声波制冷的原理?
声制冷技术
声制冷技术是一种涉及声学和热力学两大学科的边缘技术。本文介绍了声制冷技术的发展史和几种声制冷机的基本原理,并论述了它的应用前景,特别是在家电制冷系统中用于降低噪声、提高效率的可行性。
关键词:家用电器 热声效应 声制冷
Acoustic reftaiyanggeration technology is a boundary science which is between acoustics and thermodynamies.In this paper,the history of acoustic reftaiyanggeration technology and basal theotaiyanges of some kinds of acoustic reftaiyanggerators are introduced.Then its applied prospect is discussed,especially the possibility that it is used to reduce noises and increase the efficiency in family electtaiyangcal appliance.
Keywords:family electtaiyangcal appliance thermoacoustic effect acoustic reftaiyanggeration
目前的电冰箱及空调器所使用的制冷技术多为通过压缩机由制冷剂制冷。长期以来得到广泛应用的制冷剂是氟利昂,它被称为电冰箱和空调器中不可缺少的“血液”,但近年来人们发现由于全世界大量使用氟利昂已使地球臭氧层变得稀薄,温室效应太阳益明显,人类赖以生存的生态环境受到严重的危害。国际上已制定了控制氟利昂使用的“蒙特利尔议定书”。一些国家相继宣布,到本世纪末,将全部停止氟利昂的使用。因此,制冷技术科技界将面临两条途径:一是寻求氟利昂的替代物,这方面国内外正在进行大量的试验研究工作。就目前情况看,这些替代物并不十分理想,例如它的制冷效率以及和润滑油的兼容性并不理想,而且这些替代物是否对人类生存环境绝对无害,还要经历很长时间的考验,才能下定论;另一条途径则是广泛地开发新的制冷技术。在此情况下,声制冷技术是值得关注和研究的课题之一。
1 声制冷原理
所谓声制冷,即利用声能达到热量从冷端转移到热端的一门技术。在热力学中,最基本的热机有两类:发动机和制冷机。发动机将从高温热源吸收的热量部分转化为机械能输出,并向低温热源释放热量。制冷机则消耗外界提供的功,由低温热源泵热,并向高温热源释放热量。这里它没有对热机中功的形式加以限制,它可以是机械能形式的功,也可以是电功,磁功等。声能是一种振荡形式的能量,如果能够实现热能与声能的相互转化并与外界热源的热量交换,即可制成声发动机和声制冷机。利用热声效应可以实现声能与热能的相互转化以及与外热源的热量交换。
1.1 热声效应
热声效应是指可压缩的流体的声振荡与固体介质之间由于热相互作用而产生的时均能量效应。可产生热声效应的流体介质必须有可压缩性、较大的热膨胀系数、小的普朗特数,而且对于要求较大温差,较小能量流密度的场合,流体比热要小,对于要求较小温差,较大能量流密度的场合,流体比热要大。因此,理想气体如空气、氦气,特别是氦气,适用于较大温差,较小能量流密度的场合;在近临界区的简单液体,如CO2,简单的碳氢化合物CmHm等,适用于较小温差,较大能量流密度的场合。显然,后者适用于家用电器的制冷。
