建材秒知道
登录
建材号 > 设计 > 正文

《机械设计课程设计指导书电子扫描件宋宝玉第二版》pdf下载在线阅读全文,求百度网盘云资源

愉快的野狼
笑点低的睫毛
2022-12-21 14:41:35

《机械设计课程设计指导书电子扫描件宋宝玉第二版》pdf下载在线阅读全文,求百度网盘云资源

最佳答案
外向的火
有魅力的吐司
2025-12-06 19:12:01

《机械设计课程设计指导书电子扫描件宋宝玉第二版》百度网盘pdf最新全集下载:

链接: https://pan.baidu.com/s/1ZtVJZ7CXfaxoGVNBz4_Q1g

?pwd=rvs5 提取码: rvs5

简介:全书分为两篇:第一篇为机械设计课程设计指导书,以减速器设计为例,着重介绍了一般机械传动装置的设计内容、方法和步骤;第二篇为机械设计常用标准、规范和其他设计资料,  

最新回答
标致的大雁
有魅力的保温杯
2025-12-06 19:12:01

这个很简单的

作为一个机械设计专业的必须会

我给你点提示吧

工作拉力是用来选电机的,减速机的输出转速n=1000*1.5/(3.14*310)=1.54r/min

你可以根据选定的电机转矩跟转速来确定减速机的速比,然后再查机械设计手册3卷(我现在手边没有设计手册,不大确定),确定齿轮的中心距,然后再确认模数等,所有的资料都可以在机械设计手册上直接查到的,电机的资料在第五册。求人不如求己,祝你成功:)

听话的凉面
喜悦的母鸡
2025-12-06 19:12:01
《机械设计课程设计手册》PDF版 第三版 高等教育出版社By吴宗泽

WP: https://545c.com/file/24592629-428825436

ZL: http://24592629.d.yyupload.com/down/24592629/机械电气车辆交通教材/机械设计课程设计手册 吴宗泽 第三版.pdf

内容简介 · · · · · ·

《机械设计课程设计手册(第3版)》是在第2版的基础上充分吸收机械设计课程设计教学改革的成果,并结合众多院校在实际使用过程中提出的改进意见修订而成的。为适应目前国内高校将机械原理、机械设计两门课程的课程设计整合的趋势,本手册增加了机械系统方案设计的内容。为了满足不同类型的学校进行机械设计课程设计的需要,本手册还新增了一些参考图例与设计题目。由于计算机辅助设计在本课程中的广泛应用,本手册新增了光盘一张,内容包括计算机辅助设计软件与参考资料两部分。本手册全部采用了最新国家标准。本手册共3篇20章。第一篇机械设计常用标准和规范;第二篇机械设计课程设计指导书;第三篇参考图例与设计题目。本手册可作为高等工科学校机械类专业的教材,也可供相关工程技术人员参考。

