建材秒知道
登录
建材号 > 乙酸 > 正文

间位甲氧基苯甲酸与苯甲酸的酸性比较,间位时甲氧基是吸电子强还是供电子强

简单的万宝路
还单身的汽车
2022-12-22 00:21:47

间位甲氧基苯甲酸与苯甲酸的酸性比较,间位时甲氧基是吸电子强还是供电子强?谢谢

最佳答案
酷炫的香菇
勤奋的往事
2026-01-26 14:47:58

酸性由强到弱的次序为:

甲酸、苯甲酸、乙酸。三者的pka分别是3.76,4.19,4.75.

吸电子基使酸性增强。

1.首先要解释的是酸性,这里讨论的是普通酸碱对,就是能电离出氢离子的能力。

2.第二来看吸电子基的影响。如果要电离出氢离子,那么,原化合物的负离子就应该越稳定其电离能力越强。所以,如果有吸电子基,那么就能降低负离子的电子云密度,降低其能量达到更加稳定的效果。也就是说,这样生成的氢离子就更稳定,电离出的氢离子就更多,酸性液就更强。

3.三者的酸性分析:甲酸的酸性最强的原因有两点,甲酸有两个氢,所以可以再两个氢里任意电离一个,也就是说课电离的氢的选择更多。同时,电离后的负离子由于剩下的氢的吸电子作用能够稳定

苯甲酸的酸性分析:苯环有很大的离域,同时可以和羧酸负离子共轭,稳定羧酸负离子

乙酸的分析:乙酸连的是一个甲基,是一个供电子基,那么其负离子就最不稳定

最新回答
高兴的指甲油
苹果烤鸡
2026-01-26 14:47:58

对甲氧基苯甲酸酸性弱于苯甲酸。

酸性越强,说明越容易电离。羧基电离以后是COO-,那么吸电子能力越强的取代基越容易稳定这个负离子,也就是说越容易电离,酸性就强。相反的,推电子能力越强,越难电离,酸性就弱。甲氧基是一个推电子基团,不利于羧基电离,所以酸性较弱。

忧郁的大叔
热心的画板
2026-01-26 14:47:58
凉味剂

所有能产生清凉效果且药性不强的化学物质的总称

凉味剂,是所有能产生清凉效果且药性不强的化学物质的总称。最常见的凉味剂是薄荷醇(尤其是左旋薄荷醇),但由于其浓烈的气味以及对皮肤、黏膜组织和眼的强烈刺激性,故不宜大量使用。因此,不少科学家都合成、提取了新一代的凉味剂。

中文名

凉味剂

外文名

Cooler than menthol

作者

John C. Leffingwell, Ph.D.

创新

不用薄荷醇也能致凉

凉味剂专利作用凉味剂名称TA说

凉味剂

最近三十年以来,有许多种凉味剂被合成出来,并能使人体生理上产凉意。

1970年在Roy Randolph的领导下,Wilkinson Sword Ltd对这个课科展开了广泛的研究。在这个期间Hugh R. Watson和他的合作者合成出了近1200种有凉味活性的化合物。这类化合物最有趣的地方是它能使人产生凉的的感觉,便不会象含薄荷醇的剃须泡那样由于其薄荷和挥发的副作用而对眼睛产生刺激。

WS-3

在他们合成的这些分子中,有二个被成功的商业化了,WS-3(N-乙基-对薄荷基-3-甲酰胺)和WS-23(2-异丙基-N,2,3-三甲基丁酰胺)。

就WS-3而言,供应商(如奇华顿和千禧年等)没有指明分子的各异构组份的纯度(如薄荷醇,它有四种异构体和八种光学异构体)。Watson指出,最好选取那些有平衡结构的分子,如在WS-3中1R,3R,4S-WS-3异构体在凉感方面是最好的,但我们对其各光学异构体及相对映的凉味感质了解不多。而WS-23(千禧年生产)由于没有手性中心,所以只有一种结构。

