建材秒知道
登录
建材号 > cas号 > 正文

铂的化学式

自然的世界
懦弱的天空
2022-12-22 00:04:19

铂的化学式

最佳答案
含糊的仙人掌
缥缈的胡萝卜
2026-01-26 09:57:03

铂是一种化学元素,化学符号Pt,是一种贵金属,其单质俗称白金,属于过渡金属。 铂的熔点为1772℃,沸点为3827±100℃,密度21.45g/㎝³,较软,有良好的延展性、导热性和导电性。铂的化学性质不活泼,在空气和潮湿环境中稳定。

中文名称:铂黑,Pt≥99.9%

中文别名:铂,海绵铂,铂催化剂S-201,亮白金水

英文名称:Platinum black

英文别名:platinum metal,platinum sponge

纯度:Pt≥99.9%

CAS号:7440-6-4

EINECS: 231-116-1[1]

分子式:Pt

分子量:195.08

性状描述

黑色粉末,溶于王水;不溶于水和无机酸。

第一电离能9.0电子伏特。化合价为+2、+4和+6。熔点1772℃,沸点3827℃。密度21.46克/立方厘米。银白色金属,质柔软,有延展性。晶体结构为面心立方体。铂有很高的化学稳定性,除溶于王水[3]和熔融的碱外,还溶于盐酸和过氧化氢、盐酸和高氯酸的混合物中,除此之外,铂常温下不与一般强酸、碱和其他试剂作用。但是铂在高温下容易遭受腐蚀,例如:对于多种氧化剂,强碱、容易还原的重金属,以及硫、磷、砷等,铂或则被其破坏,或则与其成合金,正因为如此,所以不得在铂器皿中加热或熔融碱金属的氧化物,硫代硫酸钠,含磷和大量硫的物质以及含重金属的样品(如铅、锡、锑、砷、汞、铜等)。高温下不许使用大量过氧化剂、氢氧化钠(钾)作熔剂。铂器皿中不允许处理卤素或分解出卤素的物质。

与王水的反应:3Pt+4HNO3+18HCl=3H2[PtCl6]+4NO↑+8H2O

元素来源

在自然界中常以自然矿状态存在,极为分散。多用原铂矿富积、萃取而获得。

上游原料:氨水、二氧化硫、硫酸、氯化铵、氯气、氯酸钠

下游产品:硝酸、氯铂酸、一氧化碳助燃剂

最新回答
含糊的篮球
痴情的缘分
2026-01-26 09:57:03

铂的最常见氧化态为+2和+4。铂的+1和+3较少见,双金属(或多金属)化合物中的金属键可以提高其稳定性。

物理性质

纯铂为带光泽、有可延展性的银白色金属。它的可延展性是所有纯金属中最高的,胜过金、银和铜,但其可锻铸性却比金低。

铂金属的抗腐蚀性极强,在高温下非常稳定,电性能亦很稳定。它在任何温度下都不会氧化,但可被各种卤素、氰化物、硫和苛性碱侵蚀。铂不可溶于氢氯酸和硝酸,但会在热王水中溶解,形成氯铂酸(H2PtCl6)。

这些物理性质都使铂成为了工业上应用广泛的金属。由于能够抵抗侵蚀和保留光泽,所以铂还可以用于制首饰。

化学性质

铂的最常见氧化态为+2和+4。铂的+1和+3较少见,双金属(或多金属)化合物中的金属键可以提高其稳定性。四配位铂(II)化合物通常具有由16个电子形成的平面四边形结构。

单质铂金属的反应性很低,但它会在热王水中溶解,产生氯铂酸(H2PtCl6):Pt + 4 HNO3 + 6 HCl → H2PtCl6 + 4 NO2 + 4 H2O

铂属于软酸,所以铂和硫有化学亲和性,例如和二甲基亚砜(DMSO);科学家已发现多种DMSO配合物。

应用

在 2014 年销售的 218 吨铂金中,98 吨用于汽车排放控制装置(45%),74.7 吨用于珠宝(34%),20.0 吨用于化工生产和石油精炼(9.2%),5.85 吨用于制造硬盘驱动器等电气应用(2.7%)。

剩余的 28.9 吨用于其他各种次要应用,例如医药和生物医学、玻璃制造设备、投资、电极、抗癌药物、氧传感器、火花塞和涡轮发动机。

1、催化剂

铂最常见的用途是作为化学反应的催化剂,通常作为铂黑。自 19 世纪初起,铂粉就被用作催化剂,当时铂粉用于催化氢气的点燃。其最重要的应用是在汽车中作为催化转化器,使尾气中的低浓度未燃烧碳氢化合物完全燃烧成二氧化碳和水蒸气。

在石油工业中,铂还用作许多单独工艺的催化剂,尤其是在将直馏石脑油催化重整为富含芳烃化合物的高辛烷值汽油中。

2、贵金属投资

铂金是一种贵金属 商品;其金银的ISO 货币代码为 XPT。硬币、金条和锭被交易或收集。由于其惰性,铂金可用于珠宝,通常作为 90-95% 的合金。

它用于此目的是因为它的声望和固有的金银价值。珠宝贸易出版物建议珠宝商将微小的表面划痕(他们称之为“铜锈”)作为一种理想的特征,以试图提高铂金产品的价值。

以上内容参考 百度百科-铂金

兴奋的小鸭子
和谐的棉花糖
2026-01-26 09:57:03
知道化学物质的英文名称和结构式,可以知道这种化学物质的中文名称。

物质是组成物体的材料。

物质首先根据组成物质的不同,分为混合物和纯净物,混合物是由多种物质组成的物质,常见的混合物包括空气、溶液、悬浊液、乳浊液、矿石和合金等。纯净物是由一种物质组成的物质,包括单质和化合物,其中单质是由一种元素组成的,分为金属、非金属、稀有气体;化合物由几种元素组成,分为无机化合物和有机化合物,无机化合物是不含碳的化合物,又分为氧化物、无机酸、碱、无机盐等,有机化合物是含碳元素的化合物,分为烃、烃的衍生物、碳水化合物、含氮有机化合物、高分子有机化合物等。这些物质在英文里怎么命名呢?

一、单质。

单质在英文里,直接用组成它的元素命名即可, 如:

金属单质:

silver 银

aluminum 铝

gold 金

barium 钡

bismuth 铋

calcium 钙

cadmium 镉

cerium 铯

cobalt 钴

chromium 铬

copper 铜

iron 铁

mercury 汞

potassium 钾

magnesium 镁

manganese 锰

sodium 钠

nickle 镍

lead 铅

palladium 钯

platinum 铂

selenium 锶

tin 锡

titanium 钛

uranium 铀

zinc 锌

非金属单质:

arsenic 砷

boron 硼

bromine 溴

diamond 金刚石

graphite 石墨

chlorine 氯气

fluorine 氟气

hydrogen 氢气

iodine 碘

nitrogen 氮气

oxygen 氧气

ozone 臭氧

white phosphorous 白磷

red phosphorous 红磷

silicon 硅

稀有气体单质:

helium 氦气

neon 氖气

argon 氩气

krypton 氪气

xenon 氙气

radon 氡气

二、氧化物。

氧化物是由两种元素组成的,其中一种为氧元素,包括酸性氧化物、碱性氧化物、两性氧化物和不成盐氧化物。命名金属氧化物的时候,按照化学式的顺序从左往右念即可,而命名非金属氧化物时,要用字首表示分子里原子的个数,如:

