建材秒知道
登录
建材号 > 设计 > 正文

谁知道数据库优化设计方案有哪些

友好的红酒
爱笑的萝莉
2023-03-07 03:48:18

谁知道数据库优化设计方案有哪些?

最佳答案
纯情的棉花糖
小巧的飞机
2025-09-16 07:41:45

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。

关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Redundant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement)

1 引言

数据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘I/O瓶颈和减少资源竞争,相信读者会一目了然。

2 基于第三范式的基本表设计

在基于表驱动的信息管理系统(MIS)中,基本表的设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。

在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重要意义:

(1)主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键最佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多,复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。

(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。

(3)索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问,在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能最好,因此定期更新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算索引的大小。

① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索引。

② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引的开销大于索引的效益,这时,建立临时表存储有关数据更有效。

批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。

(4)锁:锁是并行处理的重要机制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用;给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一批处理应该没有网络交互。

(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到:

① 尽可能少的行;

② 避免排序或为尽可能少的行排序,若要做大量数据排序,最好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序;

③ 避免表内的相关子查询;

④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接;

⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接;

⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。

除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。

3 基本表扩展设计

基于第三范式设计的库表虽然有其优越性(见本文第一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。

尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。

如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。

3.1 分割表或储存冗余数据

分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。

水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。

垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。

总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。

注意,在分割表以后,要考虑重新建立索引。

3.2 存储衍生数据

对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:

若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。

若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。

若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。

总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。

3.3 消除昂贵结合

对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。

4 数据库对象的放置策略

数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。

⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。

⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。

⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。

⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺;

⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,最大化磁盘的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然最好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系统授权更加灵活。

最新回答
愤怒的万宝路
过时的鸡
2025-09-16 07:41:45

数据库性能优化主要包括以下几个方面:

1、sql语句的执行计划是否正常;

2、减少应用和数据库的交互次数、同一个sql语句的执行次数;

3、数据库实体的碎片的整理;

4、减少表之间的关联,特别对于批量数据处理,尽量单表查询数据,统一在内存中进行逻辑处理,减少数据库压力;

5、对访问频繁的数据,充分利用数据库cache和应用的缓存;

6、数据量比较大的,在设计过程中,为了减少其他表的关联,增加一些冗余字段,提高查询性能。

在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。

系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统不是简单地能实现其功能就可,而是要写出高质量的SQL语句,提高系统的可用性。

