核测井仪器的结构设计是?
对于核测井仪器结构设计,有人误认为就是简单的机械画图,特别是像碳氧比能谱、中子寿命、双向液流脉冲中子氧活化等测井仪器,又没有推靠器、扶正器,顶多画百余张图纸,没有研究价值,其实不然。现代核测井仪器由井下脉冲中子发生器、屏蔽体、探测器、数字控制电路组成,每部分又由各自的元件板、电子模块等组成;每大部分放在上、中、下哪个位置,它们的元件板怎样摆放、如何固定及防震,才能使探测器源距符合测井方法原理要求;屏蔽体材料、几何形状、尺寸大小如何,才能减少井内液体、套管、水泥环的影响;各部分之间不产生电磁互相干扰,且拆装方便,便于维修;仪器外壳不超长,能够放入测井车鼠洞内,这些就是仪器结设计的基本内容。脉冲中子核测井仪器的结构设计主要内容之一是井下脉冲中子发生器结构设计。其技术难点是中子管是一个特殊元件,其钛氚靶电极加有120kV高压,在井下仪器空间受限制的条件下,要求120kV高压对仪器外壳及其他元件不放电不打火;在井下80~150℃高温环境中,稳定可靠连续工作4~10h,这就是一项非常高的技术,没有较高理论、没有丰富经验是不可能胜任的。诸家公司制造的井下中子发生器屡屡出现故障,导致不能完成生产任务,这也是无可非议的。
脉冲中子发生器是核测井仪器的“瓶颈”技术。脉冲中子发生器向前迈一小步,核测井仪器就向前跨越一大步。20世纪六七十年代,大庆油田地球物理测井研究所应用400Hz正弦波航空发电机发电做电源的中子寿命发生器,做碳氧比项目的室内基础试验。在孔隙度为35%的模型井中,井内充满清水、有套管、水泥环的饱和纯油砂、纯水砂做试验,碳氧比差值为0.10,放射性统计起伏误差0.04,几乎没有差别。上级主管部门和相当一部分技术人员说“碳氧比项目劳民伤财”,要求下马呼声甚高。在这关键时刻,笔者完成了中子管“半调头”式脉冲中子发生器,加上了屏蔽体。在同一模型井各种条件都一样情况下,再做试验,使碳氧比差值由0.10提高至0.20~0.23,相对变化由6%提高到15%,奠定了碳氧比项目的测井基础。在以后的数十年中,笔者对井下中子发生器继续研究,研究出中子管“调头”式脉冲中子发生器结构、“悬浮中子管离子源,一正一负,一推一拉”式脉冲中子发生器结构、“悬浮中子管离子源,靶接地”式脉冲中子发生器结构。由于脉冲中子发生器的这些改进,使项目组人员始终充满信心,也使碳氧比测井仪发展到双探测器BGO(锗酸铋)晶体数控测井。
当油田经过数十年注水开发,放射性钡(131Ba )塑料微球测井机理不存在时,把脉冲中子发生器直径由粗变成细,完成了单向水流脉冲中子氧活化测井仪器的研制(由大庆油田测井公司地球物理测井研究所王健民完成)。笔者把其中的120kV高压倍加器由长变短,提出了双向液流脉冲中子氧活化测井仪研制思路,与阙源、董建华、刘宪伟、杨松等人共同完成了样机的研制和20余口井的现场试验。紧接着又提出了四探测器中子一中子(N或γ)寿命综合测井仪,碳氧比、中子寿命PNN同次测量的综合(N、γ全谱)测井仪研制思路。提出了在中子管两端都放探测器,研制双向核测井仪的概念。由此可见,研究仪器结构是非常重要的。
应用中子源、γ源的核测井仪器的几大部分自上而下摆放顺序是数控电路、探测器、屏蔽体、放射源。应用充油的脉冲中子发生器的几大部分自上而下摆放顺序是中子发生器、屏蔽体、探测器、数控电路。应用充气的脉冲中子发生器的几大部分摆放顺序与一般核测井仪器相同。本章的重点讲述了脉冲中子发生器结构的设计与改进。
我们鑫顺程公司主要以配电柜,仪器外壳,机箱机柜外壳及各种钣金外壳为加工主打,在设计仪器外壳时都有相应的一定要求。在仪器外壳设计运用的是钣金加工业最常见的CAD软件,能灵活的拆图、拼图使仪器外壳各个角度分析到位,设计要求仅供参考:
1.要求设计提供设计源文件及平面图、立体图。
2.根据我们提供的尺寸进行构想,自由发挥。
3.完成后,外观设计专利我公司所有。
4.把以下部件合理分布在机箱里面。气泵由于工作的时候震动,需要固定。