千禧年把WS-23描述为几近无色的粉末,具感极高的凉味活性,而没有灼烧、麻木和刺激等副作用。主要用于如医药、口腔护理、糖果中的制凉剂。

千禧年把WS-3描述为几近无色的白色晶体,主要用于如医药、口腔护理、糖果中的制凉剂。而奇华顿指出,与薄荷油混合使用效果会更好。它能产生更具冲击的、清新的,持久的香气,它的口感阀值为200ppb(用树脂浸渍纸条放入口中测得)。Mosciano形容当香气达到10%时“几近无味,有轻微的酒精味及凉味”。当以浓度10-100ppb品尝时,“对三叉神经有强烈而长时间的刺激。凉味感觉慢慢得稳定得增强,最后直到满嘴都是清凉的感觉,并伴有轻微的樟脑和薄荷的味道。”

FEMA GRAS名单中的凉味剂

除此之外,其它还有SYMRISE的薄荷酮甘油缩醛,它的商名品叫FRESCOLAT MGA,存在消旋和左旋二种规格,都列在FEMA GRAS中。不过市售的产品以左旋为主。该公司另一款产品叫FRESCOLAT ML,即(-)-乳酸薄荷酯,有轻微的薄荷香气,尝起来几乎没有味道,但伴有持久的,令人愉快的清凉效果。

(-)-薄荷氧基-1,2丙二醇,高砂的商品名为凉味剂10(coolant agent 10),是另外一种市售的凉味剂。高砂报道它的阀值是1ppm,是薄荷醇20%-100%,100ppm的溶液能在口中维护约20-25分钟,是薄荷醇的二倍,普遍接受薄荷醇的强度是凉味剂的20-25%,也有人说在凡士林药膏中,凉味剂的凉气强度是薄荷醇的2-2.5倍。就其异构体而言,2S的强度比2R大2-3倍,比消旋的异构体强1.5-2倍。

COOLANT AGENT 10 (2R) COOLANT AGENT 10 (2S)

还有一个相关产品,3-(1-甲氧基)-2-甲基-1,2-丙二醇,也列于FEMA GRAS名单中.

顺式及反式对-薄荷基-3,8-二醇

虽然在文献中也载有关于异胡椒薄荷醇(isopulegol)的制凉效果,它还伴有薄荷、药草、苦甜滋味。高砂的Takeshi Yamamoto最近发现高光学异构纯度的(-)-异胡椒薄荷醇99.7%具有清新的、愉快的、清凉的橘桔类的香气。异胡椒薄荷醇、甲氧基丙二醇、乳酸薄荷酯的混合物作为专利产品出售给化妆品产业。异胡椒薄荷醇在高砂的商品名是IsopulegolCoolact P,其化学名称为顺式及反式对-薄荷基-3,8-二醇

最近,高砂把顺式及反式对-薄荷基-3,8-二醇作为凉味剂申请了专利。

本身没有凉味的凉味剂

虽然还有很多其它化合物(2,3-二羟基孟烷,3,3,5-三甲基环己酮甘油缩酮)在文献中也有报道具有制凉效果。但这儿不得不提的是一些市售的本身没有凉味或香气的产品,如QUESTICE(吡咯烷酮羧酸甲酯),这个产品经过酶水解后会变成薄荷醇。

专利

2002年3月,芬美意申请并发布了一系列如3,6-恶烷庚酸(1R,3R,4S)-3-薄荷酯,甲氧基乙酸(1R,2S,5R)薄荷酯,3,6,9-三氧杂癸酸-(1R,2S,5R)-3-薄荷酯,(2-羟基乙氧基)乙酸-(1R,2S,5R)-3-薄荷酯及11-羟基-3,6,9-三氧杂十一烷酸-(1R,2S, 5R)-薄荷酯。