留胡子的羽毛
俭朴的战斗机
2025-12-06 19:12:01
目 录 前言………………………………………………….2一、 电动机的选择二、 传动系统的运动和动力参数的计算…三、 传动零件的设计计算…型带传动设计…圆柱齿轮传动设计…四、 轴的设计(包括轴承和联轴器的选择)…1.确定轴上的作用力……2.选择轴的材料,估算最小直径以及选择联轴器…3.轴的结构设计…4.计算支座反力…5.轴的强度校核…6.键的选择及校核……五、 简单介绍润滑和密封的选择…1.润滑的选择………2.密封的选择……六、 设计小结………七、参考资料……1. 设计目的:通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。 2.题目分析设计带式运输机用一级齿轮减速器及带轮传动。输送带工作拉力为4000N,输送带工作速度:V=2m/s,滚筒直径是400mm,运输机连续单向运转,载荷较平稳。减速器小批量生产,一般制工作,滚筒效率为0.96(包括滚筒和轴承的效率损失)。3.传动方案的设计 采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。传动图如下:1.电动机 2.V带传动3.圆柱齿轮减速器4.连轴器 5.滚筒6.运输带 一、电动机选择1.电动机的类型选择:用Y系列三相龙型异步电动机,封闭式结构,电压380V。2.电动机功率选择:电动机所需工作效率为Pd=PW/ηa  以及PW=FV/1000 (KW)因此Pd=FV/1000ηa(KW)由电动机至运输带的传动总效率为:a=η1×η2×η3×η4式中:η1、η2、η3、η4、分别为带传动、齿轮传动、联轴器和卷筒的传动效率(轴承的传动效率设为1)。取η1=0.96,η2=0.97η3=0.98η4=0.96即ηa=0.96×0.97×0.98×0.96=0.876所以:电机所需的工作功率: Pd = FV/1000ηa =(4000×2)/(1000×0.876) =9.13KW)3.确定电动机转速: 计算卷筒工作转速:=60×1000·V/(π·D)=(60×1000×2)/(400·π)=95.49 r/min根据[1]表1推荐的传动比合理范围,取V带传动比I’1=2~4 。取一级圆柱齿轮减速器传动比范围I’2=3~6。则总传动比理论范围为:I’a=6~24故电动机转速的可选范为 Nd’= I’a·n=(6~24) ×95.49 =572.94~2291.76 r/min则符合这一范围的同步转速有:750、1000和1500r/min根据容量和转速,由相关手册查出三种适用的电动机型号如下表:方案电 动机 型号 额定功率电动机转速(r/min)电动机重量N传动装置传动比 同步转速满载转速总传动比V带传动减速器1Y160M-4111500144012315.083.54.312Y160L-611100096014710.162.83.363Y180L-8117507301847.642.53.06综合考虑电动机和传动装置的尺寸、重量,可见方案1比较合适。因此选定电动机型号为Y160M-4。其主要性能如上表。电动机主要外形和安装尺寸如下表:中心高H外形尺寸L×C/2+AD)×HD底角安装尺寸A×B地脚螺栓孔直径 K轴伸寸D×E装键部位尺F×G 160600×417.5×385254×2101542×11012×37二、传动系统的运动和动力参数的计算1.各轴的转速:由nI=nm/i0 r/min(式中:nm是电动机的满载转速;nI是电动机至轴的传动比)以及nII=ni/i1=nm/i0·i1 r/min有:Ⅰ轴:nI=nm/ i0=1440/3.5=411.43 (r/min)Ⅱ轴:nII= nI/ i1 =411.43/4.31=95.46 (r/min)2.计算各轴输入功率:由PI=Pd·η01 KW η01=η1 PII=PI·η12 = Pd·η01 ·η12 KW η12=η2有:Ⅰ轴:PI=Pd·η01 = Pd ·η1=9.13×0.96=8.76(KW)Ⅱ轴: PII=PI·η12 = Pd·η1 ·η2 =9.13×0.96×0.97 =8.50卷筒轴:PIII= PII·η3 =8.50×0.96 =8.16KW)I,II轴的输出功率分别等于各自的输入功率。即: PI= PI’ PII = PII’3.各轴的输入转矩:由TI=Td·i0·η01 N·m其中为电动机的输出转矩,按下式计算: Td=9550·Pd /nm=9550×9.04/1440=59.95N·m所以: Ⅰ轴: TI= Td·i0·η01= Td·i0·η1=59.95×3.5×0.96=201.43 N·mⅡ轴:TII= TI·i1·η12= Td·i1·η2= 201.43×4.31×0.97=842.12 N·m卷筒轴输入轴转矩:TIII= TII·η3=842.12×0.96=808.44 N·m I,II的输出转矩分别等于各自的输入转矩。即:TI’=TI TII’=TII 三、传动零件的设计计算1.V型带传动设计(1).计算功率Pc,按[2]表8-5选定工作情况系数Ka,则:Pc=Ka·Ped=1.1×11=12.1( KW)由[2]表8-7可选用B型(2).确定带轮的基准直径d1和d2,并验算带速v由[2]表8-3,B型V带的最小基准直径d1min=125mm,由图8-7推荐取d1=140mm,大轮直径d2=3.5×140=490mm,由表8-6中的带轮直径系列,选取标准直径d2=500mm,则实际传动比 i=d2/ d1=500/140=3.57误差2%,允许。带速v1= d1·nm·π/(1000×60)=(π×140×1440)/(1000×60) m/s=10.55 m/s<25 m/s 合适(3).计算中心距a,带长Ld和验算包角a1由中心距的推荐值 0.7(d1 +d2)<a0<2(d1 +d2)得0.7(140+500)<a0<2(140+500) 448<a0<1280初选中心距a0=680mm,相应的带长 Ld=2a0+π/2(d1+d2)+ (d1-d2)2/4a0 =2412.4 mm由[2]表8-2选用Ld=2500 mm,其实际中心距a= a0+( Ld-L0)=680+(2500-2412.4)/2=724mm验算小带轮的包角a1a1≈1800-57.30×(d1 -d2)/ a=1800-57.30×(500-140)/724≈151.50>120符合要求。(4). 计算带的根数z=Pc/[(P0+△P0)·KL·KW·Kq]式中P0由[2]表8-4确定; B型V带,当d1=140mm,n1=1440 r/min时,查得P0=2.82 KW。功率增量△P0=0.46 KW(i>2)查[2]表8-7得Ka=0.924查[2]表8-8得KL=1.03,取抗拉体材质化纤结构Kq=1,则z=12.1/(2.82+0.46) ×0.924×1.03×1=3.88取z=4根。(5).计算初拉力F0及作用在轴上的为FQ由[2]表8-3得V带质量为q=0.17Kg/m.得初拉力F0=500×Pc/zv1(2.5/Ka-1)+qv2=500×[12.1/(4×10.55)](2.5/0.924-1)+0.17×10.552=263.4 N作用在轴上的压力FQ=2zFQsin( a1/2)=2×4×263.4×sin( 151.20/2)≈2044 N2.圆柱齿轮传动设计(1).选择齿轮材料,齿数,齿宽系数。由[2]表10-7得选择常用的调质钢:小轮:45钢调质 HBW1=210~230大轮:45钢正火 HBW2=170~210取小齿轮齿数z1=22,则大齿轮齿数z2=uz1=4.31×22≈95对该一级减速器,取Φd=1。(2).确定许用应力许用接触应力[σH]=ZNσHlim/SHmin许用弯曲应力 [σF]= σFlimYSTYNT/ SFmin式中σHlim1=560 Mpa, σHlim2=520 Mpa, σFlim1 =210 Mpa, σFlim2=200 Mpa,σFlim按[2]图10-26中查取;应力修正系数YST=2,最小安全系数σHlim=σFlim=1。故 [σH1]=1×560/1=560Mpa[σH2]=1×520/1=520Mpa [σF1]=210×2/1=420Mpa [σF2]=200×2/1=400Mpa(3).按齿面接触强度计算由式d1≥{[2KT1(u+1)/ Φdu](ZEZH/[σH])2}1/3计算小轮直径。载荷系数K= KA KV Kβ。取 KA=1([2]表10-6),KV=1.15,Kβ=1.09([2]表10-21b)故 K=1×1.15×1.09=1.25小轮传递的转矩T1=9.55×106PI/nI=9.55×1068.68/411.43=201477.77 N·m弹性形变系数ZE=189.8([2]表10-5),节点区域系数ZH=2.5则d1≥{[(2×1.25×201477.77×5.31)/4.31](189.8×2.5/520)2}1/3 =80.60mm(4).