气合成甲醇,然后再脱水制取二甲醚。
● 一步法
该法是由天然气转化或煤气化生成合成气后,合成气进入合成反应器内,在反应器内同时完成甲醇合成与甲醇脱水两个反应过程和变换反应,产物为甲醇与二甲醚的混合物,混合物经蒸馏装置分离得二甲醚,未反应的甲醇返回合成反应器。
一步法多采用双功能催化剂,该催化剂一般由2类催化剂物理混合而成,其中一类为合成甲醇催化剂,如Cu-Zn-Al(O)基催化剂,BASFS3-85和ICI-512等;另一类为甲醇脱水催化剂,如氧化铝、多孔SiO2-Al2O3、Y型分子筛、ZSM-5分子筛、丝光沸石等。
● 二步法
该法是分两步进行的,即先由合成气合成甲醇,甲醇在固体催化剂下脱水制二甲醚。国内外多采用含γ-Al2O3/SiO2制成的ZSM-5分子筛作为脱水催化剂。反应温度控制在280~340℃,压力为0.5-0.8MPa。甲醇的单程转化率在70-85%之间,二甲醚的选择性大于98%。
一步法合成二甲醚没有甲醇合成的中间过程,与两步法相比,其工艺流程简单、设备少、投资小、操作费用低,从而使二甲醚生产成本得到降低,经济效益得到提高。因此,一步法合成二甲醚是国内外开发的热点。国外开发的有代表性的一步法工艺有:丹麦Topsφe工艺、美国Air Products工艺和日本NKK工艺。
二步法合成二甲醚是目前国内外二甲醚生产的主要工艺,该法以精甲醇为原料,脱水反应副产物少,二甲醚纯度达99.9%,工艺成熟,装置适应性广,后处理简单,可直接建在甲醇生产厂,也可建在其它公用设施好的非甲醇生产厂。但该法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资较大。但目前国外公布的大型二甲醚建设项目绝大多数采用两步法工艺技术,说明两步法有较强的综合竞争力。
2.1 国外主要工艺技术
(1)Topsφe工艺
Topsφe的合成气一步法工艺是专门针对天然气原料开发的一项新技术。该工艺造气部分选用的是自热式转化器(ATR)。自热式转化器由加有耐火衬里的高压反应器、燃烧室和催化剂床层三部分组成。
二甲醚合成采用内置级间冷却的多级绝热反应器以获得高的CO和CO2转化率。催化剂用甲醇合成和脱水制二甲醚的混合双功能催化剂。
二甲醚的合成采用球形反应器,单套产能可达到7200吨/天二甲醚。Topsφe工艺选择的操作条件为4.2MPa和240~290℃。
目前,该工艺还未建商业装置。1995年,Topsφe在丹麦哥本哈根建了一套50kg/d的中试装置,用于对工艺性能进行测试。
(2)Air products的液相二甲醚(LPDMETM)新工艺
在美国能源部的资助下,作为洁净煤和替代燃料技术开发计划的一部分,Air products公司开发成功了液相二甲醚新工艺,简记作LPDMETM。
LPDMETM工艺的主要优势是放弃了传统的气相固定床反应器而使用了浆液鼓泡塔反应器。催化剂颗粒呈细粉状,用惰性矿物油与其形成浆液。高压合成气原料从塔底喷入、鼓泡,固体催化剂颗粒与气体进料达到充分混合。使用矿物油使混合更充分、等温操作、易于温度控制。
二甲醚合成反应器采用内置式冷却管取热,同时生产蒸汽。浆相反应器催化剂装卸容易,无须停工进行。而且,由于是等温操作,反应器不存在热点问题,催化剂失活速率大大降低了。
典型的反应器操作参数为:压力2.76~10.34MPa,推荐5.17MPa;温度200~350℃,推荐250℃。催化剂量为矿物油质量的5%~60%,最好在5%~25%之间。该工艺用富CO的煤基合成气比天然气合成气更具优势。但以天然气为原料也可获得较高收率。 Air products公司已在15吨/天的中试工厂对该工艺进行了测试,结果令人满意,但还没有建设商业化规模的大型装置。
(3)日本NKK公司的液相一步法新工艺
除Air products公司外,日本NKK公司也开发了用浆相反应器由合成气一步合成二甲醚的新工艺。
原料可选用天然气、煤、LPG等。工艺的第一步首先是造气,合成气经冷却、压缩到5~7MPa,进入CO2吸收塔脱除CO2。脱碳后的原料合成气用活性炭吸附塔脱除硫化物后换热至200℃进入反应器底部。合成气在反应器内的催化剂与矿物油组成的淤浆中鼓泡,生成二甲醚、甲醇和CO2。出反应器产物冷却、分馏,将其分割为二甲醚、甲醇和水。未反应的合成气循环回反应器。经分馏,从塔顶可得到高度纯净的二甲醚产品(95%~99%),从塔底则可得到甲醇、二甲醚和水组成的粗产品。采用NKK技术已在新潟建成1万吨/年合成气一步法生产二甲醚的半工业化装置。