2001年芬美意把Cubebol申请专利作为凉味及清新剂。

一些专利产品经常混合使用,用于食用香精、香水、化妆品及口腔护理用品中。

作用

最近有报道说,一些凉味剂具有驱虫的效果。奇华顿的Gautschi &Blondeau发现WS-3及其N-位的替代化合物的驱虫效果比DEET(二乙基-m-甲苯酰胺)要好。

同样,最近发现对薄荷基-3,8-二醇也有驱虫效果。Quwenling(驱蚊灵)一个非常有名的以桉叶素为基础制作的驱虫产品,其中包含了对薄荷基-3,8-二醇(PMD)、异胡椒薄荷醇、香草醇。在中国Quwenling很大程度上替代了邻苯二甲酸二乙酯在驱虫剂中的用途。最近有家叫Chemian Technology ltd的公司出产一款叫Citrepel的天然PMD驱虫水。

Questice(Watkins,美国专利号 6,451,844, 2002-9-17)也被专利注册为驱虫新产品,Kalbe and Nentwig在专利(德国专利号19840321)中描述了薄荷酮甘油缩酮和乳酸薄荷酯的驱虫效果。Watkins还对比了Questic和其它一些产品的驱虫效果。

比薄荷醇更凉

2001年11月,德国的Hoffmann及其合作者发表他们在天然麦芽中找到比薄荷强很多倍的化合物。他们说其中活性最大的4-甲基-3-(1-吡咯烷基)-2[5H]-呋喃酮,属于环甲位烯胺酮类家族,它的薄荷味在口中的强度是薄荷醇的35倍,在皮肤上的强度是薄荷醇的512倍。而且持续时间是薄荷醇的二倍。其中活性最大的几个化合物如下所示:

无味 轻微的薄荷样气味 无味

阀值1.5-3.0 ppm 阀值2.0-4.0 ppm 阀值0.02-0.06 ppm

5-甲基-4-(1-吡咯烷基)-3-[2H]-呋喃酮 4,5-二甲基-3-(1-吡咯烷基)-2[5H]-呋喃酮 4-甲基-3-(1-吡咯烷基)-2[5H]-呋喃酮

此项研究受到了很大关注。有些人评论说“我们发现了世界上没有薄荷味的最强烈的凉味剂,”

然而在2003年12月4日的食用香精化学品协会的会议上有人说4-甲基-3-(1-吡咯烷基)-2[5H]-呋喃酮在实际使用中的效果远没有期望的怎么好,从此大家对它的兴趣就减弱了。

不过,从理论阀值来衡量实际使用中的效果往往有偏差。同一会上,千禧年的Mark Erman 给出了关于大量合成凉味剂的强度数据。

来自薄荷醇等物质的生理凉味感觉

薄荷醇及相关的凉味化合物能对人体的温度传感器产生作用,使通过冷传感器给人凉的感觉。同样,这些产品也能给人产品一种热或刺痛的感觉。如果浓度如够高,薄荷醇和胡椒素一样能使人产生热的感觉,在这种情况,它又能刺激人的神经感到热,同样也能感到凉。最近(2001年),布加勒斯特的Gordon Reid及Maria-Luiza Flonta发现,在老鼠的一小部分感觉神经元有些内在的离子能被适度的凉感所激活。这些现象存在于冷传感器中,比如用薄荷醇刺激、转换到持续的低温,这些都是由钙离子调节,对产生冷感这种现象很重要。早期的模型指出,薄荷醇刺激冷传感器并堵塞了钙离子的电压通道,导致细胞内的钙离子减少,并抑制了依靠钙离子的钾离子通道。Reid却表示,是薄荷醇等刺激了钙离子的入口,并使冷感神经元细胞内的钙离子的浓度大大增加。所以薄荷醇的致冷作用可以简单的表述为激活了冷传感器中的钙离子电流。

在2002年3月的自然杂志上,McKemy, Neuhausser &Julius 描述及克隆了位于三叉神经元的薄荷醇传感器,由对凉至冷范围的刺激作出反应。这个凉和薄荷的传感器CMR1是属于TRP兴奋神经通道的一员。它的作用就是人体感观系统中的传导器。这个发现就和他们以前对于热传感器VR1及VRL-1的发现一样,展示了TRP神经通道是如何运作感知一定范伟内温度的,以及哺乳动物的周边神经系统是如何感知温度刺激的。

在同一期杂志上Charles Zucker解释了凉感离子通道能帮助解开神经系统是加密解密温度信息的问题.