确定主要参数球中心距a= (d1 +d2)/2= d1(1+i)/2=80.60(1+4.31)/2=214mm圆整后,取a=220mm,则d1 =82.86mm.计算模数 m= d1/z1=82.86/22=3.77mm按[2]表10-1取标准模数m=4mm.求z1,z2:总齿数zc= z1+z2=2a/m=2×220/4=110因此zc= z1(1+i)故 z1= zc/( 1+i)=110/(1+4.31)=20.72取z1=21,则z2= zc-z1=89,则实际传动比i=z2/z1=4.24传动比的变动量△i=(4.31-4.24)/4.31=0.016<5% 可用求小齿轮的工作宽度d1=z1m=21×4=84>80.60mm计算齿轮的工作宽度 b=Φd·d=1×84=84mm取b2=84mm,b1=89mm(5).校核弯曲强度由式σF1=(KFt/bm)YFa1YSa1,σF2=σF1YPa2YSa2/ YFa1YSa1分别验算两齿根弯曲强度计算圆周力 Ft=2T1/D1=2×201477.77/84=4797.1N齿形系数YFa,应力修正系数YSa可由[2]图10-23,10-24中查得,当:z1=21 YFa1=2.8 YSa1=1.6 z2=89 YFa2=2.24 YSa2=1.87则 σF1=79.95Mpa <[σF1] σF2=74.75 Mpa <[σF2](6).主要几何尺寸如下:m=4mm z1=21 z2=89d1=84mm d2=z2m=336mm da1=m(z1+2)=92mm da2=m(z2+2)=364mm df1=m(z1-2.5)=74mm df1=(z2-2.5)=346mm b=84mm,取b1=89mm,b2=84mm a=(d1+d2)/2=210mm四、轴的设计计算及校核1.确定轴上作用力低速轴转速 nII=95.46 r/min 低速轴功率PII=8.42 KW 低速轴转矩 TII=842.1 N�6�1m齿轮上圆周力 Ft=2TII/dII=2×842.12/0.336=5012.6N齿轮上径向力 Fr= Fttanα=5012.6 tan200=1824.4N2.选择该轴的材料,估算最小直径,选联轴器⑴.择该轴的材料:45钢,调质处理,抗拉强度σb=600MPa⑵.算轴最小直径d1: 由[2]公式15-2得 d1=A(PII/nII)1/3=106(8.42/95.46)1/3=47.18mm由[2]表15-1查得A=117~106,因轴的最小直径段上无弯矩,取A=106。考虑到键槽削弱了轴的强度,将轴加大5%,所以取d1=1.05×47.18=50㎜.⑶择联轴器:从安装方便出发,选用齿式联轴器。由[2]表14-1查得:用带式运输机的联轴器,其工作情况系数K=1.5~2,于是得: Tc=KT=(1.5~2) ×842.12 =1263~1685 N�6�1m根据Tc值和d1=50㎜,查手册[3]选用GICL3齿式联轴器:轴孔Φ30~Φ60,半轴器轮毂长度L1=112㎜,许用最大转矩Tc=5900 N�6�1m。3.轴结构设计(1).轴承类型选择:综合考虑,选用深沟球轴承。(2).轴径的确定:对于形成定位轴肩的轴肩高度应按a=(0.07~0.1)d对于形成非定位轴肩高度则按a>0~3㎜。根据已知轴d1=50㎜,可得 d2=60mm d3=60mm d4=65mm d5=75mm d6=60mm (3).轴承型号的确定:由d3=d7=60㎜,查得轴承型号为6012: 内径d=60㎜,外径D=95㎜,宽度B=18㎜。 (4).轴段长度的确定:a.由上述知轴头1与轴颈6上的零件为单向固定,其长度可取轴上零件配合孔的长度。即l1=112mmb.轴头4应小于轮毂宽,才能获得可靠的轴向固定,故:l4=b齿-σ=84-2=82mm (σ=2mm)c.轴上的相关零件的位置和尺寸的确定如图,用手册和设计参考资料[2]例15-1得:L2=54mm l3=60mm l5=12mm l6=48mm七、设计小结机械设计课程设计是我们机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性环节。1. 通过这次机械设计课程的设计,综合运用了机械设计课程和其他有关先修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和扩展。2.学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。3. 进行机械设计基本技能的训练,如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据,进行经验估算和数据处理等。 [1] 龚溎义. 机械设计课程设计指导书 北京:高等教育出版社,2007[2] 庞兴华. 机械设计基础北京:机械工业出版社,2008.7[3] 吴宗泽. 机械设计课程设计手册北京:高等教育出版社,2006.5 这次的课程设计对于我来说有着深刻的意义。这种意义不光是自己能够独立完成了设计任务,更重要的是在这段时间内使自己深刻感受到设计工作的那份艰难。而这份艰难不仅仅体现在设计内容与过程中为了精益求精所付出的艰辛,更重要的是背负恶劣的天气所付出的决心与毅力! 也许自己太过于执着,从设计开始就落在大家的后面。不过还好,很快就将基本的数据设计与整理出来,不至于远离大家的进度。由于考试已经结束,我可以有充分的时间搞设计。可惜,图书馆闭馆,不能参考一些资料,以至在有些结构设计上还是不太明白为什么要那样设计。看来自己学的东西太少了! 天气情况很糟糕!我只能这样评价这段时间内的艰辛。雪不挺的飘,一阵紧接一阵,以至于绝大多少时间自己都是在寒冷中度过的。虽然穿地挺厚实的,但是整天的坐着,不运动,不感觉冷那是鬼话。起初,还只是寒冷,后来为了画图一站就是一天,包括晚上的4个小时。脚除了麻木,还是麻木! 我不喜欢加夜班。当然不是害怕加班的辛苦。而是,明明可以在规定时间内完成的事情,为何非得将自己逼到慌乱的地步,加班加点的拼命赶呢!。“人是习惯的奴隶。”我一直这么认为的,也努力这么做着。不过这次为了搞设计,自己加了不少班,包括夜班。基本上,一天都呆在北区设计室里面。晚上,也经常奋战到10点才回南区。没有几个人会在这么冷的天气情况下留在教室搞设计。我这样说不是为了表明自己比起其他人来说更勤奋,况且这样恶劣的天气情况,大家也真的没有必要晚上挨冻搞设计,那样也太残酷了!而我之所以加班其实目的很简单,我想早点回家,毕竟家里比起学校来说更温暖。谈了这么多的感受,只想表明天气太恶劣了,不过我们大家都挺过来了。对于课程设计,我只能说我已经尽了我最大的努力。这就是我最好,最出色的设计。过程我只能用不堪回首来形容,但是结果确实意义重大的。我付出了远比设计内容更多的毅力与决心。而我也应该保留这份精神,继续奋斗。感觉设计对我们这些刚刚入门(或者在某种意义上来说还是门外汉)就是按照条条款款依葫芦画瓢的过程,有的时候感觉挺没有劲的。反正按照步骤一定可以完成设计任务,其实不然。设计过程中有许多内容必须靠我们自己去理解,去分析,去取舍。就拿电动机型号选择来说,可以分别比较几种型号电动机总传动比,以结构紧凑为依据来选择;也可以考虑性价比来选择。前者是结构选择,后者确实经济价格选择。而摆在我们面前的却是两条路,如何将两者最优化选择才是值得我们好好深思的。 通过这次的设计,感慨颇多,收获颇多。更多的是从中学到很多东西,包括书本知识以及个人素质与品格方面。感谢老师的辛勤指导,也希望老师对于我的设计提出意见。以上并非客套!设计总结之前我对《机械设计基础》这门课的认识是很肤浅的,实际动手设计的时候才发现自己学得知识太少,而且就算上课的时候再认真听课,光靠课堂上学习的知识根本就无法解决实际问题, 必须要靠自己学习。我的设计中存在很多不完美、缺憾甚至是错误的地方,但由于时间的原因,是不可能一一纠正过来的了。尽管设计中存在这样或那样的问题,我还是从中学到很多东西。首先,我体会到参考资料的重要性,利用一切可以利用的资源对设计来说是至关重要的。往往很多数据在教材上是没有的,我们找到的参考资料也不齐全,这时参考资料的价值就立时体现出来了。其次,从设计过程中,我复习了以前学过的机械制图知识,AUTOCAD的画图水平有所提高,Word输入、排版的技巧也有所掌握,这些应该是我最大的收获。再次,严谨理性的态度在设计中是非常重要的,采用每一个数据都要有根据,设计是一环扣一环的,前面做错了,后面就要全改,工作量差不多等于重做。通过这次的课程设计,极大的提高了我们对机械设计这门课程的掌握和运用,让我们熟悉了手册和国家标准的使用,并把我们所学的知识和将来的生产实际相结合,提高了我们分析问题并自己去解决问题的能力,也提高了我们各个方面的素质,有利于我们今后更顺利地走上工作岗位。