仪器外壳采用优质钢板,表面高温喷塑。适用于工矿企业、学校、医疗及科研单位进行非挥发性物品的干燥、烘焙及灭菌。
2、仪器分析物质也不一样,紫外光谱大都分析有机物,可见光谱大都分析无机物,当然也不是绝对的,只是大部分有机物的吸收敏感点在紫外光谱区,无机物的吸收敏感点在可见光谱区。
3、仪器使用的光源不一样,在目前国内外的分光光度计中,大部分紫外光源用的是氘灯,可见光源用的是钨灯,紫外灯源的价格相对可见灯源的价格要高很多,当然也有一些用氙灯替代氘灯和钨灯,其价格更高。
4、仪器结构设计不一样,紫外可见分光光度计要求仪器的体积相对可见分光光度计要大一些,这其中除了考虑多了一个灯的摆放位置,还要考虑到灯的散热。
5、还有仪器其它的一些不一样的,例如:电路设计原理、色散元件、光电转换元器件等。
5.1.2机械结构设计特点
机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求
5.2机械结构件的结构要素和设计方法
5.2.1结构件的几何要素
机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。
零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。
5.2.2结构件之间的联接
在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。
零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以Vこ萋值恼?D龊稀T硕?喙厥侵敢涣慵?脑硕?旒S肓硪涣慵?泄兀?绯荡驳都艿脑硕?旒1匦肫叫杏谟谥髦岬闹行南撸?馐强看采淼脊旌椭髦嶂嵯呦嗥叫欣幢Vさ模??裕?髦嵊氲脊熘?湮恢孟喙兀欢?都苡胫髦嶂?湮?硕?喙亍?BR>
多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图5.1。
5.2.3结构设计据结构件的材料及热处理不同应注意的问题
机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。
设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。
如:钢材受拉和受压时的力学特性基本相同,因此钢梁结构多为对称结构。铸铁材料的抗压强度远大于抗拉强度,因此承受弯矩的铸铁结构截面多为非对称形状,以使承载时最大压应力大于最大拉应力,图示5.2为两种铸铁支架比较。钢结构设计中通常通过加大截面尺寸的方法增大结构的强度和刚度,但是铸造结构中如果壁厚过大则很难保证铸造质量,所以铸造结构通常通过加筋板和隔板的方法加强结构的刚度和强度。塑料材料由于刚度差,铸造后的冷却不均匀造成的内应力极易引起结构的翘曲,所以塑料结构的筋板与壁厚相近并均匀对称。
对于需要热处理加工的零件,在进行结构设计时的要求有如下几点:(1)零件的几何形状应力求简单、对称,理想的形状为球形。(2)具有不等截面的零件,其大小截面的变化必须平缓,避免突变。如果相邻部分的变化过大,大小截面冷却不均,必然形成内应力。(3)避免锐边尖角结构,为了防止锐边尖角处熔化或过热,一般在槽或孔的边缘上切出2~3mm的倒角。(4)避免厚薄悬殊的截面,厚薄悬殊的截面在淬火冷却时易变形,开裂的倾向较大。
5.3.1机械结构设计的基本要求
机械产品应用于各行各业,结构设计的内容和要求也是千差万别,但都有相同的共性部分。下面就机械结构设计的三个不同层次来说明对结构设计的要求。
1.功能设计 满足主要机械功能要求,在技术上的具体化。如工作原理的实现、工作的可靠性、工艺、材料和装配等方面。
2.质量设计 兼顾各种要求和限制,提高产品的质量和性能价格比,它是现代工程设计的特征。具体为操作、美观、成本、安全、环保等众多其它要求和限制。在现代设计中,质量设计相当重要,往往决定产品的竞争力。那种只满足主要技术功能要求的机械设计时代已经过去,统筹兼顾各种要求,提高产品的质量,是现代机械设计的关键所在。与考虑工作原理相比,兼顾各种要求似乎只是设计细节上的问题,然而细节的总和是质量,产品质量问题不仅是工艺和材料的问题,提高质量应始于设计。