金属氧化物。

ferrous oxide 氧化亚铁

ferric oxide 氧化铁

ferroferric oxide 四氧化三铁

trilead tetroxide 四氧化三铅

sodium peroxide 过氧化钠

非金属氧化物。

carbon monoxide 一氧化碳

carbon dioxide 二氧化碳

sulfur trioxide 三氧化硫

nitrous oxide 一氧化二氮

nitric oxide 一氧化氮

dinitrogen trioxide 三氧化二氮

dinitrogen tetroxide 四氧化二氮

diphosphorous pentoxide 五氧化二磷

dichlorine heptoxide 七氧化二氯

water 水

三、酸。

酸是电离时生成的阳离子全部是氢离子的化合物。酸根据组成元素是否含有氧元素,可以分为含氧酸和无氧酸;根据酸中可被电离的氢原子个数,可以分为一元酸、二元酸和三元酸。

含氧酸的命名,是在除氢、氧元素之外的另一种元素的名称之后加上一个“酸”字,如:

carbonic acid 碳酸

sulfuric acid 硫酸

sulfurous acid 亚硫酸

phosphoric acid 磷酸

metaphosphoric acid 偏磷酸

phosphorous acid 亚磷酸

nitric acid 硝酸

nitrous acid 亚硝酸

perchloric acid 高氯酸

chloric acid 氯酸

chlorous acid 亚氯酸

hypochlorous acid 次氯酸

acetic acid 乙酸

thiosulfuric acid 硫代硫酸

无氧酸的命名,是在“氢”字之后加上另一种元素的名称,命名为“氢某酸”,如:

hydrochloric acid 盐酸,氢氯酸

hydrosulfuric acid 氢硫酸

hydrocyanic acid 氢氰酸

四、碱。

碱是电离时生成的阴离子全是氢氧根离子的化合物,根据溶解性,可以分为可溶性碱、微溶性碱和难溶性碱,根据可电离出的氢氧根离子的个数,分为一元碱、二元碱和三元碱。氢氧根离子叫做hydroxygen,所以碱的命名是在金属元素或铵根离子的后面加上氢氧根离子。如:

aluminum hydroxide 氢氧化铝

sodium hydroxide 氢氧化钠

calcium hydroxide 氢氧化钙

barium hydroxide 氢氧化钡

cobaltous hydroxide 氢氧化亚钴

五、盐。

盐是酸和碱中和的生成物,由金属元素(或铵根)和酸根组成,可以分为正盐、酸式盐和碱式盐。

正盐:由金属元素和酸根构成,其命名是在金属元素名称后面加上酸根的名称,如:

mercury sulfate 硫酸汞

mercurous sulfate 硫酸亚汞

potassium nitrate 硝酸钾

sodium carbonate 碳酸钠

sodium hypochlorite 次氯酸钠

ferrous sulfate 硫酸亚铁

potassium permanganate 高锰酸钾

lithium propanoate 丙酸锂

sodium chloride 氯化钠

aluminum chloride 氯化铝

酸式盐:由金属元素和含氢元素的酸根组成,其命名是在酸根的前面加一个氢字,如:

sodium hydrogen sulfate 硫酸氢钠

disodium hydrogen phosphate 磷酸氢二钠

sodium dihydrogen phosphate 磷酸二氢钠

calcium bisulfate 硫酸氢钙

sodium hydrogen carbonate 碳酸氢钠

calcium bisulfite 亚硫酸氢钙

碱式盐:由金属元素、氢氧根和酸根组成,这里的金属元素的化合价一定是正一价以上,其命名是在酸根的前面加上“氢氧根”这个字,如:

dicopper dihydroxycarbonate 碱式碳酸铜

calcium hydroxychloride 碱式氯化镁

magnesium hydroxyphosphate 碱式磷酸镁

复盐:由两种金属元素和酸根组成,或者由一种金属元素和两种酸根组成,如:

sodium potassium sulfite 亚硫酸钾镁

calcium ammonium phosphate 磷酸铵钙

silver lithium carbonate 碳酸锂银

sodium ammonium sulfate 硫酸铵钠

potassium soldium carbonate 碳酸钠钾

potassium aluminum sulfate 硫酸铝钾

sodium ammonium hydrogen phosphate 磷酸氢铵钠

六、有机化合物。

烃:也称为碳氢化合物,分为烷烃、烯烃、炔烃、脂环烃和芳香烃。烷烃的命名是在表示碳原子个数的数字后面加上字尾-ane,如:

methane 甲烷

ethane 乙烷

propane 丙烷

butane 丁烷

pentane 戊烷

hexane 己烷

heptane 庚烷

octane 辛烷

nonane 壬烷

decane 癸烷

undecane 十一烷

dodecane 十二烷

heptacontane 七十烷

烯烃的命名是在数字后面加上-ene的字尾,二烯烃、三烯烃的字尾为-adiene和-atriene。如:

ethylene 乙烯

propylene 丙烯

butylene 丁烯

pentylene 戊烯

propadiene 丙二烯

炔烃的命名是在数字后面加上-yne的字尾,二炔烃、三炔烃的字尾为-adiyne和-atriyne。如:

acetelyne 乙炔

propyne 丙炔

butyne 丁炔

pentyne 戊炔

butadiyne 丁二炔

有些烃中同时含双键和三键,称为烯炔。如:

hexadienyne 己烯炔

pentenyne 戊烯炔

脂环烃的命名是在烃的名称前加一个环字。如:

cyclopropane 环丙烷

cyclobutane 环丁烷

cyclohexane 环己烷

cyclopentane 环戊烷

cyclopropene 环丙烯

cyclohexenyne 环己烯炔

cyclooctadienyne 环辛二烯炔

cyclopentadiene 环戊二烯

芳香烃的命名,苯环称为benzene,前面加上侧链的烃基名称即可:

benzene 苯

pentylbenzene 戊苯

heptylbenzene 己苯

二、烃的衍生物:

烃的衍生物是由烃演变而来的,由烃中的几个氢原子被各种原子或原子团取代而成,这些原子团称为官能团。

官能团,是决定有机化合物的化学性质的原子或原子团。常见官能团碳碳双键、碳碳三键、羟基、羧基、醚键、醛基、羰基等。有机化学反应主要发生在官能团上,官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。