超帅的时光
暴躁的铅笔
2025-12-06 19:12:01
仅供参考啊一、前言

(一)

设计目的:

通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。

(二)

传动方案的分析

机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。

本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。

带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。

齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。

减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。

二、传动系统的参数设计

原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。

工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。

工作环境:室内灰尘较大,环境最高温度35°。

动力来源:电力,三相交流380/220伏。

1

、电动机选择

(1)、电动机类型的选择: Y系列三相异步电动机

(2)、电动机功率选择:

①传动装置的总效率:

=0.98×0.99 ×0.96×0.99×0.96

②工作机所需的输入功率:

因为 F=0.2 KN=0.2 KN= 1908N

=FV/1000η

=1908×2/1000×0.96

=3.975KW

③电动机的输出功率:

=3.975/0.87=4.488KW

使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。

⑶、确定电动机转速:

计算滚筒工作转速:

=(60×v)/(2π×D/2)

=(60×2)/(2π×0.2)

=96r/min

由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min

⑷、确定电动机型号

根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。

其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。

2

、计算总传动比及分配各级的传动比

(1)、总传动比:i =1440/96=15

(2)、分配各级传动比:

根据指导书,取齿轮i =5(单级减速器i=3~6合理)

=15/5=3

3

、运动参数及动力参数计算

⑴、计算各轴转速(r/min)

=960r/min

=1440/3=480(r/min)

=480/5=96(r/min)

⑵计算各轴的功率(KW)

电动机的额定功率Pm=5.5KW

所以

P =5.5×0.98×0.99=4.354KW

=4.354×0.99×0.96 =4.138KW

=4.138×0.99×0.99=4.056KW

⑶计算各轴扭矩(N�6�1mm)

TI=9550×PI/nI=9550×4.354/480=86.63N�6�1m

=9550×4.138/96 =411.645N�6�1m

=9550×4.056/96 =403.486N�6�1m

三、传动零件的设计计算

(一)齿轮传动的设计计算

(1)选择齿轮材料及精度等级

考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm

(2)确定有关参数和系数如下:

传动比i

取小齿轮齿数Z =20。则大齿轮齿数:

=5×20=100

,所以取Z

实际传动比

i =101/20=5.05

传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用

齿数比:

u=i

取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;

h *m=3,h )m=3.75

h=(2 h )m=6.75,c= c

分度圆直径:d =×20mm=60mm

d =3×101mm=303mm

由指导书取

φ

齿宽:

b=φ =0.9×60mm=54mm

=60mm ,

b

齿顶圆直径:d )=66,

d

齿根圆直径:d )=52.5,

d )=295.5

基圆直径:

d cos =56.38,

d cos =284.73

(3)计算齿轮传动的中心矩a:

a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm

(二)轴的设计计算

1

、输入轴的设计计算

⑴、按扭矩初算轴径

选用45#调质,硬度217~255HBS

根据指导书并查表,取c=110

所以 d≥110 (4.354/480) 1/3mm=22.941mm

d=22.941×(1+5%)mm=24.08mm

∴选d=25mm

⑵、轴的结构设计

①轴上零件的定位,固定和装配

单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定

②确定轴各段直径和长度

Ⅰ段:d =25mm

, L =(1.5~3)d ,所以长度取L

∵h=2c

c=1.5mm

+2h=25+2×2×1.5=31mm

考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:

L =(2+20+55)=77mm

III段直径:

初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.

=d=35mm,L =T=18.25mm,取L

Ⅳ段直径:

由手册得:c=1.5

h=2c=2×1.5=3mm

此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm

因此将Ⅳ段设计成阶梯形,左段直径为41mm

+2h=35+2×3=41mm

长度与右面的套筒相同,即L

Ⅴ段直径:d =50mm. ,长度L =60mm

取L

由上述轴各段长度可算得轴支承跨距L=80mm

Ⅵ段直径:d =41mm, L

Ⅶ段直径:d =35mm, L <L3,取L

2

、输出轴的设计计算

⑴、按扭矩初算轴径

选用45#调质钢,硬度(217~255HBS)

根据课本P235页式(10-2),表(10-2)取c=110

=110× (2.168/76.4) =38.57mm

考虑有键槽,将直径增大5%,则

d=38.57×(1+5%)mm=40.4985mm

∴取d=42mm

⑵、轴的结构设计

①轴的零件定位,固定和装配

单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。

②确定轴的各段直径和长度

初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。

d =42mm

L

= 50mm

L

= 55mm

L

= 60mm

L

= 68mm

L

=55mm

L

四、滚动轴承的选择

1

、计算输入轴承

选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.

2

、计算输出轴承

选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm

五、键联接的选择

1

、输出轴与带轮联接采用平键联接

键的类型及其尺寸选择:

带轮传动要求带轮与轴的对中性好,故选择C型平键联接。

根据轴径d =42mm ,L =65mm

查手册得,选用C型平键,得: 卷扬机

装配图中22号零件选用GB1096-79系列的键12×56

则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56

2

、输出轴与齿轮联接用平键联接

=60mm,L

查手册得,选用C型平键,得:

装配图中 赫格隆36号零件选用GB1096-79系列的键18×45

则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45

3

、输入轴与带轮联接采用平键联接

=25mm

L

查手册

选A型平键,得:

装配图中29号零件选用GB1096-79系列的键8×50

则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50

4

、输出轴与齿轮联接用平键联接

=50mm

L

查手册

选A型平键,得:

装配图中26号零件选用GB1096-79系列的键14×49

则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49

六、箱体、箱盖主要尺寸计算

箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:

七、轴承端盖

主要尺寸计算

轴承端盖:HT150 d3=8

n=6 b=10

八、减速器的

减速器的附件的设计

1

、挡圈 :GB886-86

查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58

2

、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D

3

、角螺塞

M18

×

1.5 :JB/ZQ4450-86

九、

设计参考资料目录

明亮的枕头
典雅的裙子
2025-12-06 19:12:01
机械课程设计是机械专业大学生必须完成的任务,因为他关系到你后来从事该行业的一个理论铺垫,做课程设计可参照《机械课程设计指导书》一步步展开设计,到图书馆查一些相关资料,综合利用大学里学习的理论知识,例如理论力学、材料力学、机械制图等,使你从理论到实践实现过渡,主要设计步骤有:

设计步骤

1. 传动装置总体设计方案

2. 电动机的选择

3. 确定传动装置的总传动比和分配传动比

4. 计算传动装置的运动和动力参数

5. 设计V带和带轮

6. 齿轮的设计

7. 滚动轴承和传动轴的设计

8. 键联接设计

9. 箱体结构的设计

10.润滑密封设计

11.联轴器设计

积极的鸭子
精明的蜡烛
2025-12-06 19:12:01
我也在做这个题也 老兄

我只能提供样本给你哈 具体的还是得靠你自己啦

目 录

一课程设计书2

二设计要求 2

三设计步骤 2

1. 传动装置总体设计方案3

2. 电动机的选择4

3. 确定传动装置的总传动比和分配传动比 5

4. 计算传动装置的运动和动力参数5

6. 齿轮的设计 8

7. 滚动轴承和传动轴的设计 19

8. 键联接设计 26

9. 箱体结构的设计 27

10.润滑密封设计30

11.联轴器设计 30

四设计小结 31

五参考资料 32

一. 课程设计书

设计课题:

设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。

参数:

皮带有效拉力F(KN) 3.2

皮带运行速度V(m/s) 1.4

滚筒直径D(mm) 400

二. 设计要求

1.减速器装配图1张(0号)。

2.零件工作图2-3张(A2)。

3.设计计算说明书1份。

三. 设计步骤

1. 传动装置总体设计方案

2. 电动机的选择

3. 确定传动装置的总传动比和分配传动比

4. 计算传动装置的运动和动力参数

5. 齿轮的设计

6. 滚动轴承和传动轴的设计

7. 键联接设计

8. 箱体结构设计

9. 润滑密封设计

10. 联轴器设计

1.传动装置总体设计方案:

1. 组成:传动装置由电机、减速器、工作机组成。

2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,

要求轴有较大的刚度。

3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。

其传动方案如下:

图一:(传动装置总体设计图)

初步确定传动系统总体方案如:传动装置总体设计图所示。

选择V带传动和二级圆柱斜齿轮减速器。

传动装置的总效率

为V带的传动效率, 为轴承的效率,

为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)

为联轴器的效率, 为滚筒的效率

因是薄壁防护罩,采用开式效率计算。

取 =0.96 =0.98=0.95 =0.99=0.96

=0.96× × ×0.99×0.96=0.760;

2.电动机的选择

电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW

滚筒轴工作转速为n= = =66.88r/min,

经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,

则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。

综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,

选定型号为Y112M—4的三相异步电动机,额定功率为4.0

额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。

方案 电动机型号 额定功 率

P

kw 电动机转速

电动机重量

N 参考价格

元 传动装置的传动比

同步转速 满载转速 总传动 比 V带传 动 减速器

1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.确定传动装置的总传动比和分配传动比

(1)总传动比

由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05

(2)分配传动装置传动比

= ×

式中 分别为带传动和减速器的传动比。

为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为

= =17.05/2.3=7.41

根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29

4.计算传动装置的运动和动力参数

(1) 各轴转速

= =1440/2.3=626.09r/min

= =626.09/3.24=193.24r/min

= / =193.24/2.29=84.38 r/min

= =84.38 r/min

(2) 各轴输入功率

= × =3.40×0.96=3.26kW

= ×η2× =3.26×0.98×0.95=3.04kW

= ×η2× =3.04×0.98×0.95=2.83kW

= ×η2×η4=2.83×0.98×0.99=2.75kW

则各轴的输出功率:

= ×0.98=3.26×0.98=3.19 kW

= ×0.98=3.04×0.98=2.98 kW

= ×0.98=2.83×0.98=2.77kW

= ×0.98=2.75×0.98=2.70 kW

(3) 各轴输入转矩

= × × N•m

电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m

所以: = × × =22.55×2.3×0.96=49.79 N•m

= × × × =49.79×3.24×0.96×0.98=151.77 N•m

= × × × =151.77×2.29×0.98×0.95=326.98N•m

= × × =326.98×0.95×0.99=307.52 N•m

输出转矩: = ×0.98=49.79×0.98=48.79 N•m

= ×0.98=151.77×0.98=148.73 N•m

= ×0.98=326.98×0.98=320.44N•m

= ×0.98=307.52×0.98=301.37 N•m

运动和动力参数结果如下表

轴名 功率P KW 转矩T Nm 转速r/min

输入 输出 输入 输出

电动机轴 3.40 22.55 1440

1轴 3.26 3.19 49.79 48.79 626.09

2轴 3.04 2.98 151.77 148.73 193.24

3轴 2.83 2.77 326.98 320.44 84.38

4轴 2.75 2.70 307.52 301.37 84.38

5.齿轮的设计

(一)高速级齿轮传动的设计计算

1. 齿轮材料,热处理及精度

考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮

(1)齿轮材料及热处理

① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24

高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBSZ = ×Z =3.24×24=77.76 取Z =78.

② 齿轮精度

按GB/T10095-1998,选择7级,齿根喷丸强化。

2.初步设计齿轮传动的主要尺寸

按齿面接触强度设计

确定各参数的值:

①试选 =1.6

查课本 图10-30 选取区域系数 Z =2.433

由课本 图10-26

②由课本 公式10-13计算应力值环数

N =60n j =60×626.09×1×(2×8×300×8)

=1.4425×10 h

N = =4.45×10 h #(3.25为齿数比,即3.25= )

③查课本 10-19图得:K =0.93 K =0.96

④齿轮的疲劳强度极限

取失效概率为1%,安全系数S=1,应用 公式10-12得:

[ ] = =0.93×550=511.5

[ ] = =0.96×450=432

许用接触应力

⑤查课本由 表10-6得: =189.8MP

由 表10-7得: =1

T=95.5×10 × =95.5×10 ×3.19/626.09

=4.86×10 N.m

3.设计计算

①小齿轮的分度圆直径d

=

②计算圆周速度

③计算齿宽b和模数

计算齿宽b

b= =49.53mm

计算摸数m

初选螺旋角 =14

=

④计算齿宽与高之比

齿高h=2.25 =2.25×2.00=4.50

= =11.01

⑤计算纵向重合度

=0.318 =1.903

⑥计算载荷系数K

使用系数 =1

根据 ,7级精度, 查课本由 表10-8得

动载系数K =1.07,

查课本由 表10-4得K 的计算公式:

K = +0.23×10 ×b

=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42

查课本由 表10-13得: K =1.35

查课本由 表10-3 得: K = =1.2

故载荷系数:

K=K K K K =1×1.07×1.2×1.42=1.82

⑦按实际载荷系数校正所算得的分度圆直径

d =d =49.53× =51.73

⑧计算模数

=

4. 齿根弯曲疲劳强度设计

由弯曲强度的设计公式

⑴ 确定公式内各计算数值

① 小齿轮传递的转矩 =48.6kN•m

确定齿数z

因为是硬齿面,故取z =24,z =i z =3.24×24=77.76

传动比误差 i=u=z / z =78/24=3.25

Δi=0.032% 5%,允许

② 计算当量齿数

z =z /cos =24/ cos 14 =26.27

z =z /cos =78/ cos 14 =85.43

③ 初选齿宽系数

按对称布置,由表查得 =1

④ 初选螺旋角

初定螺旋角 =14

⑤ 载荷系数K

K=K K K K =1×1.07×1.2×1.35=1.73

⑥ 查取齿形系数Y 和应力校正系数Y

查课本由 表10-5得:

齿形系数Y =2.592 Y =2.211

应力校正系数Y =1.596 Y =1.774

⑦ 重合度系数Y

端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655

=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690

=14.07609

因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673

⑧ 螺旋角系数Y

轴向重合度 = =1.825,

Y =1- =0.78

⑨ 计算大小齿轮的

安全系数由表查得S =1.25

工作寿命两班制,8年,每年工作300天

小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10

大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10

查课本由 表10-20c得到弯曲疲劳强度极限

小齿轮 大齿轮

查课本由 表10-18得弯曲疲劳寿命系数:

K =0.86K =0.93

取弯曲疲劳安全系数 S=1.4

[ ] =

[ ] =

大齿轮的数值大.选用.

⑵ 设计计算

① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:

z = =25.097 取z =25

那么z =3.24×25=81

② 几何尺寸计算

计算中心距 a= = =109.25

将中心距圆整为110

按圆整后的中心距修正螺旋角

=arccos

因 值改变不多,故参数 , , 等不必修正.

计算大.小齿轮的分度圆直径

d = =51.53

d = =166.97

计算齿轮宽度

B=

圆整的

(二) 低速级齿轮传动的设计计算

⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30

速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBSz =2.33×30=69.9 圆整取z =70.

⑵ 齿轮精度

按GB/T10095-1998,选择7级,齿根喷丸强化。

⑶ 按齿面接触强度设计

1. 确定公式内的各计算数值

①试选K =1.6

②查课本由 图10-30选取区域系数Z =2.45

③试选 ,查课本由 图10-26查得

=0.83=0.88 =0.83+0.88=1.71

应力循环次数

N =60×n ×j×L =60×193.24×1×(2×8×300×8)

=4.45×10

N = 1.91×10

由课本 图10-19查得接触疲劳寿命系数

K =0.94 K = 0.97

查课本由 图10-21d

按齿面硬度查得小齿轮的接触疲劳强度极限 ,

大齿轮的接触疲劳强度极限

取失效概率为1%,安全系数S=1,则接触疲劳许用应力

[ ] = =

[ ] = =0.98×550/1=517

[ 540.5

查课本由 表10-6查材料的弹性影响系数Z =189.8MP

选取齿宽系数

T=95.5×10 × =95.5×10 ×2.90/193.24

=14.33×10 N.m

=65.71

2. 计算圆周速度

0.665

3. 计算齿宽

b= d =1×65.71=65.71

4. 计算齿宽与齿高之比

模数 m =

齿高 h=2.25×m =2.25×2.142=5.4621

=65.71/5.4621=12.03

5. 计算纵向重合度

6. 计算载荷系数K

K =1.12+0.18(1+0.6 +0.23×10 ×b

=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231

使用系数K =1

同高速齿轮的设计,查表选取各数值

=1.04 K =1.35K =K =1.2

故载荷系数

K= =1×1.04×1.2×1.4231=1.776

7. 按实际载荷系数校正所算的分度圆直径

d =d =65.71×

计算模数

3. 按齿根弯曲强度设计

m≥

一确定公式内各计算数值

(1) 计算小齿轮传递的转矩 =143.3kN•m

(2) 确定齿数z

因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9

传动比误差 i=u=z / z =69.9/30=2.33

Δi=0.032% 5%,允许

(3) 初选齿宽系数

按对称布置,由表查得 =1

(4) 初选螺旋角

初定螺旋角 =12

(5) 载荷系数K

K=K K K K =1×1.04×1.2×1.35=1.6848

(6) 当量齿数

z =z /cos =30/ cos 12 =32.056

z =z /cos =70/ cos 12 =74.797

由课本 表10-5查得齿形系数Y 和应力修正系数Y

(7) 螺旋角系数Y

轴向重合度 = =2.03

Y =1- =0.797

(8) 计算大小齿轮的

查课本由 图10-20c得齿轮弯曲疲劳强度极限

查课本由 图10-18得弯曲疲劳寿命系数

K =0.90 K =0.93S=1.4

[ ] =

[ ] =

计算大小齿轮的 ,并加以比较

大齿轮的数值大,选用大齿轮的尺寸设计计算.

① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.

z = =27.77 取z =30

z =2.33×30=69.9 取z =70

② 初算主要尺寸

计算中心距 a= = =102.234

将中心距圆整为103

修正螺旋角

=arccos

因 值改变不多,故参数 , , 等不必修正

分度圆直径

d = =61.34

d = =143.12

计算齿轮宽度

圆整后取

低速级大齿轮如上图:

齿轮各设计参数附表

1. 各轴转速n

(r/min)

(r/min)

(r/min)

(r/min)

626.09 193.24 84.38 84.38

2. 各轴输入功率 P

(kw)

(kw)

(kw)

(kw)

3.26 3.04 2.83 2.75

3. 各轴输入转矩 T

(kN•m)

(kN•m)

(kN•m)

(kN•m)

49.79 151.77 326.98 307.52

6.传动轴承和传动轴的设计

1. 传动轴承的设计

⑴. 求输出轴上的功率P ,转速 ,转矩

P =2.83KW =84.38r/min

=326.98N.m

⑵. 求作用在齿轮上的力

已知低速级大齿轮的分度圆直径为

=143.21

而 F =

F = F

F = F tan =4348.16×0.246734=1072.84N

圆周力F ,径向力F 及轴向力F 的方向如图示:

⑶. 初步确定轴的最小直径

先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取

输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号

查课本 ,选取

因为计算转矩小于联轴器公称转矩,所以

查《机械设计手册》

选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径

⑷. 根据轴向定位的要求确定轴的各段直径和长度

① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取

② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.