3.优化设计和创新设计 用结构设计变元等方法系统地构造优化设计空间,用创造性设计思维方法和其它科学方法进行优选和创新。
对产品质量的提高永无止境,市场的竞争日趋激烈,需求向个性化方向发展。因此,优化设计和创新设计在现代机械设计中的作用越来越重要,它们将是未来技术产品开发的竞争焦点。
结构设计中得到一个可行的结构方案一般并不很难。机械设计的任务是在众多的可行性方案中寻求较好的或是最好的方案。结构优化设计的前提是要能构造出大量可供优选的可能性方案,即构造出大量的优化求解空间,这也是结构设计最具创造性的地方。结构优化设计目前基本仍局限在用数理模型描述的那类问题上。而更具有潜力、更有成效的结构优化设计应建立在由工艺、材料、联接方式、形状、顺序、方位、数量、尺寸等结构设计变元所构成的结构设计解空间的基础上。5.3.2机械结构基本设计准则
机械设计的最终结果是以一定的结构形式表现出来的,按所设计的结构进行加工、装配,制造成最终的产品。所以,机械结构设计应满足作为产品的多方面要求,基本要求有功能、可靠性、工艺性、经济性和外观造型等方面的要求。此外,还应改善零件的受力,提高强度、刚度、精度和寿命。因此,机械结构设计是一项综合性的技术工作。由于结构设计的错误或不合理,可能造成零部件不应有的失效,使机器达不到设计精度的要求,给装配和维修带来极大的不方便。机械结构设计过程中应考虑如下的结构设计准则。
1.实现预期功能的设计准则
2.满足强度要求的设计准则
3.满足刚度结构的设计准则
4.考虑加工工艺的设计准则
5.考虑装配的设计准则
6.考虑造型设计的准则
5.3.2机械结构基本设计准则
1. 实现预期功能的设计准则
产品的设计主要目的是为了实现预定的功能要求,因此实现预期功能的设计准则是结构设计首先考虑的问题。要满足功能要求,必须做到以下几点。
(1)明确功能: 结构设计是要根据其在机器中的功能和与其他零部件相互的连接关系,确定参数尺寸和结构形状。零部件主要的功能有承受载荷、传递运动和动力,以及保证或保持有关零件或部件之间的相对位置或运动轨迹等。设计的结构应能满足从机器整体考虑对它的功能要求。
(2)功能合理的分配:产品设计时,根据具体情况,通常有必要将任务进行合理的分配,即将一个功能分解为多个分功能。每个分功能都要有确定的结构承担,各部分结构之间应具有合理、协调的联系,以达到总功能的实现。多结构零件承担同一功能可以减轻零件负担,延长使用寿命。V型带截面的结构是任务合理分配的一个例子。纤维绳用来承受拉力;橡胶填充层承受带弯曲时的拉伸和压缩;包布层与带轮轮槽作用,产生传动所需的摩擦力。例如,若只靠螺栓预紧产生的摩擦力来承受横向载荷时,会使螺栓的尺寸过大,可增加抗剪元件,如销、套筒和键等,以分担横向载荷来解决这一问题。
(3)功能集中:为了简化机械产品的结构,降低加工成本,便于安装,在某些情况下,可由一个零件或部件承担多个功能。功能集中会使零件的形状更加复杂,但要有度,否则反而影响加工工艺、增加加工成本,设计时应根据具体情况而定。
5.3.2机械结构基本设计准则
2.满足强度要求的设计准则
(1) 等强度准则
零件截面尺寸的变化应与其内应力变化相适应,使各截面的强度相等。按等强度原理设计的结构,材料可以得到充分的利用,从而减轻了重量、降低成本。如悬臂支架、阶梯轴的设计等。见图5.3。
图5.3
(2) 合理力流结构
为了直观地表示力在机械构件中怎样传递的状态,将力看作犹如水在构件中流动,这些力线汇成力流。表示这个力的流动在结构设计考察中起着重要的作用。
力流在构件中不会中断,任何一条力线都不会突然消失,必然是从一处传入,从另一处传出。力流的另一个特性是它倾向于沿最短的路线传递,从而在最短路线附近力流密集,形成高应力区。其它部位力流稀疏,甚至没有力流通过,从应力角度上讲,材料未能充分利用。因此,若为了提高构件的刚度,应该尽可能按力流最短路线来设计零件的形状,减少承载区域,从而累积变形越小,提高了整个构件的刚度,使材料得到充分利用。
