请问陀螺仪的设计原理和工作原理。谢谢
陀螺仪基本上就是运用物体高速旋转时,角动量很大,旋转轴会一直稳定指向一个方向的性质,所制造出来的定向仪器。不过它必需转得够快,或者惯量够大(也可以说是角动量要够大)。不然,只要一个很小的力矩,就会严重影响到它的稳定性。就像我们可以轻易的改变旋转中车轮转轴的方向一样。所以设置在飞机、飞弹中的陀螺仪是靠内部所提供的动力,使其保持高速转动。
陀螺仪通常装置在除了要定出东西南北方向,还要能判断上方跟下方的交通工具或载具上,像是飞机、飞船、飞弹、人造卫星、潜艇......等等。它是航空、航海及太空导航系统中判断方位的主要依据。这是因为在高速旋转下,陀螺仪的转轴稳定的指向固定方向,将此方向与飞行器的轴心比对后,就可以精确得到飞机的正确方向。罗盘不能取代陀螺仪,因为罗盘只能确定平面的方向;另方面陀螺仪也比传统罗盘方便可靠,因为传统罗盘是利用地球磁场定向,所以会受到矿物分布干扰,例如受到飞机的机身或船身含铁物质的影响;另方面在两极也会因为地理北极跟地磁北极的不同而出现很大偏差,所以目前航空、航海都已经以陀螺仪以及卫星导航系统作为定向的主要仪器。
陀螺仪的基本原理:
陀螺仪主要是由一个位于轴心且可旋转的转子构成。陀螺仪一旦开始旋转,由于转子角动量,陀螺仪有抗拒方向改变的趋向。螺旋仪是一种用来传感与维持方向装置,基于角动量守恒理论设计出来的。陀螺仪多用于导航、定位等系统常用实例如手机GPS定位导航、卫星三轴陀螺仪定位。
陀螺仪的进动性和定轴性:
1、定轴性
当陀螺转子以高速旋转时,在没有任何外力矩作用在陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,即指向一个固定的方向;同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。其稳定性随以下的物理量而改变:
(1)转子的转动惯量愈大,稳定性愈好。
(2)转子角速度愈大,稳定性愈好。
所谓的“转动惯量”,是描述刚体在转动中的惯性大小的物理量。当以相同的力矩分别作用于两个绕定轴转动的不同刚体时,它们所获得的角速度一般是不一样的,转动惯量大的刚体所获得的角速度小,也就是保持原有转动状态的惯性大;反之,转动惯量小的刚体所获得的角速度大,也就是保持原有转动状态的惯性小。
2、进动性
当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。进动角速度的方向取决于动量矩H的方向(与转子自转角速度矢量的方向一致)和外力矩M的方向,而且是自转角速度矢量以最短的路径追赶外力矩。
陀螺仪旋转现象解释:
高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于垂直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止时可加以应用。
陀螺仪基本上就是运用物体高速旋转时,角动量很大,旋转轴会一直稳定指向一个方向的性质,所制造出来的定向仪器。不过它必需转得够快,或者惯量够大(也可以说是角动量要够大)。不然,只要一个很小的力矩,就会严重影响到它的稳定性。
飞机陀螺仪他其实是一种用于感应和保持方向的装置,其设计基于角动量不会熄灭的理论。陀螺仪主要由一个可以在轴上旋转的轮子组成。一旦陀螺仪开始旋转,由于车轮的角动量,陀螺仪倾向于抵抗方向变化。1850法国物理学家福柯为了研究地球的自转,我们首先发现了高速旋转中的转子,由于惯性,它的旋转轴总是指向一个固定的方向。
他用希腊陀螺旋转和skopein组合成陀螺scopei来命名这个仪器,陀螺仪主要用于导航、定位等系统的常用应用,如手机GPS定位导航,卫星三轴陀螺仪定位。陀螺仪的原理是利用角动量守恒原理,即当物体高速旋转时,角动量非常大,旋转轴将始终稳定地指向一个方向,我们通常谈论和玩的陀螺仪是一个简单的机械装置。