其实,在我们的太阳常生活中,存在着大量的“热声效应”(1)。例如,在讲演者周围建立起的声场中,声波在空气介质中传播,会引起压强与位移的变化。而压强与位移的变化又会导致气体介质的温度振荡,这些变化与振荡以及它们与周围固体边界发生相互作用就会产生热声效应。但是这里由热声效应引起的局部温度振荡和热流的量都很小,前者约为10-4℃,后者约为10-8w/m2,所以人们不易感觉得到,更无法加以利用了。其中主要原因是由于声源的能量较小,如果声源的
图1 共振型热声制冷机的工作原理
图2 驻波热声制冷机
图3 行波热声制冷机
图4 Stirling制冷机
能量有足够大,那么由热声效应引起的温度振荡和热流也就相当可观了。下面的实例就能说明这一点,房间内的高声谈话,在相距1m处的声压级约为68~74dB;蒸汽机车在5m处的声压级约为110dB;飞机强力发动机在相距5m处的声压级约为140dB,它的声功率约为104w。如果能有如此之大功率的声源,就很有必要利用热声效应进行转换了。
从能量转换角度,可以将热声效应分为两类:一是用热来产生声,即热驱动的声振荡,二是用声来产生热流,即声驱动的热传输。对应这两类热声效应制成的热机也分为两类:热声发动机和热声制冷机(简称声制冷机)。
1.2 声制冷的基本原理
热声发动机和热声制冷机都是利用热声效应制成的热机。现以共振热声制冷机为例,说明其工作原理(见图1)。
由图1(a)可知,它是由声源和声共振器构成。声源S可以是低频活塞式声发生器或改装的中频扬声器,它的作用是实现声功的输入。声共振器里又包括热声管组、热端热交换器、冷端热交换器和气体介质。冷端热交换器从外界热源吸收热量,实现热量的输入。热端热交换器向外界热源释放热量,实现热量的输出。热声管组实现声功和热量的相互转换。声共振器是为了在内部建立起声驻波场,这样声源输出功率虽不太大,但波腹处的声压级却很高。
首先,声源发出声音在气体介质中传播时产生声压,声压引起了气体介质的绝热压缩或绝热膨胀(即与外界无热量交换的压缩和膨胀)。这样,会导致气体温度变化,然后与管组发生热交换。图1(b)所示,右边气团因声波作用发生绝热膨胀时,内能减少,温度降低,此时右边气团温度低于当时与之*近的管组温度,因此右边气团从管组得到能量。同时左边气团发生绝热压缩,内能增加,温度升高,因此左边位置的气团会将热量传递给与之*近的管组。这样,在一个声波周期内,气团就使热量沿管组从右边移到左边,通常一个气团和温度变化及其转移的热量都是微量。因此,必须有一系列的气团,以合适的相位接力式地工作,才能将足够的热量泵向声压波腹处而产生显著的热声效应。这样就要求热声管组的整体长度和宽度都必须足够大,才能沿管组方向产生定向热流,使热由低温端泵到高温端,使低温端得以制冷。
2 声制冷机的类型
2.1 共振型声制冷机
共振型声制冷机又分为共振型驻波声制冷机和共振型行波声制冷机。
共振型驻波声制冷机是在美国Los Alamos国家实验室,由低温物理专家Wheatlay领导的小组,在1986年研制成功的。它以Rott和Thomann关于驻波声场的热声理论为指导,利用在管内产生的接近共振的驻波声场来产生热声效应进行工作。如图2所示,它的声源是一个声发生器,声发生器提供动力产生声振动。声共振器的终端是一个共振球体,这样可使在热声管组末端的冷端热交换器处的阻抗为零(使质点速度最大),因而在热声管组中产生声驻波。这种制冷机只有一个运动部件,即声发生器。它能达到的最低温度为198K,在246K时制冷量为3W,性能系数为卡诺循环的12%。