如悬臂布置的小锥齿轮,锥齿轮应尽量靠近轴承以减小悬臂长度,提高轴的弯曲强度。图5.4例举几个典型的实例。
(3) 减小应力集中结构
当力流方向急剧转折时,力流在转折处会过于密集,从而引起应力集中,设计中应在结构上采取措施,使力流转向平缓。应力集中是影响零件疲劳强度的重要因素。结构设计时,应尽量避免或减小应力集中。其方法在相应的章节会作介绍,如增大过度圆角、采用卸载结构等。如图5.5。
(4) 使载荷平衡结构
在机器工作时,常产生一些无用的力,如惯性力、斜齿轮轴向力等,这些力不但增加了轴和轴衬等零件的负荷,降低其精度和寿命,同时也降低了机器的传动效率。所谓载荷平衡就是指采取结构措施部分或全部平衡无用力,以减轻或消除其不良的影响。这些结构措施主要采用平衡元件、对称布置等。
例如,同一轴上的两个斜齿圆柱齿轮所产生的轴向力,可通过合理选择轮齿的旋向及螺旋角的大小使轴向力相互抵消,使轴承负载减小。如图5.6。
5.3.2机械结构基本设计准则
3.满足结构刚度的设计准则
为保证零件在使用期限内正常地实现其功能,必须使其具有足够的刚度。
5.3.2机械结构基本设计准则
4.考虑加工工艺的设计准则
机械零部件结构设计的主要目的是:保证功能的实现,使产品达到要求的性能。但是,结构设计的结果对产品零部件的生产成本及质量有着不可低估的影响。因此,在结构设计中应力求使产品有良好的加工工艺性
所谓好的加工工艺指的是零部件的结构易于加工制造,任何一种加工方法都有可能不能制造某些结构的零部件,或生产成本很高,或质量受到影响。因此,对于设计者认识一种加工方法的特点非常重要,以便在设计结构时尽可能的扬长避短。实际中,零部件结构工艺性受到诸多因素的制约,如生产批量的大小会影响坯件的生成方法;生产设备的条件可能会限制工件的尺寸;此外,造型、精度、热处理、成本等方面都有可能对零部件结构的工艺性有制约作用。因此,结构设计中应充分考虑上述因素对工艺性的影响。
5.3.2机械结构基本设计准则
5.考虑装配的设计准则
装配是产品制造过程中的重要工序,零部件的结构对装配的质量、成本有直接的影响。有关装配的结构设计准则简述如下
(1) 合理划分装配单元
整机应能分解成若干可单独装配的单元(部件或组件),以实现平行且专业化的装配作业,缩短装配周期,并且便于逐级技术检验和维修。
(2)使零部件得到正确安装
-保证零件准确的定位。图5.7所示的两法兰盘用普通螺栓连接。图(a)所示的结构无径向定位基准,装配时不能保证两孔的同轴度;图(b)以相配的圆柱面作为定位基准,结构合理。
-避免双重配合。图5.8(a)中的零件A有两个端面与零件B配合,由于制造误差,不能保证零件A的正确位置。图5.8(b)结构合理。
-防止装配错误。图5.9所示轴承座用两个销钉定位。图(a)中两销钉反向布置,到螺栓的距离相等,装配时很可能将支座旋转180°安装,导致座孔中心线与轴的中心线位置偏差增大。因此,应将两定位销布置在同一侧,或使两定位销到螺栓的距离不等
图5.9
(2) 使零部件便于装配和拆卸
结构设计中,应保证有足够的装配空间,如扳手空间;避免过长配合以免增加装配难度,使配合面擦伤,如有些阶梯轴的设计;为便于拆卸零件,应给出安放拆卸工具的位置,如轴承的拆卸。如图5-10。
5.3.2机械结构基本设计准则
6.考虑造型设计的准则
产品的设计不仅要满足功能要求,而且还应考虑产品造型的美学价值,使之对人产生吸引力。从心理学角度看,人60%的决定取决于第一印象。技术产品的社会属性是商品,在买方市场的时代,为产品设计一个能吸引顾客的外观是一个重要的设计要求;同时造型美观的产品可使操作者减少因精力疲惫而产生的误操作。
外观设计包括三个方面:造型、颜色和表面处理。
考虑造型时,应注意下述三个问题:
(1) 尺寸比例协调
在结构设计时,应注意保持外形轮廓各部分尺寸之间均匀协调的比例关系,应有意识地应用"黄金分割法"来确定尺寸,使产品造型更具美感。