一、醇类——分子中含有跟烃基或苯环侧链上的碳结合的羟基的化合物叫做醇,在烃基的后面加上字尾-ol。如:

methanol 甲醇

ethanol 乙醇

propanol 丙醇

butanediol 丁二醇

pentanetriol 戊三醇

cyclohexanetriol 环己三醇

benzenediol 苯二醇

propanetriol 丙三醇

二、酚类——芳香烃环上的氢被羟基(—OH)取代的一类芳香族化合物,在苯环的后面加上字尾-ol即可,最简单的酚叫做苯酚,如:

phenol 苯酚

如果分子中含有跟烃基或苯环侧链上的碳结合的巯基,或者芳香烃环上的氢被巯基(—SH)取代的一类芳香族化合物,则叫做硫醇和硫酚,如:

ethanethiol 乙硫醇

benzenethiol 苯硫酚

mercaptoethanol 巯基乙醇

用浓硫酸可以使醇分子间发生脱水反应,形成醚,命名时只需把发生脱水的两个醇分子的烃基后面加上醚即可,如:

diethyl ether 二乙醚

dipropyl ether 二丙醚

dinaphthyl ether 二萘醚

三、醛类——醛是由烃基与醛基相连而构成的化合物,命名时在烃基后面加上-al构成。如:

formaldehyde 甲醛

pentanal 戊醛

hexanedial 己二醛

acryaldehyde 丙烯醛

crotonaldehyde 丁烯醛

anasildehyde 对甲氧基苯甲醛

furfuraldehyde 呋喃甲醛

四、酮类——酮是羰基与两个烃基相连的化合物,命名时,在这两个烃基的后面加上酮字即可,根据羰基的个数,可以分为一元酮、二元酮和三元酮等:

propone 丙酮

butanone 丁酮

pentenone 戊烯酮

hexanedione 戊二酮

diethylketone 二乙酮,戊酮

ethylmethylketone 甲乙酮

phenylethylketone 苯乙酮

五、醌类——醌是含有共轭环己二烯二酮或环己二烯二亚甲基结构的一类有机化合物的总称。命名时,把醌字放在烃基名前面即可:

benzoquinone 苯醌

napthoquinone 萘醌

六、羧酸——羧酸的命名,是在烃基名称后面加一个“酸”字,也叫做有机酸。羧酸都是含氧酸,如:

formic acid 甲酸

acetic acid 乙酸

oxalic acid 乙二酸

malonic acid 戊二酸

adipic acid 己二酸

succinic acid 丁二酸

benzoic acid 苯酸

phthalic acid 邻苯二甲酸

maleic acid 顺丁烯二酸

fumaric acid 反丁烯二酸

七、酯类——酸(羧酸或无机含氧酸)与醇起反应生成的一类有机化合物叫做酯,命名时在烃基的后面加上酸根的名称即可,如:

methyl butarate 丁酸甲酯

三、含氮有机化合物。

一、硝基化合物——硝基化合物可看作是烃分子中的一个或多个氢原子被硝基(—NO2)取代后生成的衍生物,命名时,硝基要放在烃名称前,如:

nitrobenzene 硝基苯

nitromethane 硝基甲烷

二、胺类——氨分子中的一个或多个氢原子被烃基取代后的产物,称为胺。氨基是胺类的官能团。命名时,在烃基名称后加-amine构成,如:

methanamine 甲胺

ethanamine 乙胺

benzenamine 苯胺

三、酰胺——羧酸中的羟基被氨基(或胺基)取代而生成的化合物,最简单的酰胺是尿素,它是碳酸的二酰胺,命名时,在烃基后面加上-amide构成,如:

urea 尿素

butenamide 丁酰胺

四、腈类——腈可以看作氢氰酸的氢原子被烃基取代而生成的化合物,腈的官能团是氰基,最简单的腈是乙腈。腈和氰化物不同,不是剧毒物质。命名是在烃基后面加上-onitrile构成,如:

ethanonitrile 乙腈

benzonitrile 苯腈

希望我能帮助你解疑释惑。

优雅的果汁
伶俐的糖豆
2026-01-26 09:57:03
钼: 莫氏硬度:5.5熔点2610℃ 沸点5560℃  天然辉钼矿MoS是一种软的黑色矿物,外型和石墨相似 金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所必需的微量元素之一,在农业上用作微量元素化肥。 纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温

烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。合金钢中加钼可以提高弹性极限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。 钼在其它合金领域及化工领域的应用也不断扩大。例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造武器装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。

钌:是一种硬而脆呈浅灰色的多价稀有金属元素,是铂族金属中的一员。 莫氏硬度:6.5  密度:12.2 g/cm^3 熔点: 2523K 沸点: 4423K 、  硬质的白色金属,密度12.30克/厘米3。熔点2310℃,沸点390 钌

0℃。化合价2、3、4和8。第一电离能7.37电子伏特。化学性质很稳定。在温度达100℃时,对普通的酸包括王水在内均有抗御力,对氢氟酸和磷酸也有抗御力。在室温时,氯水、溴水和醇中的碘能轻微地腐蚀钌。对很多熔融金属包括铅、锂、钾、钠、铜、银和金有抗御力。与熔融的碱性氢氧化物、碳酸盐和氰化物起作用。 钌是极好的催化剂,用于氢化、异构化、氧化和重整反应中。纯金属钌用途很少。它是铂和钯的有效硬化剂。用它制造电接触合金,以及硬磨硬质合金等。

铂:黑色粉末,溶于王水;不溶于水和无机酸。 密度:21.45g/cm3 熔点:1773℃ 沸点:3827℃ 莫氏硬度:4--4.5电子材料、表面活性剂 第一电离能9.0电子伏特。熔点1772℃,沸点3827℃。密度21.46克/立方厘米。银白色金属,质柔软,有延展性。晶体结构为面心立方体。铂有很高的化学稳定性,除溶于王水[3]和熔融的碱外,还溶于盐酸和过氧化氢、盐酸和高氯酸的混合物中。不与一般强酸、碱和其他试剂作用。化合价为+2、+4和+6。 与王水的反应:3Pt+4HNO3+18HCl=3H2[PtCl6]+4NO↑+8H2O  海绵铂为灰色海绵状物质,有很大的比表面积,对气体(特别是氢、氧和一氧化碳)有较强的吸收能力。粉末状的铂黑能吸收大量氢气。铂的化学性质不活泼,在空气和潮湿环境中稳定,低于 450℃加热时,表面形成二氧化铂薄膜,高温下能与硫、磷、卤素发生反应。铂不溶于盐酸、硫酸、硝酸和碱溶液,但可溶于王水和熔融的碱。铂的氧化态为+2、+3、+4、+5、+6。容易形成配位化合物,如〔Pt(NH3)2〕Cl2、K〔Pt(NH3)Cl5

铂由于有很高的化学稳定性(除王水外不溶于任何酸,碱)和催化活性,因此,应用很广。可与钴合制强磁体。多用来制造耐腐蚀的化学仪器,如各种反应器皿、蒸发皿、坩埚、电极、铂网等,铂和铂铑合金常用作热电偶,来测定1200~1750℃的温度。还可用于制造首饰。铂在氢化、脱氢、异构化、环化、脱水、脱卤、氧化、裂解等化学反应中均可作催化剂。在医药中,可做抗癌药。稀有、柔软的银白色金属,非常沉重。开采自天然游离态铂矿藏。

钕:为银白色金属 单质熔点: 1010.0 ℃ 单质沸点: 3127.0 ℃ ,密度7.004克/厘米 维氏硬度:343MPa 有顺磁性。钕是最活泼的稀土金属之一,在空气中能迅速变暗,生成氧化物;在冷水中缓慢反应,在热水中反应迅速。掺钕的钇铝石榴石和钕玻璃可代替红宝石做激光材料,钕和镨玻璃可做护目镜。钕(Nd):伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。 CAS号:7440-00-8[1]来源:存在于独居石中,由含水氯化钕经脱水后用金属钙还原,或由无水氯化钕经熔融后电解而制得。用于制造特种合金、电子仪器和光学玻璃。在制造激光器材方面,有着重要的应用钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5-2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