共振型行波声制冷机是美国麻省理工大学的Ceperley于1979年提出的。它包括声发生器、室温热端热交换器、热声管组、冷端热交换器及行波声导管。如图3所示,这些部件构成一个行波回路,而回路的长度正好应为一个声波长。声发生器提供动力产生声振荡。在声回路中产生接近共振的行波声场。冷端热交换器从低温热源吸收能量,热量由热声管组消耗声功从低温端泵向高温端,热端交换器将热声管组来的热流释放给环境。这种声制冷机也只有一个运动部件,即声发生器。
2.2 回热式声制冷机
Stirling声制冷机是回热式声制冷机的典型。
图5 脉冲管制冷机
Stirling声制冷机实际上是一种带有声吸收器的行波式制冷机。最基本的Stirling声制冷机包括以下部件:声发生器、热端热交换器、热声管组、冷端热交换器和声吸收器。如图4所示,这种声制冷机是*声发生器活塞和声吸收器活塞的协调运动来建立行波声场的,即声发生器活塞运动超前声吸收器活塞运动一个相位角θ(0<θ<π)。当θ约为π/2时,其中声场的行波能量可达到最大。还有一种Stirling制冷机带有排出器结构,即分置式声制冷机。其中排出器作用是一端吸收声功,而在另一端输出声功,它起到了声功流反馈作用,其它部件作用与基本的Stirling制冷机相同。
Stirling制冷机的特点是工作温度范围宽,效率较高,结构紧凑。分置式结构,体积小,重量轻,特别适用于机载冷却设备。
2.3 脉冲管制冷机
早在1963年就有人提出了脉冲管制冷机,它是一个行波声制冷机和驻波声制冷机的组合(2)。它由声发生器、热端热交换器1、热声管组、冷端热交换器、脉冲管和热端热交换器2等部件组成,如图5所示。其中脉冲管和热端热交换器2的作用是接受由冷端热交换器输入的声功流以建立驻波场。
脉冲管制冷机近几年来得到很大发展,由基本型脉冲管制冷发展到小孔型脉冲管和双向进气型脉冲管制冷机等型式。小孔型脉冲管制冷机在带有脉冲管的热端热交换器2处又加了一个亥姆霍兹共振器,它是一种共振吸收结构。当其工作在共振频率附近时,由于小孔声阻产生强烈的声吸收作用,声功被吸收耗散为热。这样制冷机中声场的行波分量得以增强,热声管组泵热量增加。小孔型脉冲管制冷机的性能比基本型脉冲管制冷机性能大为改善,其泵热能力和达到的最低温度与Stirling制冷机接近,但其行波分量的增强是以共振器耗散功为代价,其制冷系数小于Stirling制冷机。
双向进气式脉冲管制冷机在小孔型脉冲管制冷机的基础上,用一段旁路管道将带脉冲管的热端热交换器2与热端热交换器1连接起来,管道中的气柱相当于排气结构。这些在热交换器1处形成“双向进气”,当阻抗匹配合理时,可通过该管道吸收一部分声功,使制冷能力和效率有所提高。
上述声制冷机所用的声介质多为气体介质。气体介质适用于较大温差,较小能量流密度场合,它不适合用于家电行业中的电冰箱和空调器。我们知道,液体介质适用于较小温差,较大能量流密度场合,所以将声制冷机中的气体介质改为液体介质,无疑会带来较佳效果。美国的Los Alamos实验室采用了液态丙烯作为声介质。因其较大的热膨胀系数和较小的体积压缩率,在高压下工作时,制冷功率和效率都会显著提高。
3 声制冷机的发展前景
声制冷机的研究和开发兴起于本世纪80年代。在这方面工作的主 要有美国Los Alamos实验室及美国海军研究生院。Los Alamos于1990年展示了一台热声制冷机,制冷最低温度达89K,在制冷温度为120K时,制冷功率为5W。美国加州的海军研究生院于80年代曾研制了一台热声冰箱(STAR)用于1992年1月发射的“发现”号航天飞机上,在地面产生比室温低80K的温度,当制冷功率为3W时,峰值效率为卡诺热机的20%。这两台声制冷机都使用电动声源,工作频率在400~500Hz之间。美国海军研究生院目前正致力于声制冷的家用电冰箱和空调器的研究和开发。声制冷的家用电冰箱(TALSR)已研制成功,冷藏室温度为4℃,冷冻室的温度可达-22℃(3)。