(2) 形状简单统一
机械产品的外形通常由各种基本的几何形体(长方体、圆柱体、锥体等)组合而成。结构设计时,应使这些形状配合适当,基本形状应在视觉上平衡,接近对称又不完全对称的外形易产生倾倒的感觉;尽量减少形状和位置的变化,避免过分凌乱;改善加工工艺
(3) 色彩、图案的支持和点缀
在机械产品表面涂漆,除具有防止腐蚀的功能外,还可增强视觉效果。恰当的色彩可使操作者眼睛的疲劳程度降低,并能提高对设备显示信息的辨别能力。
单色只使用于小构件。大的特别是运动构件如果只用一种颜色就会显得单调无层次,一个小小的附加色块会使整个色调活跃起来。在多个颜色并存的情况下,应有一个起主导作用的底色,和底色相对应的颜色叫对比色。但在一个产品上,不同色调的数量不宜太多,太多的色彩会给人一种华而不实的感觉。
舒服的色彩大约位于从浅黄、绿黄到棕的区域。这个趋势是渐暖,正黄正绿往往显得不舒服;强烈的灰色调显得压抑。对于冷环境应用暖色,如黄、橙黄和红。对于热环境用冷色,如浅蓝。所有颜色都应
淡化。另外,通过一定的色彩配置可使产品显得安全、稳固。将形状变化小的、面积较大的平面配置浅色,而将运动、活跃轮廓的元件配置深色;深色应安置于机械的下部,浅色置于上部。
5.4机械结构设计的工作步骤
不同类型的机械结构设计中各种具体情况的差别很大,没有必要以某种步骤按部就班的进行。通常是确定完成既定功能零部件的形状、尺寸和布局。结构设计过程是综合分析、绘图、计算三者相结合的过程,其过程大致如下:
1. 理清主次、统筹兼顾:明确待设计结构件的主要任务和限制,将实现其目的的功能分解成几个功能。然后从实现机器主要功能(指机器中对实现能量或物料转换起关键作用的基本功能)的零部件入手,通常先从实现功能的结构表面开始,考虑与其他相关零件的相互位置、联结关系,逐渐同其它表面一起连接成一个零件,再将这个零件与其它零件联结成部件,最终组合成实现主要功能的机器。而后,再确定次要的、补充或支持主要部件的部件,如:密封、润滑及维护保养等。
2. 绘制草图:在分析确定结构的同时,粗略估算结构件的主要尺寸并按一定的比例,通过绘制草图,初定零部件的结构。图中应表示出零部件的基本形状,主要尺寸,运动构件的极限位置,空间限制,安装尺寸等。同时结构设计中要充分注意标准件、常用件和通用件的应用,以减少设计与制造的工作量。
3. 对初定的结构进行综合分析,确定最后的结构方案:综合过程是指找出实现功能目的各种可供选择的结构的所有工作。分析过程则是评价、比较并最终确定结构的工作。可通过改变工作面的大小、方位、数量及构件材料、表面特性、连接方式,系统地产生新方案。另外,综合分析的思维特点更多的是以直觉方式进行的,即不是以系统的方式进行的。人的感觉和直觉不是无道理的,多年在生活、生产中积累的经验不自觉地产生了各种各样的判断能力,这种感觉和直觉在设计中起着较大的作用。
4. 结构设计的计算与改进:对承载零部件的结构进行载荷分析,必要时计算其承载强度、刚度、耐磨性等内容。并通过完善结构使结构更加合理地承受载荷、提高承载能力及工作精度。同时考虑零部件装拆、材料、加工工艺的要求,对结构进行改进。在实际的结构设计中,设计者应对设计内容进行想象和模拟,头脑中要从各种角度考虑问题,想象可能发生的问题,这种假象的深度和广度对结构设计的质量起着十分重要的作用。
5. 结构设计的完善:按技术、经济和社会指标不断完善,寻找所选方案中的缺陷和薄弱环节,对照各种要求和限制,反复改进。考虑零部件的通用化、标准化,减少零部件的品种,降低生产成本。在结构草图中注出标准件和外购件。重视安全与劳保(即劳动条件:操作、观察、调整是否方便省力、发生故障时是否易于排查、噪音等),对结构进行完善。
6. 形状的平衡与美观:要考虑直观上看物体是否匀称、美观。外观不均匀时造成材料或机构的浪费。出现惯性力时会失去平衡,很小的外部干扰力作用就可能失稳,抗应力集中和疲劳的性能也弱。