D B

轴承代号

45 85 19 58.8 73.2 7209AC

45 85 19 60.5 70.2 7209B

45 100 25 66.0 80.0 7309B

50 80 16 59.2 70.9 7010C

50 80 16 59.2 70.9 7010AC

50 90 20 62.4 77.7 7210C

2. 从动轴的设计

对于选取的单向角接触球轴承其尺寸为的 ,故 而 .

右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,

③ 取安装齿轮处的轴段 齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.

④轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .

⑤取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,

高速齿轮轮毂长L=50 ,则

至此,已初步确定了轴的各端直径和长度.

5.求轴上的载荷

首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,

查《机械设计手册》20-149表20.6-7.

对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.

传动轴总体设计结构图:

(从动轴)

(中间轴)

(主动轴)

从动轴的载荷分析图:

6. 按弯曲扭转合成应力校核轴的强度

根据

= =

前已选轴材料为45钢,调质处理。

查表15-1得[ ]=60MP

〈 [ ]此轴合理安全

7. 精确校核轴的疲劳强度.

⑴. 判断危险截面

截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.

⑵. 截面Ⅶ左侧。

抗弯系数 W=0.1 = 0.1 =12500

抗扭系数=0.2 =0.2 =25000

截面Ⅶ的右侧的弯矩M为

截面Ⅳ上的扭矩 为 =311.35

截面上的弯曲应力

截面上的扭转应力

= =

轴的材料为45钢。调质处理。

由课本 表15-1查得:

经插入后得

2.0 =1.31

轴性系数为

=0.85

K =1+ =1.82

K =1+ ( -1)=1.26

所以

综合系数为:K =2.8

K =1.62

碳钢的特性系数 取0.1

取0.05

安全系数

S = 25.13

S 13.71

≥S=1.5所以它是安全的

截面Ⅳ右侧

抗弯系数W=0.1 = 0.1 =12500

抗扭系数=0.2 =0.2 =25000

截面Ⅳ左侧的弯矩M为 M=133560

截面Ⅳ上的扭矩 为=295

截面上的弯曲应力

截面上的扭转应力

= = K =

K =

所以

综合系数为:

K =2.8K =1.62

碳钢的特性系数

取0.1取0.05

安全系数

S = 25.13

S 13.71

≥S=1.5所以它是安全的

8.键的设计和计算

①选择键联接的类型和尺寸

一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.

根据d =55d =65

查表6-1取: 键宽 b =16 h =10 =36

b =20 h =12 =50

②校和键联接的强度

查表6-2得 [ ]=110MP

工作长度 36-16=20

50-20=30

③键与轮毂键槽的接触高度

K =0.5 h =5

K =0.5 h =6

由式(6-1)得:

<[ ]

<[ ]

两者都合适

取键标记为:

键2:16×36 A GB/T1096-1979

键3:20×50 A GB/T1096-1979

9.箱体结构的设计

减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,

大端盖分机体采用 配合.

1. 机体有足够的刚度

在机体为加肋,外轮廓为长方形,增强了轴承座刚度

2. 考虑到机体内零件的润滑,密封散热。

因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm

为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为

3. 机体结构有良好的工艺性.

铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.

4. 对附件设计

A 视孔盖和窥视孔

在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固

B 油螺塞:

放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。

C 油标:

油标位在便于观察减速器油面及油面稳定之处。

油尺安置的部位不能太低,以防油进入油尺座孔而溢出.

D 通气孔:

由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.

E 盖螺钉:

启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。

钉杆端部要做成圆柱形,以免破坏螺纹.

F 位销:

为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.

G 吊钩:

在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.

减速器机体结构尺寸如下:

名称 符号 计算公式 结果

箱座壁厚

10

箱盖壁厚

9

箱盖凸缘厚度

12

箱座凸缘厚度

15

箱座底凸缘厚度

25

地脚螺钉直径

M24

地脚螺钉数目

查手册 6

轴承旁联接螺栓直径

M12

机盖与机座联接螺栓直径

=(0.5~0.6)

M10

轴承端盖螺钉直径

=(0.4~0.5)

10

视孔盖螺钉直径

=(0.3~0.4)

8

定位销直径

=(0.7~0.8)

8

, , 至外机壁距离

查机械课程设计指导书表4 34

22

18

, 至凸缘边缘距离

查机械课程设计指导书表4 28

16

外机壁至轴承座端面距离

= + +(8~12)

50

大齿轮顶圆与内机壁距离

>1.2

15

齿轮端面与内机壁距离

>

10

机盖,机座肋厚

9 8.5

轴承端盖外径

+(5~5.5)

120(1轴)125(2轴)

150(3轴)

轴承旁联结螺栓距离

120(1轴)125(2轴)

150(3轴)

10. 润滑密封设计

对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.

油的深度为H+

H=30 =34

所以H+ =30+34=64

其中油的粘度大,化学合成油,润滑效果好。

密封性来讲为了保证机盖与机座联接处密封,联接

凸缘应有足够的宽度,联接表面应精创,其表面粗度应为

密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太

大,国150mm。并匀均布置,保证部分面处的密封性。

11.联轴器设计

1.类型选择.

为了隔离振动和冲击,选用弹性套柱销联轴器.

2.载荷计算.