眯眯眼的画笔
自由的裙子
2025-09-16 07:41:45
(1) 存储记录结构 设计综合分析数据存储要求和应用需求,设计存储记录格式。 (2) 存储空间分配 存储空间分配有两个原则: ①存取频度高的数据尽量安排在快速、随机设备上,存取频度低的数据则安排在速度较慢的设备上。 ②相互依赖性强的数据尽量存储在同一台设备上,且尽量安排在邻近的存储空间上。 从提高系统性能方面考虑,应将设计好的存储记录作为一个整体合理地分配物理存储区域。尽可能充分利用物理顺序特点,把不同类型的存储记录指派到不同的物理群中。 (3) 访问方法的设计 一个访问方法包括存储结构和检索机构两部分。存储结构限定了访问存储记录时可以使用的访问路径;检索机构定义了每个应用实际使用的访问路径。 (4) 物理设计的性能评价 ① 查询响应时间 从查询开始到有结果显示之间所经历的时间称为查询响应时间。查询响应时间可进一步细分为服务时间、等待时间和延迟时间。 在物理设计过程中,要对系统的性能进行评价。性能评价包括时间、空间、效率、开销等各个方面。 ⊙ CPU服务时间和I/O服务时间的长短取决于应用程序设计。 ⊙ CPU队列等待时间和I/O队列等待时间的长短受计算机系统作业的影响。 ⊙ 设计者可以有限度地控制分布式数据库系统的通信延迟时间。 ② 存储空间 存储空间存放程序和数据。程序包括运行的应用程序、DBMS子程序、OS子程序等。数据包括用户工作区、DBMS工作区、OS工作区、索引缓冲区、数据缓冲区等。 存储空间分为主存空间和辅存空间。设计者只能有限度地控制主存空间,例如可指定缓冲区的分配等。但设计者能够有效地控制辅存空间。 ③ 开销与效率 设计中还要考虑以下各种开销,开销增大,系统效率将下降。 ⊙ 事务开销指从事务开始到事务结束所耗用的时间。更新事务要修改索引、重写物理块、进行写校验等操作,增加了额外的开销。更新频度应列为设计的考虑因素。 ⊙ 报告生成开销指从数据输入到有结果输出这段时间。报告生成占用CPU及I/O的服务时间较长。设计中要进行筛选,除去不必要的报告生成。 ⊙ 对数据库的重组也是一项大的开销。设计中应考虑数据量和处理频度这两个因数,做到避免或尽量减少重组数据库。 在物理设计阶段,设计、评价、修改这个过程可能要反复多次,最终得到较为完善的物理数据库结构说明书。 建立数据库时,DBA依据物理数据库结构说明书,使用DBMS提供的工具可以进行数据库配置。 在数据库运行时,DBA监察数据库的各项性能,根据依据物理数据库结构说明书的准则,及时进行修正和优化操作,保证数据库系统能够保持高效率地运行。 6.程序编制及调试 在逻辑数据库结构确定以后,应用程序设计的编制就可以和物理设计并行地展开 程序模块代码通常先在模拟的环境下通过初步调试,然后再进行联合调试。联合调试的工作主要有以下几点: (1) 建立数据库结构 根据逻辑设计和物理设计的结果,用DBMS提供的数据语言(DDL)编写出数据库的源模式,经编译得到目标模式,执行目标模式即可建立实际的数据库结构。 (2) 调试运行 数据库结构建立后,装入试验数据,使数据库进入调试运行阶段。运行应用程序,测试 (3) 装入实际的初始数据 在数据库正式投入运行之前,还要做好以下几项工作: (1) 制定数据库重新组织的可行方案。 (2) 制定故障恢复规范 (3) 制定系统的安全规范 7.运行和维护 数据库正式投入运行后,运行维护阶段的主要工作是: (1) 维护数据库的安全性与完整性。 按照制定的安全规范和故障恢复规范,在系统的安全出现问题时,及时调整授权和更改密码。及时发现系统运行时出现的错误,迅速修改,确保系统正常运行。把数据库的备份和转储作为日常的工作,一旦发生故障,立即使用数据库的最新备份予以恢复。 (2) 监察系统的性能。 运用DBMS提供的性能监察与分析工具,不断地监控着系统的运行情况。当数据库的存储空间或响应时间等性能下降时,立即进行分析研究找出原因,并及时采取措施改进。例如,可通修改某些参数、整理碎片、调整存储结构或重新组织数据库等方法,使数据库系统保持高效率地正常运作。 (3) 扩充系统的功能 在维持原有系统功能和性能的基础上,适应环境和需求的变化,采纳用户的合理意见,对原有系统进行扩充,增加新的功能。

彪壮的电脑
会撒娇的云朵
2025-09-16 07:41:45

数据库设计的基本步骤

按照规范设计的方法,考虑数据库及其应用系统开发全过程,将数据库设计分为以下6个阶段

1.需求分析

2.概念结构设计

3.逻辑结构设计

4.物理结构设计

5.数据库实施

6.数据库的运行和维护

数据库设计通常分为6个阶段1分析用户的需求,包括数据、功能和性能需求;2概念结构设计:主要采用E-R模型进行设计,包括画E-R图;3逻辑结构设计:通过将转换成表,实现从E-R模型到关系模型的转换;4:主要是为所设计的数据库选择合适的和存取路径;5数据库的实施:包括编程、测试和试运行;6数据库运行与维护:系统的运行与数据库的日常维护。),主要讨论其中的第3个阶段,即逻辑设计。 

在数据库设计过程中,需求分析和概念设计可以独立于任何数据库管理系统进行,逻辑设计和物理设计与选用的DAMS密切相关。

1.需求分析阶段(常用自顶向下)

进行数据库设计首先必须准确了解和分析用户需求(包括数据与处理)。需求分析是整个设计过程的基础,也是最困难,最耗时的一步。需求分析是否做得充分和准确,决定了在其上构建数据库大厦的速度与质量。需求分析做的不好,会导致整个数据库设计返工重做。

需求分析的任务,是通过详细调查现实世界要处理的对象,充分了解原系统工作概况,明确用户的各种需求,然后在此基础上确定新的系统功能,新系统还得充分考虑今后可能的扩充与改变,不仅仅能够按当前应用需求来设计。