总之,机械结构设计的过程是从内到外、从重要到次要、从局部到总体、从粗略到精细,权衡利弊,反复检查,逐步改进。
小结
机械结构设计在机械设计中起着举足轻重的作用。本章主要讨论机械结构设计的特点、步骤和思维方式。机器工作原理及装配的设计要求是确定零部件结构和形状的主要因素,其次是材料的选择、制造工艺方面的要求,使之具有良好的工艺性(加工、装配)。此外,零部件的结构和形状的完善对强度和刚度的提高有很大的影响。
一、必须具备的基础知识
1 热学、力学、电学、光学、化工分析等方面的基础知识(高中以上);
2 有较高的数学知识,线性代数,拉氏变换和模糊数学等方面的基础知识;
3 有较高的自动化仪表专业的理论知识;
4 有化工工艺,化工原理的基础理论知识;
5 自动调节原理和化工自动化基本知识;
6 测量、误差的基本理论;
7 掌握化工仪表维护检修规程;
8 熟练掌握复杂仪表、高精度仪表、新型仪表、智能仪表的种类、名称、型号、构造、工作原理及正确的使用方法和维护保养的方法;
9 全面掌握化工单元的自动控制系统的工作过程;
10 掌握工艺生产的特点,工艺对仪表、自动控制提出要求;
11 全面熟练掌握各种复杂的标准计量器具和先进的校验设备及其附属设备、使用工具的名称、型号、性能、作用和正确使用方法与维护保养知识;
12 掌握计量仪表,自动化系统可那发生的事故性质、危害程度及预防方法;
13 数量掌握本工种所配备的各种安全设施和防护用品的性能及使用方法;
14 具有仪表技术管理的基本知识;
15 具有计量管理的全面知识;
16 具有初级焊工的工艺知识;
17 具有电工中级工的专业技术知识;
18 具有接受仪表、自动化专业范围内的新设备、新理论的基础知识。
二、必须要具备的专业技能
1 熟练掌握各种复杂的、高精度的、先进的仪表和调节器的维护和检修、试验调整和鉴定;
2 能对仪表及自动化系统进行施工准备和安装调试工作;
3 能根据智能仪表使用说明书的规定进行编程和检修;
4 能对集散控制系统进行大、中修作业;
5 能根据被调参数的记录曲线在线改变调节系统的各种参数,以提高系统的调节调节品质;
6 熟练处理整定智能仪表和集散控制系统的各中参数,能正确判断运行中发生的异常情况,并进行处理;
7 能解决各类仪表,自动化系统运行中的疑难问题,并提出改进意见;
8 根据生产红的问题,能提出解决仪表,自动化方面的技术方案;
9 能独立处理在线仪表的复杂情况;
10 熟练掌握各种复杂的标准计量器具和先进的校验设备的使用方法、性能、结构和维护检修方法;
11 掌握节流装置、调节阀的计算方法;
12 掌握流量测量的温度,压力的补偿计算;
13 掌握调节器参数的工程整定方法,并根据被调参数的记录曲线改善调节品质;
14 能进行电子电路元件的代换计算,小型变压器的计算和一般的稳压电路的设计;
15 能绘制仪表设备示意图,安装接线图;
16 能熟练的看懂仪表,自动化的施工图;
17 能看懂工艺管道、桥架、脉冲管线和电气线保护管设备的空视图。
2.仪表要学哪些基础知识
主干学科:仪器科学与技术学科、光学工程学科、机械工程学科、电子信息工程学科、计算机科学与技术学科。
仪器科学与技术学科是该专业的理论和应用基础,主要研究测量理论和测量方法,探讨和研究各种类型测量仪器仪表的工作原理和应用技术,以及智能化仪器仪表的设计方法。
光学工程学科是该专业的应用基础,主要研究光学测量仪器以及光电测试信息获取与传输的基础理论和应用技术等内容。
机械工程学科是仪器仪表结构设计的基础,主要研究机械测量仪器、光学测量仪器、电子测量仪器的系统构架、运动传递、量值传感、结果指示等内容。
电子信息工程学科是该专业的理论和技术基础,主要研究信息获取技术以及与信息处理有关的基础理论和应用技术,实现信号的获取、转换、调理、传输、处理以及设备的控制、驱动和执行功能。
计算机科学与技术学科是该专业的技术基础,主要研究智能化仪器仪表中的计算机软硬件设计与应用方法以及数字信息的传送与处理技术,推动仪器仪表向着数字化、智能化、虚拟化、网络化方向快速发展。更多内容请关注游迅网!