钇:一种金属元素,稀土金属。灰黑色粉末,有金属光泽。可制特种玻璃和合金。稀土金属元素之一,灰色金属。密度4.4689克/厘米3,熔点1522℃,沸点3338℃,化合价+3。性脆,显荧光性,色散低,对红外线,紫外线透射能力强。第一电离能6.38电子伏特。与热水能起反应,易溶于稀酸。 由氟化钇YF2·XH2O用钙还原而制得。钇铝石榴石Y3Al5O12用作激光材料,钇铁石榴石Y3Fe5O12用于微波技术及声能换送,掺铕的钒酸钇YVO4:Eu及掺铕的氧化钇Y2O3:Eu用作彩色电视机的荧光粉。金属钇在合金方面用作钢铁精炼剂、变质剂等。

钒:莫氏硬度:7  硬度:0.4 物质状态:固态 熔点:336.53 K(63.38 °C) 沸点:1032 K(759 °C) 摩尔体积:45.94×10-6m3/mol 汽化热:79.87 kJ/mol 熔化热:2.334 kJ/mol 蒸气压:106×10-6 帕 声速:2000 m/s(293.15K) 电负性:0.82(鲍林标度) 比热:757 J/(kg·K) 电导率:13.9 ×106/(米欧姆) 热导率:102.4 W/(m·K) 一种银灰色的金属。熔点1919±2℃,属于高熔点稀有金属之列。它的沸点3000--3400℃,钒的密度为6.11克每立方厘米 纯钒具有展性,但是若含有少量的杂质,尤其是氮,氧,氢等,也能显著的降低其可塑性。熔点很高,常与铌、钽、钨、钼并称为难熔金属。有延展性,质坚硬,无磁性。具有耐盐酸和硫酸的本领,并且在耐气-盐-水腐蚀的性能要比大多数不锈钢好。于空气中不被氧化,可溶于氢氟酸、硝酸和王水。 银白色体心立方结构的金属。质软而轻。低熔点。化学性质活泼,在空气中易氧化。遇水能引起剧烈的反应,使水分解而放出氢气和热量,同时引起燃烧,呈蓝色火焰。也可与乙醇和酸类起剧烈反应。与饱和脂肪烃或芳香烃无反应。溶于液氨、乙二胺和苯胺,溶于多种金属形成合金。相对密度(H2O)0.856。熔点63.2℃。沸点765 

钾:银白色金属,很软,可用小刀切割。熔点63.25℃,沸点760℃,密度0.97g/cm3。 钾的化学性质比钠还要活泼,暴露在空气中,表面覆盖一层氧化钾和碳酸钾,使它失去金属光泽,因此金属钾应保存在煤油中以防止氧化。钾在空气中加热就会燃烧,它在有限量氧气中加热,生成氧化钾;在过量氧气中加热,生成过氧化钾;金属钾溶于液氨生成深蓝色液体,可导电,实验证明其中含氨合电子,钾的液氨溶液久置或在铁的催化下会分解为氢气和氨基钾。钾的液氨溶液与氧气作用,生成超氧化钾,臭氧作用,生成臭氧化钾。钾与水、冰或雪的反应在-100摄氏度时仍反应非常猛烈,生成氢氧化钾和氢气,反应时放出的热量能使金属钾熔化,并引起钾和氢气燃烧。钾与氢气发生反应,生成氢化钾。钾与氟、氯、溴、碘都能发生反应,生成相应的卤化物。钾与氮气共热可生成不稳定的叠氮化钾,但反应条件要控制得极为严格,否则叠氮化钾又会分解为钾和氮气。与氨共热,生成氨基钾 ,并放出氢气。钾与汞形成钾汞齐,是还原剂。钾的氧化态为+1,只形成+1价的化合物。金属钾很活泼,贮存和使用都要注意安全,由钾引起的火灾,不能用水或泡沫灭火剂扑灭,而要用碳酸钠干粉。钾离子能使火焰呈紫色,可用焰色反应和火焰光度计检测。

大意的香氛
沉静的金针菇
2026-01-26 09:57:03
氟,气体元素,符号F,原子序数9。卤族元素之一。淡黄色,有毒,腐蚀性很强,化学性质很活泼,可以和部分惰性气体在一定条件下反应。是制造特种塑料、橡胶和冷冻机(氟氯烷)的原料。由其制得的氢氟酸(HF)是一种唯一能够与玻璃反应的无机酸。

目录

基本信息

元素描述

制备和用途氟的制备

氟的用途

主要性质和用途

同位素

发现氢氟酸基是一种元素

法国物理学家安培

争取氟元素的发现权

诺克斯兄弟设计的实验装置

分离氟元素的启蒙者弗累密教授哥尔博士

分离出桀骜不驯的氟元素

莫瓦桑在实验室首次成功分离氟的电解装置

特殊性质

化学性质

氟与健康建议日摄取量

食物来源

需要人群

缺乏症

过量表现

功效

化学性质氟的化学知识

氟的化合价

如何从食物中摄取氟基本信息

元素描述

制备和用途 氟的制备

氟的用途

主要性质和用途

同位素

发现 氢氟酸基是一种元素

法国物理学家安培

争取氟元素的发现权

诺克斯兄弟设计的实验装置

分离氟元素的启蒙者弗累密教授哥尔博士

分离出桀骜不驯的氟元素

莫瓦桑在实验室首次成功分离氟的电解装置

特殊性质

化学性质

氟与健康

建议日摄取量 食物来源 需要人群 缺乏症 过量表现 功效化学性质

氟的化学知识 氟的化合价如何从食物中摄取氟展开 编辑本段基本信息

元素名称:氟(fluorine)

拼音:fú 元素符号:F 元素相对原子质量:18.998 403 2 元素类型:非金属 CAS号 7782-41-4 EINECS号 231-954-8 原子体积:(立方厘米/摩尔)12.6 密度:(千克/立方米):1516(85K,液态),1.696(273.15K,气态) 元素在太阳中的含量:(ppm) 0.5 元素在海水中的含量:(ppm) 太平洋表面 0.0001 地壳中含量:(ppm)950 质子数:9 中子数:10 原子序数:9 所属周期:2 所属族数:VIIA 氧化态:Main F-1 电子层分布:2-7 晶体结构:晶胞为简单立方晶胞。 元素性质数据

化学键能:(kJ /mol) F-F 159 F-O 190 F-N 272 C-F 484 标准生成热0.0kJ/mol 标准吉布斯自由能0.0kJ/mol 标准熵202.7 J/K*mol 电离能(kJ/ mol) M - M+ 1681 M+ - M2+ 3374

M2+ - M3+ 6050 M3+ - M4+ 8408 M4+ - M5+ 11023 M5+ - M6+ 15164 M6+ - M7+ 17867 M7+ - M8+ 92036 M8+ - M9+ 106432 晶胞参数: a = 550 pm b = 328 pm c = 728 pm 用途

α = 90° β = 90° γ = 90° 热导率:W/(m·K) 27.7 发现人:莫瓦桑(H.Moissan) 发现年代:1886年 发现过程:1886年,法国的莫瓦桑在铂制U型管中,用铂铱合金作电极,电解干燥的氟氢化钾,制得氟。