公称转矩:T=9550 9550 333.5

查课本 ,选取

所以转矩

因为计算转矩小于联轴器公称转矩,所以

查《机械设计手册》

选取LT7型弹性套柱销联轴器其公称转矩为500Nm

缥缈的大炮
爱笑的发箍
2025-12-06 19:12:01
一级直齿圆柱齿轮减速器设计

机械设计课程设计计算说明书

一、传动方案拟定…………….……………………………….2

二、电动机的选择……………………………………….…….2

三、计算总传动比及分配各级的传动比……………….…….4

四、运动参数及动力参数计算………………………….…….5

五、传动零件的设计计算………………………………….….6

六、轴的设计计算………………………………………….....12

七、滚动轴承的选择及校核计算………………………….…19

八、键联接的选择及计算………..……………………………22

设计题目:V带——单级圆柱减速器

计算过程及计算说明

一、传动方案拟定

(1) 工作条件:使用年限8年,工作为二班工作制,载荷平稳,环境清洁。

(2) 原始数据:滚筒圆周力F=1000N;带速V=2.0m/s;滚筒直径D=500mm;滚筒长度L=500mm。

二、电动机选择

1、电动机类型的选择: Y系列三相异步电动机

2、电动机功率选择:

(1)传动装置的总功率:

η总=η带×η2轴承×η齿轮×η联轴器×η滚筒

=0.96×0.982×0.97×0.99×0.96

=0.85

(2)电机所需的工作功率:

P工作=FV/1000η总

=1000×2/1000×0.8412

=2.4KW

3、确定电动机转速:

计算滚筒工作转速:

n筒=60×1000V/πD

=60×1000×2.0/π×50

=76.43r/min

按手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~6。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~24。故电动机转速的可选范围为n’d=I’a×

n筒=(6~24)×76.43=459~1834r/min

符合这一范围的同步转速有750、1000、和1500r/min。

根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:如指导书P15页第一表。综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。

4、确定电动机型号

根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。

其主要性能:额定功率:3KW,满载转速960r/min,额定转矩2.0。质量63kg。

三、计算总传动比及分配各级的传动比

1、总传动比:i总=n电动/n筒=960/76.4=12.57

2、分配各级伟动比

(1) 据指导书P7表1,取齿轮i齿轮=6(单级减速器i=3~6合理)

(2) ∵i总=i齿轮×I带

∴i带=i总/i齿轮=12.57/6=2.095

四、运动参数及动力参数计算

1、计算各轴转速(r/min)

nI=n电机=960r/min

nII=nI/i带=960/2.095=458.2(r/min)

nIII=nII/i齿轮=458.2/6=76.4(r/min)

2、 计算各轴的功率(KW)

PI=P工作=2.4KW

PII=PI×η带=2.4×0.96=2.304KW

PIII=PII×η轴承×η齿轮=2.304×0.98×0.96

=2.168KW

3、 计算各轴扭矩(N?mm)

TI=9.55×106PI/nI=9.55×106×2.4/960

=23875N?mm

TII=9.55×106PII/nII

=9.55×106×2.304/458.2

=48020.9N?mm

TIII=9.55×106PIII/nIII=9.55×106×2.168/76.4

=271000N?mm

五、传动零件的设计计算

1、 皮带轮传动的设计计算

(1) 选择普通V带截型

由课本P83表5-9得:kA=1.2

PC=KAP=1.2×3=3.9KW

由课本P82图5-10得:选用A型V带

(2) 确定带轮基准直径,并验算带速

由课本图5-10得,推荐的小带轮基准直径为

75~100mm

则取dd1=100mm>dmin=75

dd2=n1/n2?dd1=960/458.2×100=209.5mm

由课本P74表5-4,取dd2=200mm

实际从动轮转速n2’=n1dd1/dd2=960×100/200

=480r/min

转速误差为:n2-n2’/n2=458.2-480/458.2

=-0.048<0.05(允许)

带速V:V=πdd1n1/60×1000

=π×100×960/60×1000

=5.03m/s

在5~25m/s范围内,带速合适

平常的铃铛
朴素的大白
2025-12-06 19:12:01
《机械制造技术基础课程设计》教学纲要一、课程概述

课程名称: 机械制造技术基础

课程编号:061288006

总学时数: 一周

学分: 1

课程类别: 专业课

课程要求: 必修

授课专业: 机械设计制造与自动化专业

先修课程: 机械制图、机械设计、互换性与技术测量、机械制造技术基础等

二、本课程的性质和任务

本课程设计是学生在学完机械制造技术基础课程、进行了生产实习之后的一个综合性和实践性很强的教学环节,学生通过课程设计,能综合运用所学基本理论以及在生产实习中学到的实践知识进行工艺及结构设计的基本训练,掌握机械制造过程中的加工方法、加工装备等基本知识,提高学生分析和解决实际工程问题的能力,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。

三、 课程设计的基本内容

(一)对零件(中等复杂程度)进行工艺分析,画零件图。

(二)选择毛坯的制造方式。

(三)制订零件的机械加工工艺规程

1.选择加工方案,制订工艺路线;

2.选择定位基准;

3.选择各工序所用的机床设备和工艺装备(刀具、夹具、量具等);

4.确定加工余量及工序间尺寸和公差;

5.确定切削用量和工时定额。

(四)填写工艺文件

1.填写机械加工工艺卡片;

2.填写机械加工工序卡片。

(五)编写设计说明书。

四、本课程设计的基本要求

(一)通过本课程设计,应使学生在以下几方面得到锻炼:

1.能运用机械制造技术基础课程中的基本理论和生产实习中学到的实践知识,正确地解决一个零件在加工中的定位、夹紧以及工艺路线安排、工艺尺寸确定等问题,保证零件的加工质量。

2.学会使用手册及图标资料。掌握与本设计有关的各种资料的名称及用途,做到熟练运用。

(二)在规定时间内应完成以下任务:

1.机械加工工艺卡片一张;

2.机械加工工序卡片一张;

3.设计说明书一份。

五、学时分配建议

本课程设计一周时间集中安排,对各步工作不作统一规定,建议指导教师按以下进度进行辅导:

课程设计内容

时间

熟悉课题、查阅资料

1天

零件分析,画零件图

1天

制订零件加工工艺规程

2天

填写工艺文件

1.5天

编写设计说明书

1.5天

合计

7天

六、其它说明

1、时间安排

建议安排在生产实习之后进行。

2、设计题目选择

指导教师可根据课程设计指导书中提供的题目或所搜集的技术资料灵活安排。

保证三周时间内工作量饱满。

3、人员分组及分工

建议2~3人一小组,各小组题目不同。每组中每个学生应当完成教师指定工序的设计计算、夹具结构设计等内容。

4、设计说明书要求

设计说明书用统一纸张书写。内容包括设计任务书,零件的分析,加工工艺规程设计,夹具设计等。建议编写顺序如下:

(1)设计说明书封面

(2)设计任务书

(3)目录

(4)零件的分析

(5)加工工艺规程设计

(6)小结

5、指导教师应鼓励学生利用计算机进行辅助设计。