3.仪表专业知识
一、必须具备的基础知识 1 热学、力学、电学、光学、化工分析等方面的基础知识(高中以上); 2 有较高的数学知识,线性代数,拉氏变换和模糊数学等方面的基础知识; 3 有较高的自动化仪表专业的理论知识; 4 有化工工艺,化工原理的基础理论知识; 5 自动调节原理和化工自动化基本知识; 6 测量、误差的基本理论; 7 掌握化工仪表维护检修规程; 8 熟练掌握复杂仪表、高精度仪表、新型仪表、智能仪表的种类、名称、型号、构造、工作原理及正确的使用方法和维护保养的方法; 9 全面掌握化工单元的自动控制系统的工作过程; 10 掌握工艺生产的特点,工艺对仪表、自动控制提出要求; 11 全面熟练掌握各种复杂的标准计量器具和先进的校验设备及其附属设备、使用工具的名称、型号、性能、作用和正确使用方法与维护保养知识; 12 掌握计量仪表,自动化系统可那发生的事故性质、危害程度及预防方法; 13 数量掌握本工种所配备的各种安全设施和防护用品的性能及使用方法; 14 具有仪表技术管理的基本知识; 15 具有计量管理的全面知识; 16 具有初级焊工的工艺知识; 17 具有电工中级工的专业技术知识; 18 具有接受仪表、自动化专业范围内的新设备、新理论的基础知识。
二、必须要具备的专业技能 1 熟练掌握各种复杂的、高精度的、先进的仪表和调节器的维护和检修、试验调整和鉴定; 2 能对仪表及自动化系统进行施工准备和安装调试工作; 3 能根据智能仪表使用说明书的规定进行编程和检修; 4 能对集散控制系统进行大、中修作业; 5 能根据被调参数的记录曲线在线改变调节系统的各种参数,以提高系统的调节调节品质; 6 熟练处理整定智能仪表和集散控制系统的各中参数,能正确判断运行中发生的异常情况,并进行处理; 7 能解决各类仪表,自动化系统运行中的疑难问题,并提出改进意见; 8 根据生产红的问题,能提出解决仪表,自动化方面的技术方案; 9 能独立处理在线仪表的复杂情况; 10 熟练掌握各种复杂的标准计量器具和先进的校验设备的使用方法、性能、结构和维护检修方法; 11 掌握节流装置、调节阀的计算方法; 12 掌握流量测量的温度,压力的补偿计算; 13 掌握调节器参数的工程整定方法,并根据被调参数的记录曲线改善调节品质; 14 能进行电子电路元件的代换计算,小型变压器的计算和一般的稳压电路的设计; 15 能绘制仪表设备示意图,安装接线图; 16 能熟练的看懂仪表,自动化的施工图; 17 能看懂工艺管道、桥架、脉冲管线和电气线保护管设备的空视图。
4.仪器仪表有什么用
仪器仪表是用以检出、测量、观察、计算各种物理量、物质成分、物性参数等的器具或设备。
包括检修仪、电阻表、分析仪、测试仪、校验仪等。广义来说,仪器仪表也可具有自动控制、报警、信号传递和数据处理等功能,例如用于工业生产过程自动控制中的气动调节仪表,和电动调节仪表,以及集散型仪表控制系统也皆属于仪器仪表。
我国微机继电保护工业虽然起步较晚,但近二十年来,尤其是“十二五”期间有了迅速发展,目前我国已初步形成了一个比较齐全的微机继电保护测试仪生产、科研和营销体系。
5.仪器仪表主要有什么
仪器仪表有很多啊:微机综合保护装置、电动执行器、多功能电力仪表、压力传感器、压力变送器、扩散硅压力变送器、陶瓷压力变送器、智能压力变送器、电动执行器、电磁流量计、涡街流量计、孔板流量计、阿纽巴流量计、涡轮流量计、超声波流量计、简单型流量显示仪、智能型流量积算控制仪、信号隔离器、数显电流表、数显电压表、功率表、功率因数表、计数器、计长仪、传感器变频器专用数显表、温控器、数字调节仪、电量变送器、温度变送器、旋转编码器、液位传感器、称重传感器等等。
常用的有:数字显示电流电压表、网络电力仪表、电子计数器、温控器、接近开关、色标传感器、压力传感器、流量计、电动执行器等。
6.仪表工必备哪些知识
仪表是归于弱电但是不是统一由电气专业负责,电气主要的方向是电工(高压电方面),仪表有专门的专业。
仪表在大学里面的专业叫生产过程自动化,为什么叫生产过程自动化呢? 是因为,如石油 化工 等连续生产的行业中是需要用仪器代替人力的一种设备,现在的很好多行业都需要生产过程自动化专业(仪表),一个单位的自动控制的大小就决定于仪表这方面的技术,我了解的行情是这个专业是很有前途的。这是一个需要用时间和汗水才能换来的成绩,要拿高工资就要学好仪表,在单位里面仪表业是最好耍的一个工作,但是如果你要学习就是一个很苦的的工作,先要学会维护,在研究深成次的懂习,如DCS,PLC编程这个方面的,学会这些你的好日子就来了,好好加油吧。
7.仪器仪表的含义是什么
仪器仪表(英文:instrumentation) 仪器仪表是用以检出、测量、观察、计算各种物理量、物质成分、物性参数等的器具或设备。