调查的重点是,数据与处理。达到信息要求,处理要求,安全性和完整性要求。

分析方法常用SA(Structured  Analysis) 结构化分析方法,SA方法从最上层的系统组织结构入手,采用自顶向下,逐层分解的方式分析系统。

数据流图表达了数据和处理过程的关系,在SA方法中,处理过程的处理逻辑常常借助判定表或判定树来描述。在处理功能逐步分解的同事,系统中的数据也逐级分解,形成若干层次的数据流图。系统中的数据则借助数据字典(data dictionary,DD)来描述。数据字典是系统中各类数据描述的集合,数据字典通常包括数据项,数据结构,数据流,数据存储,和处理过程5个阶段。

2.概念结构设计阶段(常用自底向上)

概念结构设计是整个数据库设计的关键,它通过对用户需求进行综合,归纳与抽象,形成了一个独立于具体DBMS的概念模型。

设计概念结构通常有四类方法:

自顶向下。即首先定义全局概念结构的框架,再逐步细化。

自底向上。即首先定义各局部应用的概念结构,然后再将他们集成起来,得到全局概念结构。

逐步扩张。首先定义最重要的核心概念结构,然后向外扩张,以滚雪球的方式逐步生成其他的概念结构,直至总体概念结构。

混合策略。即自顶向下和自底向上相结合。

3.逻辑结构设计阶段(E-R图)

逻辑结构设计是将概念结构转换为某个DBMS所支持的数据模型,并将进行优化。

在这阶段,E-R图显得异常重要。大家要学会各个实体定义的属性来画出总体的E-R图。

各分E-R图之间的冲突主要有三类:属性冲突,命名冲突,和结构冲突。

E-R图向关系模型的转换,要解决的问题是如何将实体性和实体间的联系转换为关系模式,如何确定这些关系模式的属性和码。

4.物理设计阶段

物理设计是为逻辑数据结构模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。

首先要对运行的事务详细分析,获得选择物理数据库设计所需要的参数,其次,要充分了解所用的RDBMS的内部特征,特别是系统提供的存取方法和存储结构。

常用的存取方法有三类:1.索引方法,目前主要是B+树索引方法。2.聚簇方法(Clustering)方法。3.是HASH方法。

5.数据库实施阶段

数据库实施阶段,设计人员运营DBMS提供的数据库语言(如sql)及其宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制和调试应用程序,组织数据入库,并进行试运行。

6.数据库运行和维护阶段

数据库应用系统经过试运行后,即可投入正式运行,在数据库系统运行过程中必须不断地对其进行评价,调整,修改。

数据库设计5步骤

Five Steps to design the Database

1.确定entities及relationships

a)    明确宏观行为。数据库是用来做什么的?比如,管理雇员的信息。

b)    确定entities。对于一系列的行为,确定所管理信息所涉及到的主题范围。这将变成table。比如,雇用员工,指定具体部门,确定技能等级。

c)    确定relationships。分析行为,确定tables之间有何种关系。比如,部门与雇员之间存在一种关系。给这种关系命名。

d)    细化行为。从宏观行为开始,现在仔细检查这些行为,看有哪些行为能转为微观行为。比如,管理雇员的信息可细化为:

·         增加新员工

·         修改存在员工信息

·         删除调走的员工

e)    确定业务规则。分析业务规则,确定你要采取哪种。比如,可能有这样一种规则,一个部门有且只能有一个部门领导。这些规则将被设计到数据库的结构中。

====================================================================

范例:

ACME是一个小公司,在5个地方都设有办事处。当前,有75名员工。公司准备快速扩大规模,划分了9个部门,每个部门都有其领导。

为有助于寻求新的员工,人事部门规划了68种技能,为将来人事管理作好准备。员工被招进时,每一种技能的专业等级都被确定。

定义宏观行为

一些ACME公司的宏观行为包括:

● 招聘员工

● 解雇员工

● 管理员工个人信息

● 管理公司所需的技能信息

● 管理哪位员工有哪些技能

● 管理部门信息

● 管理办事处信息

确定entities及relationships

我们可以确定要存放信息的主题领域(表)及其关系,并创建一个基于宏观行为及描述的图表。

我们用方框来代表table,用菱形代表relationship。我们可以确定哪些relationship是一对多,一对一,及多对多。

这是一个E-R草图,以后会细化。

细化宏观行为

以下微观行为基于上面宏观行为而形成:

● 增加或删除一个员工

● 增加或删除一个办事处

● 列出一个部门中的所有员工

● 增加一项技能

● 增加一个员工的一项技能

● 确定一个员工的技能

● 确定一个员工每项技能的等级

● 确定所有拥有相同等级的某项技能的员工

● 修改员工的技能等级

这些微观行为可用来确定需要哪些table或relationship。

确定业务规则

业务规则常用于确定一对多,一对一,及多对多关系。

相关的业务规则可能有:

● 现在有5个办事处;最多允许扩展到10个。

● 员工可以改变部门或办事处

● 每个部门有一个部门领导

● 每个办事处至多有3个电话号码

● 每个电话号码有一个或多个扩展

● 员工被招进时,每一种技能的专业等级都被确定。

● 每位员工拥有3到20个技能

● 某位员工可能被安排在一个办事处,也可能不安排办事处。

2.确定所需数据

要确定所需数据:

a)    确定支持数据

b)    列出所要跟踪的所有数据。描述table(主题)的数据回答这些问题:谁,什么,哪里,何时,以及为什么

c)    为每个table建立数据

d)    列出每个table目前看起来合适的可用数据

e)    为每个relationship设置数据

f)    如果有,为每个relationship列出适用的数据

确定支持数据

你所确定的支持数据将会成为table中的字段名。比如,下列数据将适用于表Employee,表Skill,表Expert In。

Employee

   

Skill

   

Expert In

   

ID

   

ID

   

Level

   

Last Name

   

Name

   

Date acquired

   

First Name

   

Description

       

Department

           

Office

           

Address

           

如果将这些数据画成图表,就像:

 

需要注意: 

● 在确定支持数据时,请一定要参考你之前所确定的宏观行为,以清楚如何利用这些数据。 

● 比如,如果你知道你需要所有员工的按姓氏排序的列表,确保你将支持数据分解为名字与姓氏,这比简单地提供一个名字会更好。 

● 你所选择的名称最好保持一致性。这将更易于维护数据库,也更易于阅读所输出的报表。 

● 比如,如果你在某些地方用了一个缩写名称Emp_status,你就不应该在另外一个地方使用全名(Empolyee_ID)。相反,这些名称应当是Emp_status及Emp_id。 

● 数据是否与正确的table相对应无关紧要,你可以根据自己的喜好来定。在下节中,你会通过测试对此作出判断。

3.标准化数据

标准化是你用以消除数据冗余及确保数据与正确的table或relationship相关联的一系列测试。共有5个测试。本节中,我们将讨论经常使用的3个。

关于标准化测试的更多信息,请参考有关数据库设计的书籍。

标准化格式

标准化格式是标准化数据的常用测试方式。你的数据通过第一遍测试后,就被认为是达到第一标准化格式;通过第二遍测试,达到第二标准化格式;通过第三遍测试,达到第三标准化格式。

如何标准格式:

1. 列出数据

2. 为每个表确定至少一个键。每个表必须有一个主键。

3. 确定relationships的键。relationships的键是连接两个表的键。

4. 检查支持数据列表中的计算数据。计算数据通常不保存在数据库中。

5. 将数据放在第一遍的标准化格式中:

6. 从tables及relationships除去重复的数据。

7. 以你所除去数据创建一个或更多的tables及relationships。

8. 将数据放在第二遍的标准化格式中:

9. 用多于一个以上的键确定tables及relationships。

10. 除去只依赖于键一部分的数据。

11. 以你所除去数据创建一个或更多的tables及relationships。

12. 将数据放在第三遍的标准化格式中:

13. 除去那些依赖于tables或relationships中其他数据,并且不是键的数据。

14. 以你所除去数据创建一个或更多的tables及relationships。

数据与键

在你开始标准化(测试数据)前,简单地列出数据,并为每张表确定一个唯一的主键。这个键可以由一个字段或几个字段(连锁键)组成。

主键是一张表中唯一区分各行的一组字段。Employee表的主键是Employee ID字段。Works In relationship中的主键包括Office Code及Employee ID字段。给数据库中每一relationship给出一个键,从其所连接的每一个table中抽取其键产生。

RelationShip

   

Key

   

Office

   

*Office code

       

Office address

       

Phone number

   

Works in

   

*Office code

       

*Employee ID

   

Department

   

*Department ID

       

Department name

   

Heads

   

*Department ID

       

*Employee ID

   

Assoc with

   

*Department ID

       

*EmployeeID

   

Skill

   

*Skill ID

       

Skill name

       

Skill description

   

Expert In

   

*Skill ID

       

