弹簧计算公式
弹簧的弹力计算公式:F=-kx,其中:k是弹性系数,x是形变量。
什么是弹力
弹力亦称“弹性力”。物体受外力作用发生形变后,若撤去外力,物体能恢复原来形状的力,叫作“弹力”。它的方向跟使物体产生形变的外力的方向相反。因物体的形变有多种多样,所以产生的弹力也有各种不同的形式。
例如,一重物放在塑料板上,被压弯的塑料要恢复原状,产生向上的弹力,这就是它对重物的支持力。将一物体挂在弹簧上,物体把弹簧拉长,被拉长的弹簧要恢复原状,产生向上的弹力,这就是它对物体的拉力。不仅塑料、弹簧等能够发生形变,任何物体都能够发生形变,不发生形变的物体是不存在的。不过有的形变比较明显,能直接见到;有的形变相当微小,必须用仪器才能觉察出来。
弹力的方向与物体形变方向相反的情况(1)轻绳的弹力方向沿绳指向绳收缩的方向。
(2)压力、支持力的方向总跟接触的面垂直,面与面接触,点与面接触,都是垂直于面;点与点的接触要找两接触点的公切面,弹力垂直于这个公切面指向被支持物。
(3)二力杆件(即只有杆的两端受力,中间不受力(包括杆本身的重力也忽略不计),叫二力杆件),弹力必沿杆的方向。一般杆件,受力较为复杂,应根据具体条件分析。
(4)杆:弹力方向是任意的,由它所受外力和运动状态决定。
压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;
· 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);
· 弹簧常数公式(单位:kgf/mm):
G=线材的钢性模数:琴钢丝G=8000 ;
不锈钢丝G=7300 ,
磷青铜线G=4500 ,
黄铜线G=3500
d=线径
Do=OD=外径
Di=ID=内径
Dm=MD=中径=Do-d
N=总圈数
Nc=有效圈数=N-2
弹簧常数计算范例:
线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝
当支承圈=1.5时,t=(H-d)/n
当支承圈=2时,t=(H-1.5d)/n
当支承圈=2.5时,t=(H-2d)/n
式中:
t——弹簧节距
H——弹簧自由高
d——弹簧钢丝直径
n——弹簧有效圈数
弹簧的弹力计算公式:F=-kx,其中:k是弹性系数,x是形变量。
弹簧常数k
弹簧的伸长和回复力之间关系的“大小”封装在弹簧常数k的值中。 弹簧常数显示将弹簧(或一片弹性材料)压缩或伸展给定距离需要多少力。 如果考虑单位的含义,或者检查胡克定律公式,您会发现弹簧常数的作用力单位是距离,因此,SI单位是牛顿/米。
弹簧常数的值对应于所考虑的特定弹簧(或其他类型的弹性物体)的属性。 较高的弹簧常数意味着较难拉伸的较硬弹簧(因为给定位移x ,合力F将较高),而较容易拉伸的较松散的弹簧将具有较低的弹簧常数。 简而言之,弹簧常数表征了所讨论弹簧的弹性特性。
弹性势能是另一个与胡克定律有关的重要概念,它表征了弹簧在拉伸或压缩时存储在弹簧中的能量,当释放弹簧时,弹簧可以施加恢复力。 压缩或拉伸弹簧会将赋予的能量转换为弹性势,释放弹簧时,弹簧返回其平衡位置时,该能量会转换为动能。
胡克定律的方向
毫无疑问,您会注意到胡克定律中的减号。 与往常一样,“正”方向的选择最终始终是任意的(您可以将轴设置为沿任意方向运行,并且物理原理完全相同),但是在这种情况下,负号是请注意,这种力量是一种恢复力量。 “回复力”是指该力的作用是使弹簧返回其平衡位置。
如果您将弹簧末端的平衡位置(即未施加力的“自然”位置)称为x = 0,则伸展弹簧将产生正x ,力将沿负方向作用(即回到x = 0)。 另一方面,压缩对应于x的负值,然后力沿正方向作用,再次朝着x =0。无论弹簧的位移方向如何,负号均表示力将其向后移动在相反的方向。
当然,弹簧不必沿x方向移动(您也可以用y或z代替地写胡克定律),但是在大多数情况下,涉及定律的问题是一维的,这称为x为方便起见。
弹性势能方程
如果您想学习使用其他数据来计算k ,那么弹性势能的概念(与本文的弹簧常数一起引入)非常有用。 弹性势能方程将位移x和弹簧常数k与弹性势能PE el相关联 ,并且其基本形式与动能方程相同:
PE_ {el} = \ frac {1} {2} kx ^ 2
作为能量的一种形式,弹性势能的单位是焦耳(J)。
弹性势能等于完成的功(忽略热量损失或其他浪费),如果您知道弹簧的弹簧常数,则可以根据弹簧拉伸的距离轻松地计算出弹性势能。 类似地,如果您知道拉伸弹簧的工作量(因为W = PE el )以及弹簧被拉伸了多少,则可以重新安排该方程式以找到弹簧常数。
弹力的方向与物体形变方向相反的情况
(1)轻绳的弹力方向沿绳指向绳收缩的方向。
(2)压力、支持力的方向总跟接触的面垂直,面与面接触,点与面接触,都是垂直于面;点与点的接触要找两接触点的公切面,弹力垂直于这个公切面指向被支持物。
(3)二力杆件(即只有杆的两端受力,中间不受力(包括杆本身的重力也忽略不计),叫二力杆件),弹力必沿杆的方向。一般杆件,受力较为复杂,应根据具体条件分析。
(4)杆:弹力方向是任意的,由它所受外力和运动状态决定。
压缩弹簧弹力的计算公式如下:
1、上面公式里每项代表的含义为:
①G = 剪切弹性模量[MPa, psi](G值大小为:钢丝8000,不锈钢7200);
②d = 线径 [mm, in];
③n = 有效圈数 [-];
④D = 中心直径 [mm, in];
⑤k = 弹簧系数 [N/mm, lb/in]。
2、压缩弹簧的参数必须由材料、线径、中心直径、有效圈数、弹簧总长、工作高度、需求力度这些参数组成。如果对力度没有特别要求的弹簧,可以不提供弹簧的工作高度和需求力度的参数。
扩展资料
压缩弹簧弹力的相关情况
弹力的本质是分子间的作用力。其中的具体情况如下所示:
1、当物体被拉伸或压缩时,分子间的距离便会发生变化,使分子间的相对位置拉开或靠拢。
2、这样,分子间的引力与斥力就不会平衡,出现相吸或相斥的倾向。
3、而这些分子间的吸引或排斥的总效果,就是宏观上观察到的弹力。
4、如果外力太大,分子间的距离被拉开得太多,分子就会滑进另一个稳定的位置。
5、即使外力除去后,也不能再回到复原位,就会保留永久的变形。
参考资料:百度百科-压缩弹簧