相似的,Andrea Peier描述及克隆了TRPM8,一个凉传感器,能对冷及一些凉味剂作出反应。

200年3月,Viana及他的合作者的研究表明,冷传感器不是一组特定的传导组织,而是感官神经元组织的一部分分支的混合离子通道。

最新--2004年2月,Behrendt发表了他的研究成果,表述了冷-薄荷传感器TRPM8对70薄荷及相类似化合物的反应情况。这些检测利用了FLIPR(莹光碟图读数器)来读取含量。其中有十个物质有肌肉收缩反应(芳樟醇,香叶醇,羟基香草醛, WS-3, WS-23, FrescolatMGA, FrescolatML, PMD38, CoolactP and 凉味剂10)。这项研究给了凉味化合物另外一种衡量方法。

凉味剂名称

(+)-Neoisomenthol (+)-新异薄荷醇

(-)-Neomenthol (-)-新薄荷醇

(-)-Isomenthol (-)-异薄荷醇

p-Menthane-3,8-diol 对-薄荷基-3,8-二醇

(+)-Isomenthol (+)-异薄荷醇

(-)-Neoisomenthol (-)-新异薄荷醇

(2R)-3-(1-menthoxy)propane-1,2-diol (2R)-3-(1-甲氧基)丙-1,2-二醇

(2RS)-3-(1-menthoxy)propane-1,2-diol (2RS)-3-(1-甲氧基)丙-1,2-二醇

WS-30 对-薄荷基-3-羟酸-1-甘油酯

WS-4 对-薄荷基-3-羟酸-1-乙烯基甘油酯

Coolact P (-)-isopulegol (-)-异胡椒薄荷醇

(+)-Menthol (+)-薄荷醇

(+)-Neomenthol (+)-新薄荷醇

(2S)-3-(1-menthoxy)propane-1,2-diol (2S)-3-(1-薄荷氧基)丙-1,2-二醇

Frescolat MGA 薄荷酮甘油缩酮

Frescolat ML 乳酸薄荷酯

WS-14 N-叔丁基-对薄荷基-3-羧酰胺

WS-23 2-异丙基-N,2,3-三甲基丁酰胺

(-)-Menthol (-)-薄荷醇

WS-12 N-(4-甲氧基苯基)-对薄荷基-3-羧酰胺

WS-3 N-乙基-对薄荷基-3-羧酰胺

WS-23 N,2,3.三甲基-2-异丙基丁酰胺

WS-5 乙酸(N-乙基-对薄荷基-3-羧酰胺)乙酯

欢呼的硬币
开心的电话
2026-01-26 14:47:58
最基本和最简单的方法是用硅胶柱分离。 因为甲氧基苯甲醇的极性大于对甲氧基苯甲醛 , 当你用TLC板检测时, 上方的点是对甲氧基苯甲醛 , 下方的点是对甲氧基苯甲醇 。 因此只要用己烷和乙酸乙酯(50:1, v/v) 做流动相, 硅胶柱层析法, 就可以得到这两个化合物而不带入新物质。

当然还有化学方法:

甲氧基苯甲醛与胺类反应, 例如与苄基胺反应, 生成亚胺。而甲氧基苯甲醇不反应。前者的沸点要高的多, 将甲氧基苯甲醇先蒸馏出来, 亚胺再酸性水解会到对甲氧基苯甲醛

优秀的糖豆
强健的香水
2026-01-26 14:47:58
最基本和最简单的方法是用硅胶柱分离.因为甲氧基苯甲醇的极性大于对甲氧基苯甲醛 ,当你用TLC板检测时,上方的点是对甲氧基苯甲醛 ,下方的点是对甲氧基苯甲醇 .因此只要用己烷和乙酸乙酯(50:1,v/v) 做流动相,硅胶柱层析法,就可以得到这两个化合物而不带入新物质.