*Employee ID

       

Skill level

       

Date acquired

   

Employee

   

*Employee ID

       

Last Name

       

First Name

       

Social security number

       

Employee street

       

Employee city

       

Employee state

       

Employee phone

       

Date of birth

   

将数据放在第一遍的标准化格式中

● 除去重复的组

● 要测试第一遍标准化格式,除去重复的组,并将它们放进他们各自的一张表中。

● 在下面的例子中,Phone Number可以重复。(一个工作人员可以有多于一个的电话号码。)将重复的组除去,创建一个名为Telephone的新表。在Telephone与Office创建一个名为Associated With的relationship。

将数据放在第二遍的标准化格式中

● 除去那些不依赖于整个键的数据。

● 只看那些有一个以上键的tables及relationships。要测试第二遍标准化格式,除去那些不依赖于整个键的任何数据(组成键的所有字段)。

● 在此例中,原Employee表有一个由两个字段组成的键。一些数据不依赖于整个键;例如,department name只依赖于其中一个键(Department ID)。因此,Department ID,其他Employee数据并不依赖于它,应移至一个名为Department的新表中,并为Employee及Department建立一个名为Assigned To的relationship。

将数据放在第三遍的标准化格式中

● 除去那些不直接依赖于键的数据。

● 要测试第三遍标准化格式,除去那些不是直接依赖于键,而是依赖于其他数据的数据。

● 在此例中,原Employee表有依赖于其键(Employee ID)的数据。然而,office location及office phone依赖于其他字段,即Office Code。它们不直接依赖于Employee ID键。将这组数据,包括Office Code,移至一个名为Office的新表中,并为Employee及Office建立一个名为Works In的relationship。

4.考量关系

当你完成标准化进程后,你的设计已经差不多完成了。你所需要做的,就是考量关系。

考量带有数据的关系

你的一些relationship可能集含有数据。这经常发生在多对多的关系中。

遇到这种情况,将relationship转化为一个table。relationship的键依旧成为table中的键。

考量没有数据的关系

要实现没有数据的关系,你需要定义外部键。外部键是含有另外一个表中主键的一个或多个字段。外部键使你能同时连接多表数据。

有一些基本原则能帮助你决定将这些键放在哪里:

一对多 在一对多关系中,“一”中的主键放在“多”中。此例中,外部键放在Employee表中。

一对一 在一对一关系中,外部键可以放进任一表中。如果必须要放在某一边,而不能放在另一边,应该放在必须的一边。此例中,外部键(Head ID)在Department表中,因为这是必需的。

多对多 在多对多关系中,用两个外部键来创建一个新表。已存的旧表通过这个新表来发生联系。

5.检验设计

在你完成设计之前,你需要确保它满足你的需要。检查你在一开始时所定义的行为,确认你可以获取行为所需要的所有数据:

● 你能找到一个路径来等到你所需要的所有信息吗?

● 设计是否满足了你的需要?

● 所有需要的数据都可用吗?

如果你对以上的问题都回答是,你已经差不多完成设计了。

最终设计

最终设计看起来就像这样:

设计数据库的表属性

数据库设计需要确定有什么表,每张表有什么字段。此节讨论如何指定各字段的属性。

对于每一字段,你必须决定字段名,数据类型及大小,是否允许NULL值,以及你是否希望数据库限制字段中所允许的值。

选择字段名

字段名可以是字母、数字或符号的任意组合。然而,如果字段名包括了字母、数字或下划线、或并不以字母打头,或者它是个关键字(详见关键字表),那么当使用字段名称时,必须用双引号括起来。

为字段选择数据类型

SQL Anywhere支持的数据类型包括:

整数(int, integer, smallint)

小数(decimal, numeric)

浮点数(float, double)

字符型(char, varchar, long varchar)

二进制数据类型(binary, long binary)

日期/时间类型(date, time, timestamp)

用户自定义类型

关于数据类型的内容,请参见“SQL Anywhere数据类型”一节。字段的数据类型影响字段的最大尺寸。例如,如果你指定SMALLINT,此字段可以容纳32,767的整数。INTEGER可以容纳2,147,483,647的整数。对CHAR来讲,字段的最大值必须指定。

长二进制的数据类型可用来在数据库中保存例如图像(如位图)或者文字编辑文档。这些类型的信息通常被称为二进制大型对象,或者BLOBS。

关于每一数据类型的完整描述,见“SQL Anywhere数据类型”。