2.2 国内工艺技术及科研情况
我国90年代前后开始气相甲醇法(两步法)生产二甲醚工艺技术及催化剂的开发,很快建立起了工业生产装置。近年来,随着二甲醚建设热潮的兴起,我国两步法二甲醚工艺技术有了进一步的发展,工艺技术已接近或达到国外先进水平。
山东久泰化工科技股份有限公司(原临沂鲁明化工有限公司)开发成功了具有自主知识产权的液相法复合酸脱水催化生产二甲醚工艺,已经建成了5000吨/年生产装置,经一年多的生产实践证明,该技术成熟可靠。该公司的第二套3万吨/年装置也将投产。
山东久泰二甲醚工艺技术已经通过了山东省科技厅组织的鉴定,被认定为已达国际水平。特别是液相法复合酸脱水催化剂的研制和冷凝分离技术,针对性地克服了一步法合成和气相脱水中提纯成本高、投资大的缺点,使反应和脱水能够连续进行,减少了设备腐蚀和设备投资,总回收率达到99.5%以上,产品纯度不小于99.9%,生产成本也较气相法有较大的降低。
2003年8月由泸天化与日本东洋工程公司合作开发的两步法二甲醚万吨级生产装置试车成功。该装置工艺流程合理,操作条件优化,具有产品纯度高、物耗低、能耗低的特点,在工艺水平、产品质量和设备硬件自动化操作等方面均处于国内先进水平。
近年来,我国在合成气一步法制二甲醚方面的技术开发也很积极,而且一些科研院所和大学都取得了较大进展。
兰化研究院、兰化化肥厂与兰州化物所共同开展了合成气法制二甲醚的5mL小试研究,重点进行工艺过程研究、催化剂制备及其活性、寿命的考察。试验取得良好结果:CO转化率>85%;选择性>99%。两次长周期(500h、1000h)试验表明:研制的催化剂在工业原料合成气中有良好的稳定性;二甲醚对有机物的选择性>97%;CO转化率>75%;二甲醚产品纯度>99.5%;二甲醚总收率为98.45%。
中科院大连化物所采用复合催化剂体系对合成气直接制二甲醚进行了系统研究,筛选出SD219-Ⅰ、SD219-Ⅱ及SD219-Ⅲ型催化剂,均表现出较佳的催化性能,CO转化率达到90%,生成的二甲醚在含氧有机物中的选择性接近100%。
清华大学也进行了一步法二甲醚研究,在浆态床反应器上,采用LP+Al2O3双功能催化剂,在260-290℃,4-6MPa的条件下,CO单程转化率达到55%~65%,二甲醚的选择性为90-94%。
目前,国内的浙江大学、山西煤化所、西南化工研究院、华东理工大学等单位也都致力于合成气一步法制二甲醚的研究工作。
杭州大学采用自制的二甲醚催化剂,利用合成氨厂现有的半水煤气,在一定反应温度、压力和空速下一步气相合成二甲醚。CO单程转化率达到60%~83%,选择性达95%。该技术现巳在湖北田力公司建成了年产1500吨二甲醚的工业化装置。该装置既可生产醇醚燃料,又可生产99.9%以上的高纯二甲醚,CO转化率70%-80%。这是国内第一套直接由合成气一步法生产高纯二甲醚的工业化生产装置。
对于两步法二甲醚工艺技术,无论是气相法还是液相法,国内技术均已经达到先进、成熟可靠的水平,完全有条件建设大型生产装置。
由国内开发的合成气一步气相法制二甲醚技术基本成熟,并已建成千吨级装置。但对于建设大型二甲醚装置,国内技术尚需实践验证。
3 结论及建议
二甲醚作为清洁的替代燃料已经得到国内外广泛的关注,特别是其替代煤气、LPG和柴油方面所具有的巨大的市场潜力,对我国能源结构的调整、环境保护等方面有着重要的现实意义。
二甲醚工艺技术是国内外工艺技术开发的热点之一,一步法工艺流程简单、设备少、投资小、操作费用和生产成本较低,但由于合成反应和分离过程复杂,目前尚未完全工业化。二步法工艺是目前国内外二甲醚生产的主要工艺,产品纯度高,工艺成熟,装置适应性广,综合竞争力强,但也有流程较长,设备投资较大的弱点。
目前推广和应用是二甲醚发展的关键,二甲醚作为清洁替代能源需要政府的大力扶持和帮助。建议国家应统筹规划,在没有油气资源而煤炭资源丰富的地区,建设大型二甲醚生产基地。以二甲醚替代煤气、LPG作为市场推广的先导,同时大力加强二甲醚替代柴油方面的研究,全面促进二甲醚的生产和使用,预计在不久的将来,二甲醚必将成为我国能源结构中重要的组成部分. 3905希望对你有帮助!