当然还有化学方法:

甲氧基苯甲醛与胺类反应,例如与苄基胺反应,生成亚胺.而甲氧基苯甲醇不反应.前者的沸点要高的多,将甲氧基苯甲醇先蒸馏出来,亚胺再酸性水解会到对甲氧基苯甲醛.

单薄的蜜蜂
勤恳的大白
2026-01-26 14:47:58

药品的残留溶剂基本可分为四类:

第一类溶剂应避免使用。

该类溶剂是指人体致癌物、疑为人体致癌物或环境危害物的有机溶剂。因其具有不可接受的毒性或对环境造成公害,在原料药、辅料以及制剂生产中应该避免使用。当根据文献或其他相关资料确定合成路线,涉及到第一类溶剂的使用时,建议重新设计不使用第一类溶剂的合成路线,或者进行替代研究。

如果工艺中不可避免的使用了第一类溶剂,则需要严格控制残留量,无论任何步骤使用,均需进行残留量检测。

第二类溶剂应限制使用

该类溶剂是指有非遗传毒性致癌(动物实验)、或可能导致其他不可逆毒性(如神经毒性或致畸性)、或可能具有其他严重的但可逆毒性的有机溶剂。此类溶剂具有一定的毒性,但和第一类溶剂相比毒性较小,建议限制使用,以防止对病人潜在的不良影响。

第三类溶剂是GMP或其他质量要求限制使用

该类溶剂属于低毒性溶剂,对人体或环境的危害较小,人体可接受的粗略浓度限度为0.5%,因此建议可仅对在终产品精制过程中使用的第三类溶剂进行残留量研究。

第四类溶剂是尚无足够毒性资料的溶剂

这类溶剂在药物的生产过程中可能会使用,但目前尚无足够的毒理学研究资料。建议药物研发者根据生产工艺和溶剂的特点,必要时进行残留量研究。

随着对这类溶剂毒理学等研究的逐步深入,将根据研究结果对其进行进一步的归类。

第一类有机溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。第二类有机溶剂是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下:2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。第三类有机溶剂是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括:戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。 溶剂名称 PDE值

(mg/天) 限度

(%) 溶剂名称 PDE值(mg/天) 限度(%) 第一类溶剂

(应避免使用) 第三类溶剂(GMP或

其他质量要求限制使用) 苯 0.02 0.0002 乙酸 50.0 0.5 四氯化碳 0.04 0.0004 丙酮 50.0 0.5 1,2-二氯乙烷 0.05 0.0005 甲氧基苯 50.0 0.5 1,1-二氯乙烯 0.08 0.0008 正丁醇 50.0 0.5 1,1,1-三氯乙烷 15.0 0.15 仲丁醇 50.0 0.5 第二类溶剂