编辑本段元素描述

属于卤素的在化合物中显负一价的非金属元素,通常情况下氟气是一种浅黄绿色的、有强烈助燃性的、刺激性毒气,是已知的最强的氧化剂之一,元素符号F。氟气为苍黄色气体,密度1.696克/升(273.15K,0℃),熔点-219.62℃,沸点-188.14℃,化合价-1,氟的电负性最高,电离能为17.422电子伏特,是非金属中最活泼的元素,氧化能力很强,能与大多数含氢的化合物如水、氨和除氦、氖氩氮氧外一切无论液态、固态、或气态的化学物质起反应。氟气[1]与水的反应很复杂,主要生成氟化氢和氧,以及较少量的过氧化氢、二氟化氧和臭氧,也可在化合物中置换其他非金属元素。可以同绝大部分非金属元素和金属元素起猛烈的反应,生成氟化物,并发生燃烧。有极强的腐蚀性和毒性,操作时应特别小心,切勿使它的液体或蒸气与皮肤和眼睛接触。

编辑本段制备和用途

氟的制备

因为氟的强氧化性,所以生产氟的时候不能使用水溶液电解质。(生成的氟会即刻氧化H2O,从水中置换出氧气。) 工业制法:电解液态无水氟化氢(沸点20℃)和氟氢化钾的混合物。用电解液态无水氟化氢制备氟时,阳极出氟:2Fˉ=F2↑+2eˉ,阴极出氢:2HF2ˉ+2eˉ=H2↑+4Fˉ。 实验室制法:加热六氟合铅酸钠,生成四氟合铅酸钠和氟气。化学方程式:NaPbF6=NaPbF4+F2。条件:加热。

氟的用途

元素用途:液态氟可作火箭燃料的氧化剂。含氟塑料和含氟橡胶有特别优良的性能。含氟塑料和含氟橡胶等高分子,具有优良的性能,用于氟氧吹管和制造各种氟化物。 元素辅助资料:正是经过19世纪初期的化学家反复分析,肯定了盐酸的组成,确定了氯是一种元素之后,氟就因它和氯的相似性很快被确认是一种元素,相应的存在与氢氟酸中。虽然它的单质状态一直拖延到19世纪80年代才被分离出来。氟和氯一样,也是自然界中广泛分布的元素之一,在卤素中,它在地壳中的含量仅次于氯。早在16世纪前半叶,氟的天然化合物萤石(CaF2)就被记述于欧洲矿物学家的著作中,当时这种矿石被用作熔剂,把它添加在熔炼的矿石中,以降低熔点。因此氟的拉丁名称 fluorum从fluo(流动)而来。它的元素符号由此定为F。拉瓦锡在1789年的化学元素表中将氢氟酸基当作是一种元素。到1810年戴维确定了氯气是一种元素,同一年法国科学家安培根据氢氟酸和盐酸的相似性质和相似组成,大胆推断氢氟酸中存在一种新元素。他并建议参照氯的命名给这种元素命名为fluorine。但单质状态的氟却迟迟未能制得,直到1886年6月26日,才由法国化学家弗雷米的学生莫瓦桑制得。莫瓦桑因此获得1906年诺贝尔化学奖,他是由于在化学元素发现中作出贡献而获诺贝尔化学奖的第二人。比较一下氯和氟的发现史,是很有意义的。氯在它的单质被分离出来30多年后才被确认为是一种元素;而氟在没有被分离出单质状态以前就被确认为是一种元素了。这一史实说明在人们对客观事物的认识过程中,逐渐掌握了它们的一些规律后,就能更快、更清楚地认识它们。

编辑本段主要性质和用途

熔点为-219.6 ℃,沸点为-188.1℃,密度为1.696 g/L(0℃)。淡黄色气体,是最活泼的非金属元素。用于制氟化试剂以及金属冶炼中的助熔剂等。 PS: 氟,原子序数9,原子量18.9984032,元素名来源于其主要矿物萤石的英文名。1812年法国科学家安培指出氢氟酸中含有一种新元素,但自由状态的氟一直没有制得。直到1886年,法国化学家穆瓦桑将氟化钾溶解在无水氢氟酸中进行电解,才制得单质氟。由于氟非常活泼,所以自然界中不存在游离状态的氟。氟在地壳中的含量为0.072%,重要的矿物有萤石、氟磷酸钙等。氟的天然同位素只有氟19。 氟是化学性质最活泼、氧化性最强的物质,氟能同几乎所有元素化合;氟在常温下可以和除惰性气体,氮,氧,氯,铂,金等贵金属外的所有金属和非金属发生剧烈反应,也可以和除全氟有机物外的所有有机物发生剧烈反应;受热的情况下,氟可以和包括金铂等惰性金属在内的所有金属剧烈反应,和除氦氖氮氧外的所有非金属发生剧烈反应,在特殊条件下可以和氪和氧发生反应。氟离子体积小,容易与许多正离子形成稳定的配位化合物;氟与烃类会发生难以控制的快速反应,氟与NaOH反应:2NaOH+2F2=2NaF+H2O+OF2,氟与水反应:2H2O+2F2 =4HF+O2。 氟是卤族中的第一个元素,但发现得最晚。从1771年瑞典化学家舍勒制得氢氟酸到1886年法国化学家莫瓦桑分离出单质氟经历了100多年时间。在此期间,戴维、盖·吕萨克、诺克斯兄弟等很多人为制取单质氟而中毒,鲁耶特、尼克雷因中毒太深而献出了自己的生命。 莫瓦桑总结了前人的经验教训,他认为,氟活泼到无法电解的程度,电解出的氟只要一碰到一种物质就能与其化合。如果采用低温电解的方法,可能是解决问题的一个途径。经过多次实验,1886年6月26日, 法国人莫瓦桑终于在低温下用电解氟氢化钾与无水氟化氢混合物的方法制得了游离态的氟,并获诺贝尔化学奖。

编辑本段同位素

氟(原子质量单位: 18.9984032(5))共有18个同位素,只有一个是稳定的,而氟-18是一个很好的正电子原。 符号 质子 中子 质量(u) 半衰期 原子核自旋 相对丰度 相对丰度的变化量

激发能量

14F 9 5 14.03506(43)# ​ 2-# ​ ​

15F 9 6 15.01801(14) 410(60)E-24 s [1.0(2) MeV] (1/2+) ​ ​

16F 9 7 16.011466(9) 11(6)E-21 s [40(20) keV] 0- ​ ​

17F 9 8 17.00209524(27) 64.49(16) s 5/2+ ​ ​

18F 9 9 18.0009380(6) 109.771(20) min 1+ ​ ​

​ ​ ​ ​ ​ ​

19F 9 10 18.99840322(7) 稳定 1/2+ 1.0000 ​

20F 9 11 19.99998132(8) 11.163(8) s 2+ ​ ​

21F 9 12 20.9999490(19) 4.158(20) s 5/2+ ​ ​

22F 9 13 22.002999(13) 4.23(4) s 4+,(3+) ​ ​

23F 9 14 23.00357(9) 2.23(14) s (3/2,5/2)+ ​ ​

24F 9 15 24.00812(8) 400(50) ms (1,2,3)+ ​ ​

25F 9 16 25.01210(11) 50(6) ms (5/2+)# ​ ​

26F 9 17 26.01962(18) 9.6(8) ms 1+ ​ ​

27F 9 18 27.02676(40) 4.9(2) ms 5/2+# ​ ​

28F 9 19 28.03567(55)# <40 ns ​ ​ ​

29F 9 20 29.04326(62)# 2.6(3) ms 5/2+# ​ ​

30F 9 21 30.05250(64)# <260 ns ​ ​ ​

31F 9 22 31.06043(64)# 1# ms [>260 ns] 5/2+# ​ ​

备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。

编辑本段发现

氟在地壳的存量为0.072%,克拉克值0.0625,存在量的排序数为12,自然界中氟主要以萤石(Fluorite)存在,其主要成分为氟化钙(CaF2)、冰晶石(3NaF.AlF3)及以氟磷酸钙[Ca5F(PO4)3]为主的矿物。