其中陀螺仪转子与旋转轴连接,外围由两个支架组成。陀螺仪是一种利用高速旋转器的动量惯性沿一个或两个轴移动的装置。它的主要特点是稳定性和固定轴。小型陀螺仪无处不在,不可或缺。在手机中,使用了虚拟现实的眼镜,体感游戏,飞机平衡等产品,陀螺仪也被称为平衡神器。
而且在中国古代,有一种有趣的加热器叫做被子香炉。这种香炉的神奇之处在于,无论球在重力的作用下如何旋转,都将炭火加热到中心,中间的木炭盆将一直保持水平。通用支撑的功能是确保内部物体的平衡状态不会受到干扰,这与陀螺仪的结构相同,中国是陀螺仪的故乡,它是中国人中最古老的玩具之一,吸引了几代人。
关于陀螺仪是怎样的小小的它为何能为飞机导航的问题,今天就解释到这里。
陀螺仪,是一种用来感测与维持方向的装置,基于「角动量守恒」的理论设计出来的。陀螺仪主要是由一个位于轴心可以旋转的轮子构成,陀螺仪一旦开始旋转,由于轮子的「角动量」,陀螺仪有抗拒方向改变的趋向。陀螺仪多用于导航、定位等系统,1850 年法国的物理学家 J.Foucault 为了研究地球自转,首先发现高速转动中的转子,由于「惯性」作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和 skopein(看)两字合为 gyro scopei 一字来命名这种仪表。
陀螺仪的装置,一直是航空和航海上航行姿态及速率等最方便实用的参考仪表。基本上陀螺仪是一种机械装置,其主要部分是一个「对旋转轴」以及高角速度旋转的「转子」,转子装在一支架内;在通过转子中心轴上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的陀螺仪。陀螺仪被用在飞机飞行仪表的心脏地位,是由于它的两个基本特性:一为「定轴性,inertia or rigidity」,另一是「进动性,precession」,这两种特性都是建立在「角动量守恒」的原则下
陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。
陀螺仪的作用有导航、相机防抖、提升游戏体验、作为输入设备、其它用途。
陀螺仪自被发明开始,就用于导航,先是德国人将其应用在V1、V2火箭上,因此,如果配合GPS,手机的导航能力将达到前所未有的水准。陀螺仪可以和手机上的摄像头配合使用,比如防抖,这会让手机的拍照摄像能力得到很大的提升。各类手机游戏的传感器,陀螺仪完整监测游戏者手的位移,从而实现各种游戏操作效果,如横屏改竖屏、赛车游戏拐弯等等。
陀螺仪还可以用作输入设备,它相当于一个立体的鼠标,这个功能和第三大用途中的游戏传感器很类似,甚至可以认为是一种类型。陀螺仪未来还有更多作用可以挖掘,比如帮助手机实现很多增强现实的功能,增强现实是最近几年才出现的概念,和虚拟现实一样,是计算机的一种应用。大意是可以通过手机或电脑的处理能力,让人们对现实中的一些物体有跟深入的了解。
陀螺仪简介
陀螺仪又叫角速度传感器,不同于加速度计,它的测量物理量是偏转、倾斜时的转动角速度。螺旋仪是一种用来传感与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由一个位于轴心且可旋转的转子构成,陀螺仪一旦开始旋转,由于转子的角动量,陀螺仪有抗拒方向改变的趋向。
在智能手机中,陀螺仪是测量物体旋转时的角速度,经手机中的处理器对角速度积分后就得到了手机在某一段时间内旋转的角度。手机里的重力传感器就可以获得手机的相对水平面的转角,如果让手机绕垂直与地面的轴旋转,相比之下,有陀螺仪的则能感应到这个旋转,而只有重力传感器的就不行。