(应该限制使用) 乙酸丁酯 50.0 0.5 乙腈 4.1 0.041 叔丁基甲基醚 50.0 0.5 氯苯 3.6 0.036 异丙基苯 50.0 0.5 氯仿 0.6 0.006 二甲亚砜 50.0 0.5 环己烷 38.8 0.388 乙醇 50.0 0.5 1,2-二氯乙烯 18.7 0.187 乙酸乙酯 50.0 0.5 二氯甲烷 6.0 0.06 乙醚 50.0 0.5 1,2-二甲氧基乙烷 1.0 0.01 甲酸乙酯 50.0 0.5 N,N-二甲氧基乙酰胺 10.9 0.109 甲酸 50.0 0.5 N,N-二甲氧基甲酰胺 8.8 0.088 正庚烷 50.0 0.5 1,4-二氧六环 3.8 0.038 乙酸异丁酯 50.0 0.5 2-乙氧基乙醇 1.6 0.016 乙酸异丙酯 50.0 0.5 乙二醇 6.2 0.062 乙酸甲酯 50.0 0.5 甲酰胺 2.2 0.022 3-甲基-1-丁醇 50.0 0.5 正己烷 2.9 0.029 丁酮 50.0 0.5 甲醇 30.0 0.3 甲基异丁基酮 50.0 0.5 2-甲氧基乙醇 0.5 0.005 异丁醇 50.0 0.5 甲基丁基酮 0.5 0.005 正戊烷 50.0 0.5 甲基环己烷 11.8 0.118 正戊醇 50.0 0.5 N-甲基吡咯烷酮 5.3 0.053 正丙醇 50.0 0.5 硝基甲烷 0.5 0.005 异丙醇 50.0 0.5 吡啶 2.0 0.02 乙酸丙酯 50.0 0.5 四氢噻吩 1.6 0.016 尚无足够毒性资料的溶剂 四氢化萘 1.0 0.01 1,1-二乙氧基丙烷 四氢呋喃 7.2 0.072 1,1-二甲氧基甲烷 甲苯 8.9 0.089 2,2-二甲氧基丙烷 1,1,2-三氯乙烯 0.8 0.008 异辛烷 二甲苯① 21.7 0.217 异丙醚 甲基异丙基酮 甲基四氢呋喃 石油醚 三氯乙酸 三氟乙酸

英俊的蜜蜂
老迟到的白云
2026-01-26 14:47:58
百度百科

目录

声明:百度百科是免费编辑平台,无收费代编服务

详情

对甲氧基乙酰苯胺

化学物质

对甲氧基乙酰苯胺是一种化学分子,别名4'-甲氧基乙酰苯胺,分子式C9H11NO2,它的分子量为165.19,CAS登记号是200-114-2,英文名叫做4'-Methoxyacetanilide。

中文名

对甲氧基乙酰苯胺

外文名

4'-Methoxyacetanilide

别名

4'-甲氧基乙酰苯胺

化学式

C9H11NO2

分子量

165.19

快速

导航

物化性质

性质描述

产品应用

合成方法

基本信息

CAS登录号:51-66-1

中文名称:4'-甲氧基乙酰苯胺对甲氧基乙酰苯胺

英文名称:4'-Methoxyacetanilide

英文别名:MethacetinN-(4-Methoxyphenyl)acetamidep-Acetanisidine

分子式:C9H11NO2

分子量:165.19

EINECS登录号:200-114-2

物化性质

熔点:129-132ºC

水溶性:0.42G/100ML(20ºC)

性质描述

白色结晶粉末,微带苦味。熔点130-132℃,溶于乙醇、丙酮、氯仿、稀酸和碱,微溶于水。易燃,低毒。

产品应用

用于制造分散藏青2GL、枣红GP色基,也是染料分散深蓝HGL及医药的中间体。

合成方法

由对甲氧基苯胺经乙酰化而得。方法1:对甲氧基苯胺和乙酸反应,将反应物中过量乙酸和反应生成的水一起蒸出,反应产物用减压蒸馏的方法提纯。原料消耗定额:对甲氧基苯胺778kg/t。方法2:用乙酐乙酰化,将对甲氧基苯胺加入1000ml三口瓶中,在50℃加入乙酐,在70℃反应10min,冷却、过滤、水洗、干燥即得。收率95左右。

Hot来YY,超多颜值主播,精彩视频看个够!

百度百科吧 意见反馈 权威合作 百科协议

百度百科是免费编辑平台,无收费代编服务 | 详情

词条目录

百科名片

基本信息

物化性质

性质描述

产品应用

合成方法