当前,声制冷原理已用于红外传感、雷达及其它低温电子器件的降温。低温电子器件的制冷问题与常规民用制冷相比,有自己的独特之处,它要求制冷温度低(-50℃~-200℃)。但制冷量不大,要求制冷机的机械振动小,可*性高和小型轻量化。声制冷技术刚好适合了这些方面的要求。因此可以期望声制冷技术在低温电子学器件制冷方面有好的应用前景。
4 结束语
目前,家用电冰箱和空调器均采用机械式的压缩机制冷技术。鉴于广大用户对静音化的要求极为迫切,国内外在家电制冷设备的降噪技术方面也做出不少的成绩,但更高水平的静音化目前困难不少。我们设想在不久的将来能在电冰箱制冷系统上附加一套结构简单的声制冷系统并以电冰箱压缩机的噪声作为声制冷系统的能源,将会使整台电冰箱或空调器的制冷效率进一步提高,而其噪声将有突破性的下降。
用声波制冷 绿色冰箱要淘汰氟利昂
美国宾夕法尼亚大学的几位科学家近日研制出了一种用声波制冷的技术,不久的将来这种技术应用到冰箱和空调制造行业后将可以生产出绿色家电,使得人们的家居生活更加注重环保。
上述科学家之一、宾夕法尼亚大学物理声学系教授斯蒂文·加雷特表示,传统的冰箱均通过化学制冷剂达到制冷效果,因此对环境有一定的污染作用,而这次研发出来的声波制冷技术则完全以热声学原理为基础,用空气作为制冷剂,不仅不会对环境产生污染,而且还将成为化学制冷剂理想的替代产品。
加雷特教授说,他和同事首先制造出高振幅的声波,使其频率达到165分贝左右。而在摇滚乐声震耳欲聋的歌厅里,声波的分贝数也不过只有120,距离一架直升机升空30米开外时听到的直升机起飞噪音也仅有140分贝,因此当声波频率达到165时声音之间的相互摩擦和振动就会达到非常激烈的程度,几乎可以使人的头发自行着火。
这次加雷特教授及其同事研制出的声波制冷机原型高40厘米宽23厘米,里面盛满了被压缩的空气,在利用声波制冷的流程当中,加雷特教授和他的同事使用的是173分贝的声波,因此声波产生的热量极其强大。
与此同时,这些科学家还根据空气在受压后升温,膨胀后降温的原理利用金属风箱不停地给声波周围的空气加压,制冷机产生的热量被输送到机器外部,而收到制冷效果的空间则温度显著下降。结果显示整个声波制冷系统共生成了5千瓦的能量,产生的制冷效果很明显,将周围的温度下调到了零下8度。
在接受采访时,加雷特教授表示:“我们最终的目标是将这种声波制冷技术应用于家用冰箱当中。现在冰箱中普遍使用的氟制冷剂是导致臭氧层空洞扩大和全球变暖的原因之一,氟气体进入空气当中后使得空气升温的效率是二氧化碳的3000倍,因此一旦氟制冷剂遭到封杀,声波制冷技术将很快成为环保冰箱的重要标志。”
分类如下:
1,依原理可分,物理,化学方式。
化学在生活中,医疗上都有见。如医用冰袋,冰激凌的制作上。
物理方式上由于原理不同,又可分蒸汽压缩式,半导体,辐射,等。生活中半导体也比较常见。车用冰箱,饮水机等。我们遇见最多的是蒸汽压缩式。
依压缩机,蒸发器类型,蒸发器供液方式,冷凝方式,节流装置,制冷剂种类,又可分多钟类型。当然根据控制方式还可分几类。
我们最常用的是活塞压缩机,直接供液,膨胀阀节流,风冷冷凝,冷风机,氟利昂类的制冷系统。
2,依制冷温度(工况)分空调,冷冻(冷藏)。再可依温度,用途,结构特点等分许多类。
我们接触多的空调类是家用分体空调,单位常用为空气源热泵风冷空调系统。
冷冻类的,是冰箱,与拼装冷冻库。
3,依供冷方式分直接与间接。家用空调,冰箱,小型拼装冷库多数是直接供冷方式。大型中央空调,制冰就是间接供冷。制冷机先冷却水,水再冷却需冷物体。