氢氟酸基是一种元素

由于盐酸的成分得到了充分的确证,人们对盐酸基(即氯元素Chlorine)的性质作了全面的研究。1774年瑞典化学家舍勒(Scheele C.W.,1742~1786,氯的发现者)以硫酸分解萤石时发现放出一种与盐酸气(HCl)很相似的气体,溶于水中得到的酸与盐酸类同,之后以硝酸、盐酸及磷酸代替硫酸和萤石作用,依然得到这种酸,他当时以玻璃仪器进行实验,期间发现仪器内出现硅的化合物沉积物,他认为是新种酸与水作用的释出物,这显然是误解,以现时的化学解释,矽化合物是氢氟酸腐烂玻璃的残馀物。 法国化学家拉瓦锡(Lavoisier, A.L., 1743~1794)认为这种新种酸和盐酸一样,其中含有氧(十九世纪以前的化学家认为所有酸皆含有氧,故氧元素亦称为酸素),他提出当中是由一个未知的酸基和氧的化合物,1789年,他把氢氟酸基是和盐酸基同是化学元素,它们的性质极为相似,并把它列入他的元素表中。1794年拉瓦锡因为是路易十六政府的小吏,被法国大革命的群众定性为暴君的同谋而被送上断头台,结束了他的研究生涯。 拉瓦锡死后,法国化学家盖。吕萨克(Gay-Lussac, 1778~1850)等继续进行提纯氢氟酸的研究,到了1819年无水氢氟酸虽然仍未分离,但却阐明了这种酸对玻璃以及硅酸盐的本质。 CaSiO3 + 6 HF → CaF2 + SiF4 + 3H2OSiO2 + 4 HF → SiF4 + 2H2O

法国物理学家安培

十九世纪初期化学分析技术进步非常迅速,当时以电解法分离出碱金属及碱土金属而名噪一时的英国化学家戴维(H. Davy, 1778~1829)收到来自法国安培(A.J.Ampere, 1775~1836)的信函,这封1812年8月25日的函件指出:氢氟酸中存在着一种未知的化学元素,正如盐酸中含有氯元素的关系一样,并建议把它命名为“Fluor”,词源来自拉丁文及法文, 原意为“流动 (flow, fluere)”之意。

争取氟元素的发现权

安培的建议很快得到欧洲各国化学家的认同, 此时似乎没有人怀疑它的存在了, 但是仍没有人真正见过它的真面目, 往后的七十年氟的分离酿成为化学元素发现史上最为悲壮的一页。 当收到安培来函的翌年, 即1813年, 戴维使用他分离元素的杀手锏--电池, 对发烟氢氟酸进行电解, 试图获取元素状态的氟, 最初他发现氢氟酸不仅强烈腐蚀玻璃, 还能腐蚀银, 遂用铂(Pt)及角银矿(主要成分AgCl)制作电解装置, 实验开始时, 阳极产生一种性质极为活泼的物质, 同时把铂器皿腐烂掉, 但没有获得所欲求。后来他以萤石制作器皿用作氢氟酸的盛器再进行电解, 结果阳极产生了氧气(O2), 而不是氟(F2), 这意味着是酸中的水分被电解, 而不是氢氟酸, 此时化学家意识到:水分是干扰成功的原因之一。戴维的努力不但以失败告终, 由于当时未明白氟化合物对人体的伤害, 他因严重氟中毒被迫停止研究, 法国的盖。吕萨克等人亦因吸入过量氟化氢(HF)而中毒, 亦退出了氟的争夺舞台。

诺克斯兄弟设计的实验装置

1836年两名苏格兰人, 爱尔兰科学院院士乔治.诺克斯(George Knox)及托马士。诺克斯(Thomas Knox)兄弟, 以萤石制作了很精巧的器皿, 他们在其中放置了氟化汞, 并在加热的状态下以氯气处理之, 实验进行了一段时间后, 反应器内产生了氯化汞结晶, 但同时他们发现器皿上方的接受器放置的金箔被腐败, 为了研究金箔被腐蚀的原因, 遂把金箔放在玻璃瓶中, 并注入浓硫酸, 结果玻璃又被腐蚀了, 这无疑氟元素转移到金箔上, 而配合产物中的氯化汞似乎可以解释为氟化汞被分解而产生氟, 并腐蚀了金。他们在实验期间累积了氟化氢毒害, 托马士因氟中毒而受重创, 乔治被送往意大利休养近三年才逐渐康复, 之后比利时化学家鲁耶特(Louyet P., 1818~1850)不因诺克斯兄弟的受伤而决心延续他们的实验, 他虽然步步为营地进行实验, 但因长期接受氟毒, 且中毒太深, 最终为科学殉身, 享年32岁, 他们各人皆是化学元素发现史上的勇者!

分离氟元素的启蒙者弗累密教授哥尔博士

1850年法国自然博物馆馆长身兼化学教授的弗累密(Fremy, E., 1814 ~ 1894, 左图)以电流分解氟化钙(CaF2)、氟化银(AgF)及氟化钾(KF), 阴极分别产生了金属钙、金属银及金属钾,最引人注目的阳极似有气体放出, 但因电解温度太高, 当它出现时立即和周围的物质(如电极及器皿等物件)化合,形成稳定的化合物, 而且使电极绝缘, 阻碍了电解的进行, 最终无法进行阳极物质的收集。之后他电解无水氟化氢,但未有获得成功, 后来他证明类似诺克斯兄弟以氯处理氟化物的方法, 由于实验条件的影响, 结果只能得到氟化氧(OF2), 而不是氟。此时化学家都感受到: 氟似乎太活泼了, 任何物质和它接触时都被腐蚀,弗累密认为这个元素似乎无法分离, 并把这些无希望成功的实验方案搁置了,1869年英国化学家哥尔博士(Dr. Geroge Gore, 1826~1908)电解氟化氢, 可能曾产生少量氟气, 但和阴极产生的氢作用而发生爆炸, 为了改善电极的性能, 他曾选用碳、铂、钯和金等, 但最终仍被阳极释出的物质腐蚀,他在实验报告中提出:必须降低电解的温度,以减弱氟元素的活泼性, 分离始有成功之机, 十七年之后, 1886年的6月弗累密的学生莫瓦桑(Moissan, H., 1852 ~ 1907)最终获得成功。

分离出桀骜不驯的氟元素

莫瓦桑于1852年9月28日生于巴黎蒙托隆街5号, 其父为东方铁路公司的一名职员, 母亲则靠做些针线来补贴家用, 莫氏少年时代饱尝贫困之苦, 虽有志于学, 他接受了五年多的初等教育, 但因家境困窘, 连小学仍未毕业而被迫辍学。1870年他到巴黎一所叫班特利(Brandry)的制药店中任学徒, 1872年以半工读形式受教于弗累密及台赫伦(Deherain)两位教授, 他的才华被台氏看中并劝其从事化学研究, 27岁那年得到高等药剂师证书, 翌年发表了关于铬氧化物的论文而获物理学博士学位。1881年受骋于巴黎药学专门学校担任实验助理, 并在化学教授的弗累密的指导下从事提取氟元素的研究课题。 莫氏总结前人分离氟元素失败的原因, 并以他们的实验方案作为基础, 为了减低电解的温度, 他曾选用低熔点的三氟化磷及三氟化砷进行电解, 阳极上有少量气泡冒出, 但仍腐蚀铂电极, 而大部分气泡仍未升上液面时被液态氟化砷吸收掉, 分离又告失败, 其中还发生了四次的中毒事件而迫使暂停试验。

莫瓦桑在实验室首次成功分离氟的电解装置

1886年总结其恩师弗累密电解氟化氢的失败经验, 他采用液态氟化氢(HF, 熔点 -83°C)作电解质, 在这种不导电的物质中加入氟氢化钾(KHF2), 使它成为导电体; 他以铂制U形管盛载电解液, 铂铱合金作电极材料, 萤石制作管口旋塞, 接合处以虫胶封固, 电降槽(铂制U形管)以气体氯乙烷(C2H5Cl)作冷凝剂, 实验进行时, 电解槽温度将降至-23°C。6月26日那天开始进行实验, 阳极放出了气体, 他把气流通过矽时顿灶起耀眼的火光, 根据他的报告: 被富集的气体呈黄绿色, 氟元素终于被成功分离了。 其后, 莫氏证明氟几乎能和绝大多数元素化合,只有几个惰性气体例外, 后来他与杜瓦合作, 于-185°C的低温把氟液化了, 在如此低温环境之下, 氟虽不再腐蚀玻璃, 但与烃类及氢仍发生明显的作用, 氟不愧是最活泼的元素。 莫氏发现氟的成就, 使他获得卡柴奖金(Prix la Caze), 1896年获英国皇家科学会赠戴维奖章; 1903年德国化学会赠他霍夫曼奖章; 1906年获诺贝尔化学奖金。 他因长期接触一氧化碳及含氟的剧毒气体, 健康状况较常人先衰, 1907年2月20日与世长辞, 享年仅54岁。其独生子路易。莫瓦桑于第一次世界大战中死于沙场。

编辑本段特殊性质

卤族元素具有一些相似的性质,但是由于F的原子半径特殊的小,使得F有一些特殊的性质。 1. F的特殊性质。 1. 主要氧化数: F 无正氧化数 2. 解离能:F-F <Cl-Cl 3. 分解水:F2氧化H2O 4. 第一电子亲合能: F Cl >Br >I 5. 卤化物热力学稳定性:氟化物最稳定 6. 卤化物配位数(C.N.):氟化物最大 AsF3 AsCl3 AsBr3 AsI3 AsF5 AsCl5 (-50℃分解) PbF4 PbCl4 (R.T.分解) 2. F的一些特殊性质可以从以下几个方面进行解释: 1. F的电负性最大; 2.φØ (X2/X-) F2/F-最大; 3. F的原子半径 r最小; 形成共价键化合物p∏- p ∏或p∏-d ∏存在, F-F键能较小, 4. 热力学离子型卤化物:氟化物晶格能U最大。 5. 共价型卤化物:氟化物Δf GmO最负。 Δ rHm= S+1/2 D+ I+(- E)+(- U) F 的解离能低,NaF 晶格能力最大, 生成焓更负, 热力学稳定性强。 注:氟化氢(氢氟酸)是唯一可使二氧化硅溶解的酸,生成易溶于水的氟硅酸

编辑本段化学性质

氟能够与水反应生成氢氟酸,溶液呈弱酸性,但有极强烈的腐蚀性。

编辑本段氟与健康

为了防治龋齿,氟化物开始出现在饮用水、牙膏及各种食品饮料中。让科学家始料不及的是,氟很快表现出了两面性:龋齿患者越来越少,氟斑牙患者却越来越多。氟化物对人体还有哪些影响,成了科学家必须面对的新问题。 氟斑牙只是氟化物对人们的一次警告,更可怕的是,长期摄入高剂量的氟化物,可能导致癌症、神经疾病以及内分泌系统功能失常! 因此,专家提醒使用含氟牙膏的量一定要小,一般每次不超过1克,牙膏占到牙刷头的五分之一到四分之一就可以了,无须挤满牙刷头。由于儿童使用牙刷还不熟练,有可能误食含氟牙膏,危害身体健康,因此专家建议儿童不要使用含氟牙膏。 多年来全民使用高氟牙膏,几乎所有的牙膏都把含氟,当成了牙膏的卖点,宣传含氟牙膏会增加牙齿的硬度,防止龋齿。这是严重错误的。比如东北、内蒙、宁夏、陕西、山西、甘肃、河北、山东、贵州、福建等,都是高氟地区,这样的地区不适宜使用含氟牙膏。 氟是人体内重要的微量元素之一,氟化物是以氟离子的形式,广泛分布于自然界。骨和牙齿中含有人体内氟的大部分,氟化物与人体生命活动及牙齿、骨骼组织代谢密切相关。氟是牙齿及骨骼不可缺少的成分,少量氟可以促进牙齿珐琅质对细菌酸性腐蚀的抵抗力,防止龋齿,因此水处理厂一般都会在自来水、饮用水中添加少量的氟。据统计,氟摄取量高的地区,老年人罹患骨质疏松症的比率以及龋齿的发生率都会降低。曾有长期饮用加氟水会致癌的说法,目前这种说法已被美国国家癌症协会否定了,所以大家尽可以放心。

建议日摄取量

建议的每日摄取量尚未确定。大多数的人都在饮用经过氟处理过的饮水,每天可从中摄取 1 ~ 2mg 的氟。>>人体对氟的需要量

食物来源

鳕鱼、鲑鱼、沙丁鱼等海鲜类食物、茶叶、苹果、牛奶、蛋、经过氟处理过的饮水等.

需要人群

老年人骨钙(补钙产品,补钙资讯)流失较多,易发生骨质疏松症,注意氟的摄取对身体有益; 青少年的牙釉质还很脆弱,加之又较喜好甜食,易发生龋齿,补氟十分必要。

缺乏症

龋齿、骨质疏松、骨骼生长缓慢、骨密度和脆性增加是缺氟的主要表现,另外还可能造成不孕症或贫血。

过量表现

氟中毒:主要表现为氟骨症和氟斑牙。氟斑牙:牙齿畸形、软化、牙釉质失去光泽、变黄;氟骨症:骨骼变厚变软、骨质疏松、容易骨折。氟中毒晚期往往有慢性咳嗽、腰背及下肢疼痛、骨质硬化、肌腱、韧带钙化和关节(关节产品,关节资讯)囊肥厚、骨质增生、关节变形等。另外,机体代谢过程中所需要的某些酵素系统会被破坏,导致多器官病变。