4,依使用场合食品,化工,医药,航空,航天等。由于各自服务的对象不同,对制冷系统的要求也各不相同,每个行业要求也不相同,就食品存储,海鲜,半成品温度要求就比牛羊肉低,水果与素菜的存储工况就不一样。
原理:
所有的声波制冷的工作原理都基于所谓的热声效应,热声效应机理可以简单的描述为在声波稠密时加入热量,在声波稀疏时排出热量,则声波得到加强;反之声波稠密时排出热量,在声波稀疏时吸人热量,则声波得到削弱。
当然,实际的热声理论远比这复杂的多,热声制冷的设计水平及制造工艺也在不断的提高。
利用工质相变产生的潜热,通过压缩、冷凝、节流、蒸发4个过程的封闭循环实现制冷,是现在应用最广泛的一种制冷循环。
压缩机:将蒸发器中的制冷剂蒸汽吸收,并将其压缩至冷凝压力,然后排至冷凝器;
冷凝器:将来自压缩机的高压制冷剂蒸汽冷凝成液体,在冷凝过程中,将制冷剂蒸气放出的热量被冷却水或空气带走;
节流阀:制冷剂液体通过节流阀时,压力由冷凝压力降低至蒸发压力,部分液体闪发为蒸气;
蒸发器:节流后的制冷剂液体在蒸发器内蒸发成气体,同时吸收被冷却物体的热量,被冷却物体可以是液体载冷剂或空气。
1、螺杆压缩式制冷机
优点:体积小、重量轻;经构简单,易损件少,可靠性高;机器力矩变化小、振动少、运行平稳;能承受一定的液击;能量可以无级调节;压缩效率高,转子喷油后排气温度低,气密性好;
缺点:转子部件表面呈曲面形状,加工精度要求高;需庞大的油分离器来分离喷入机内的油,辅助设备复杂。
2、离心压缩式制冷机
优点:性能系数高、制冷量大;单位功率的机组重量轻、体积小;易于实现多级压缩和节流;自动化程度高;可通过进口导叶或变频,自动对制冷量进行无级调节,调节范围宽;制冷机中混入制冷剂的润滑油量少,对换热器传热效果影响小。
缺点:转速高,,必须适用于大流量场合,不适用于制冷量小的场合;离心压缩式制冷机固有的低负荷时的喘振现象得不到有效解决。
3、活塞压缩式制冷机
优点:出现最早的一种机型;热效率高、高速;多缸、能量可调;适用多种制冷剂、制造容易,价格较低、易于操作管理
缺点:结构较复杂,易损件多,检修周期短;往复运动的惯性大,输气不连续,排气压力有脉动,设备振动较大。适用冷量小
4、涡旋压缩式制冷机
与往复式活塞式相比,具有效率高、噪音低、零部件少、重量轻、体积小、节约能耗、振动小的特点。
5、冰蓄冷
优点:该系统能实现移峰填谷,结合不同时段的电价差,能节约不少运行费用;尤其对空调负荷出现在白天,且晚上不需要供冷,且电价差大的工程,其优势更明显。
缺点:加大初投资;占用机房面积大;控制复杂。
常用的蓄冰方法:冷媒盘管蓄冰、完全冻结式蓄冰、容器式蓄冰
6、水蓄冷
优点:可使用常规冷水机组、也可用吸收式制冷机在经济状态下运行;适用于常规系统的改造的扩容;技术要求低、维护方便,可利用消防水池、原有蓄水设施来进行蓄水
缺点:蓄冷量小于600*104Kcal/H或蓄冷容积小于760m3时,水蓄冷经济性得不到体现;占用空间大,控制复杂
常用水蓄冷方法:自然分层蓄冷、多罐式蓄冷、迷宫式蓄冷、隔膜式蓄冷
7、热泵:
热泵是近年来发展和应用速度较快的一种设备。热泵是夏季供冷、冬季供热的设备。由于具有节能和环保方面的优势,很快成为中央空调的重要冷、热源设备。
热泵的种类很多,诸如:空气源热泵、水源热泵、地源热泵、水环热泵、燃气热泵等
7.1、空气源热泵(风冷热泵)
空气源热泵(也称风冷热泵)通俗地说是一种无需水源,只与空气换热的电驱动供冷暖设备。它的作用是在低温分抽取热量,向温度高的部分放出热量的一种机械设备,它是一种热量(或冷量)交换设备,所耗费的电量并非用来发热,而是用来克服机械阻力,因此它的能效比(COP系数)较高,COP可达1:4.5以上.是一种高效节能产品.
夏季时以大气为放热侧,冬季时以大气为吸热侧。
在中国的主要适用城市:上海、南京、武汉、重庆、长沙、合肥、南昌等地,随着机组本身性能的提高,己应用于北京、天津等北方地区。北方地区以最佳能量平衡点来选择热泵机组,主要用于宾馆、办公楼等,而商场、剧院等则不适用。
7.2、水源热泵
水源热泵是以水为热源的可进行制冷/采暖循环的一种热泵型整体式水-空气空调装置,它在制热时以水为热源,而在制冷时以水为排热源。
水源热泵可分为三大类:地下水的热泵系统、地表水的热泵系统、闭式环路地表水热泵系统;
优点:水的质量热容大,传热性能好,传递一定热量所需的水量较少,换热器尺寸较小;不存在蒸发器表面上结霜的问题;
缺点:受区域限制,需在易于获得温度较为稳定、水量大的地区;水系统复杂;还需要消耗水泵的功率;如果水硬度较大,造成换热器表面结垢,使设备的传热性能下降;如含有氯离子,还会造成设备的腐蚀;在采用水源热泵前,需全面对地质、水文、水质等进行全面评估后进行。
7.3、地源热泵
地源热泵又称大地耦合热泵、土壤源热泵、地下换热器、地温热泵等,是一种新的空调冷热源方式,地源热泵从浅层土壤中通过竖向垂直埋管、水平埋管或蛇形埋管取热热向其排热。
优点:不用打井开采地下水,而是从土壤中直接换热;不受地质条件、井水量多少、地面沉降和地下水污染等影响
缺点:换热土壤要求面积大;施工难度大;隐蔽工程维护困难,维护费用高;如冬夏季冷暖不平衡,易形成“热岛”问题
7.4、水环热泵
水环热泵系统用一个循环水路作为加热源和排热源。当环路中水的温度超过一定值时,环路中的水将通过冷却塔将热量放给大气。
当环路中水的温度低于一定值时,通常使用加热装置对循环水进行加热。在装有多台水环热泵的空调机的建筑中,有的以制冷工况运行,有的以制热工况运行,而控制系统的作用是保持环路中的循环水温在一定范围以内。
7.5、燃气热泵
以上各类热泵均是电动式热泵,而燃气热泵的驱动能源为燃气。工作原理为燃气发动机驱动压缩
机工作,与以上各类热泵相比,运行更经济、冬季采暖效果好的特点。
二、吸收式制冷循环
由吸收剂和工质组成制冷溶液,利用热能驱动,通过发生、冷凝、蒸发、吸收四个过程的封闭循环,目前最普遍的是水-溴化锂吸收式制冷机,大量应用于空调工程中。
蒸发器:制冷剂-水在其中蒸发,吸收载冷剂的热量。
吸收器:在吸收器中,浓吸收液吸收蒸发器中产生的蒸汽,使蒸发器持续的蒸发。
发生器:加热吸收蒸汽后的稀吸收液,使吸收液浓度增加。
冷凝器:发生器中蒸发出的蒸汽在冷凝器中被冷凝成液态,这部分蒸汽补充到蒸发器中。
1、直燃型溴化锂吸收式冷温水机组
优点:能源为燃料,可以利用燃油、天燃气、城市煤气等多种燃料;冷暖两用,可实现夏季制冷与冬季采暖;在一次能源基出上,排出有害气体较离心机、螺杆机等制冷设备更少,环保;节约电耗、环保;运行安静、使用安全;制冷调节范围广,对外界环境变化的适应性强
缺点:气密性要求高;相对电动制冷机来讲体积大、占地面积大;
2、蒸汽型(热水型)溴化锂吸收式冷水机组
优点:利用余热蒸、废热来制冷,实现能源的综合利用;实现能源的冬夏季平衡,实现夏季富裕蒸汽的使用,提高能源利用率;节约电耗、环保;运行安静、使用安全;制冷调节范围广,对外界环境变化的适应性强
缺点:气密性要求高;相对电动制冷机来讲体积大、占地面积大;
3、烟气型溴冷机、氨水吸收式制冷机和吸收式热泵
三、商用空调系统
商用空调是新兴的一种空调方式,一般多用于商业建筑、办公楼宇和公寓建筑。一般不设制冷机房,而是将制冷主机与冷凝器等安装于一箱体内并设置于室外(即室外机),而将蒸发器直接设置在室内(即室内机)。
商用空调分类方法很多,可按使用功能,也可按控制方式
主要生产厂商:大金(VRV)、麦克维尔(MCC)、日立海信(RAS-FS)、美的(MDV)、格力(GMV)、小天鹅(SMV-M)、海尔(C-MRV)、LG(变频Multi)等
VRV系统:VRV空调系统全称是Varied Refrigerant Volume,简称VRV,通过变制冷剂流量来调节输冷量,是一种冷剂式空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求VRV系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高