功效

● 防止龋齿 ● 增强骨骼,预防骨质疏松症

编辑本段化学性质

氟的化学知识

氟气是已知的最强的氧化剂。除具有最高价态的金属氟化物和少数纯的全氟有机化合物外,几乎所有有机物和无机物均可以与氟反应。即使是全氟有机化合物,如果被可燃物污染,也可以在氟气氛中燃烧。 氢与氟的化合物异常剧烈,反应生成氟化氢。一般情况下,氧与氟不反应。尽管如此,还是存在两种已知的氧氟化物,即OF2和O2F2。由卤素自身形成的化合物有ClF、ClF3、BrF3、IF5。如上所述,碳或大多数烃与过量氟的反应,将生成四氟化碳及少量四氟乙烯或六氟丙烷。通常,氮对氟而言是惰性的,可用作气相反应的稀释气。氟还可以从许多含卤素的化合物中取代其它卤素。大多数有机化合物与氟的反应将会发生爆炸。

氟的化合价

氟的化合价一般为-1价,在以单质存在是为零价(但是很难的F在常温阴暗处可以H2剧烈化合)目前没有发现氟有正价。氟化物中的氟离子都是-1价,一般不能被氧化成氟单质,但是已知二氟化二氧在低温下就可以将三氟化硼,五氟化磷等少量氟化物氧化。2O2F2 + 2PF5 → 2[O2+]PF6 + F2 该反应中,氧的化合价反应前为+1价,反应后为+0.5价,氟的化合价反应前为-1价,反应后一部分升高到0价,生成氟气单质。反应熵增明显,推动反应向右进行。“正价”的氟尚未制得, 高氯酸氟FOClO3(应该叫“氟化高氯酰”)、硝酸氟FONO2、氟磺酸氟FSO3F。实验表明,氟的氧化态为-1,与氟相连的氧的氧化态为0,但是需要注意的是,这些物质虽然很容易有机物发生亲电加成反应和亲电取代反应,产物大都不遵循马可尼科夫规则,但有一些文献认为这是自由基加成(取代)反应。

编辑本段如何从食物中摄取氟

[2]人体每天摄入的氟约有25%来自于食品。所有食品,包括植物或动物食品中都含有一定量的氟,但差异很大。 植物食品如:五谷种子类、蔬菜、水果、调味剂等,常因地区的不同其含氟量有较大差异。如印度茶的含氟量比中国高,我国北方茶叶的氟含量较南方低。大米的氟含量也是南方高于北方。动物性食品中以[骨医学|教育网搜集整理]软骨、肌腱的含氟量较高,其干品中含氟45~880mg/kg.其次是表皮等,含氟10~100mg/kg.代谢与分泌功能旺盛的腺体,氟含量最少,约为1mg/kg.海鱼的含氟量高于淡水鱼,如大马哈鱼为5~10mg/kg,罐头沙丁鱼则可高达20mg/kg以上。海生植物含氟量平均约为4.5mg/kg.调味剂中以海盐的原盐含氟量最高,一般为17~46mg/kg,精制盐为12~21mg/kg。

无辜的柠檬
妩媚的电脑
2026-01-26 09:57:03
元素名称:金(Gold) 化学元素符号:Au CAS号:7440-57-5[1] 金属密度:19.3 g/cm3比热容:0.13 kJ/(kg·K) 原子序数:79 核电荷数:79 核外电子数:79 常见氧化数:+1、+3 原子半径:134 M+离子半径:137 M3+离子半径:85 M+(气)水合热:-644 升华热:385 原子体积:(立方厘米/摩尔):10.2 元素在太阳中的含量:0.000001‰ 元素在海水中的含量:0.00000001‰ 地壳中含量:0.000011‰ 氧化态:MainAu+3 OtherAu-1,Au0,Au+1,Au+2,Au+5,Au+7 氧化金三价金的氧化物,分子式Au₂O3,水合物分子式为Au₂O3·3H₂O;分子量495.98 ;含金量 77.0%;外观 棕色粉末;储存方法:常温干燥密封储存.化学特性: 加热时放出氧气,生成单质金.2Au₂O3 = 4Au + 3O₂↑ 制法: 高温加热氢氧化金可制得.2Au(OH)3 = Au₂O3 + 3H₂O

黄金是一种金属元素,化学符号是Au,原子序数是79。

金的单质(游离态形式)通称黄金,是一种广受欢迎的贵金属,在很多世纪以来一直都被用作货币、保值物及珠宝。在自然界中,金以单质的形式出现在岩石中的金块或金粒、地下矿脉及冲积层中。黄金亦是货币金属之一。金的单质在室温下为固体,密度高、柔软、光亮、抗腐蚀,其展性及延性均是已知金属中最高的。

金是一种过渡金属,在溶解后可以形成三价及单价正离子。金与大部分化学物都不会发生化学反应,但可以被氯、氟、王水及氰化物侵蚀。金能够被水银溶解,形成汞齐(但这并非化学反应);能够溶解银及贱金属的硝酸不能溶解金。以上两个性质成为黄金精炼技术的基础,分别称为“加银分金法”(inquartation)及“金银分离法”(parting)。

微笑的金鱼
健忘的网络
2026-01-26 09:57:03
铂铱合金是铂基含铱的二元合金,高温下为连续固溶体,缓冷至975~700℃时发生固相分解,但相平衡过程进行得很慢。铱易挥发和氧化,能显著地提高铂的耐腐蚀性。有Ptlrl0,Ptlr17.5,Ptlr25,Ptlr30等合金,具有高硬度、高熔点、高耐蚀能力和低的接触电阻。化学腐蚀速度为纯铂的58%,氧化失重2.8mg/g。是经典的电接触材料,用于航空发动机点火接点、高灵敏度继电器和微电机的电接点;飞机、导弹和陀螺仪等精密传感器的电位器和导电环、电刷。

铂铱合金 (platinum—iridium alloy)以铂为基添加铱所组成的铂合金。早年认为在全部成分范围内完全固溶,证实高温区为连续固溶体,975℃以下发生调幅(Spinodal)分解:α1=α2+α3,形成调幅结构,在700℃扩展到7%~99%(原子分数)铱广泛区域。

天然铂铱合金常与铂矿伴生并以颗粒状存在。1838年英同高丁(A.Gaudin)首次合成了PtIr1O合金小球。早期铱被认为是有害元素。19世纪中后期进行的广泛研究消除了这种误解。1874年在巴黎铸成了重250kg成分均匀的PtIr1O合金锭用以制作国际米和千克砝码的标准材料,砝码原型被国际计量委员会接受之前经受了超高压试验,11个标准千克砝码的密度值落在21.548~21.552g/cm范围内。铂铱合金标准电阻经受了67年仔细考核,其阻值变化甚微。

物理性质

(1)铂铱合金具有高熔点、高密度、高硬度、高强度、高弹性,随着铱浓度升高,这些性能增强。

(2)铱含量超过10%的合金具有时效硬化效应并随铱浓度升高而增强,但沉淀速率较低。

(3)铂铱合金电阻率随着Ir浓度增大而升高,电阻温度系数则降低;铂铱合金具有低的接触电阻,但易受有机气氛污染使接触电阻增大;铂铱合金对铂呈正热电势并随铱浓度升高而增大。

(4)铱加入铂中明显提高铂的抗化学腐蚀性,含30%铱以上的合金实际不受沸腾王水腐蚀。

(5)随着铱浓度和加热温度升高,铂铱合金挥发失重增大。

(6)铂铱合金具有高的抗变形能力和加工硬化率,加工性能随铱含量增高而变差;合金晶内偏析和树枝晶发达,须经高温热加工后才能冷加工成材。