真空检漏仪、压力表、测长仪、显微镜、乘法器等均属于仪器仪表。广义来说,仪器仪表也可具有自动控制、报警、信号传递和数据处理等功能,例如用于工业生产过程自动控制中的气动调节仪表,和电动调节仪表,以及集散型仪表控制系统也皆属于仪器仪表。
中文名 仪器仪表 感觉器官 视、听、尝、摸 外文名 instrumentation 功 能 检出、测量、观察、计算各种成分。
8.仪器仪表检修需要注意哪些问题
仪器仪表检修注意事项 用万用表欧姆挡时,切记不要带电测量。
使用逻辑笔、示波器检测信号时,要注意不使探针同时接触两个测量引脚,因为这种情况的实质是在加电的情况下形成短路。检测电源中的滤波电容时,应先将电解电容器的正负极短路一下,而且短路时不要用表笔线来代替导线对电容器进行放电,因为这样容易烧断芯线。
可以取一只带灯头引线的220V,60~100W的灯,接于电容器的两端,在放电瞬间灯泡会闪光。在潮湿环境下检修仪表故障时,对印刷线路用万用表测其各点是否通畅很有必要,因为这种情况下的主要故障是铜箔腐蚀。
检修仪表内部电路时,如果安装元件的接点和电路板上涂了绝缘清漆,测量各点参数时可用普通手缝针焊在万用表的表笔上,以便刺穿漆层直接测量各点,而不用大面积剥离漆层。不要带电插拔各种控制板和插头。
因为在加电情况下,插拔控制板会产生较强的感应电动势,这时瞬间反击电压很高,很容易损坏相应的控制板和插头。 检修时不要盲目乱敲乱碰,以免扩大故障,越修越坏。
拆卸、调整仪表时,应记录原来的位置,以便复原。修理精密仪器仪表时,如不慎将小零件弹飞,应首先判断可能飞落的地方,切勿东找一下,西翻一下,可采取磁铁扫描和视线扫描方法进行寻找。
总之,在仪器仪表维修工作中,首先应弄懂仪器仪表的基本原理,并掌握有关电子方面的知识和技能,而且应备好所有仪器仪表的说明书、图纸等技术资料,另外应养成一种良好的工作素质,从而在仪器仪表的维修工作中提高效率,减少失误。
(一)角度测量的概念
角度测量是确定地面点位置的基本测量工作之一,角度测量包括水平角测量和垂直角测量。经纬仪是角度测量的主要仪器。测量水平角是为了求算地面点的平面位置,测量竖直角是为了求得地面点间的高差或将倾斜距离化算为水平距离。
1.水平角及其测量原理
如图1-10所示,A,B,C是地面上不同高度的3个点,A1,B1,C1分别为A,B,C在同一水平面P上的投影。A1B1与B1C1也就是AB、BC在水平面P上的投影。A1B1与B1C1的夹角β即为B点到A,C方向构成的水平角,所以水平角就是空间两直线垂直投影在水平面上所形成的角。
为了测定水平角的大小,可在两竖直面交线BB1上任一位置安置一个圆形的刻度盘,刻度盘的中心一定要和B点在同一铅垂方向上,并且使度盘旋转水平,那么这个水平角的大小,就可以由刻度盘上两相应方向的读数之差求得。
图1-10 水平角示意图
有了水平放置的度盘,还要有能上下、左右旋转的照准设备去瞄准目标A、C,还要有能在度盘上读出数值的设备。有了这个设备,就可以读出AB,BC方向在度盘上的读数a,c,称为方向值,则水平角就是两个方向的方向值之差。
β=c-a
根据上述原理,测量水平角的仪器必须具备能安置成水平位置并带有角度刻划的圆盘——水平度盘,度盘的中心能位于角顶点的铅垂线上;有一个能照准远方不同方向、不同高度目标的望远镜,它不仅能在水平方向旋转,还能在竖直方向旋转,以便于照准目标和形成正确投影的垂直面,并且具有能读取投影方向值的读数设备。测角仪器经纬仪就是根据这个原理制造的。
2.垂直角及其测量原理
如图1-11所示,空间直线AB和同一铅垂面上水平线AB1的夹角∠BAB1就是A点到B点的垂直角。所以垂直角就是在同一竖直平面内,一点至目标的方向线与水平面间的夹角。方向线在水平面之上,垂直角为正,称为仰角。方向线在水平面之下,垂直角为负,称为俯角。垂直角的角值∣a∣小于等于90°。
为了测量垂直角,在望远镜旋转轴的一端固定一个与旋转轴正交的竖直度盘,并使其刻划中心设在旋转轴上,竖直度盘随望远镜上下转动而转动。在仪器结构设计上,使望远镜视线在水平位置时,竖盘读数为一固定值(例如90°),则当望远镜瞄准目标时,读取竖直度盘读数,就可以计算出垂直角。
图1-11 垂直角示意图
经纬仪就是按上述测角原理设计制造的一种测角仪器。
(二)平面坐标计算的基本原理及公式
如图1-12所示,若已知点A的平面坐标为(xA,yA),测得A,B两点的水平距离为SAB,AB边与x轴的夹角(坐标方位角)为aAB(称为AB边的坐标方位角),则可按下式计算出待定点B的平面直角坐标。
地质测量工:基础知识
图1-12 平面直角坐标计算
根本上来说,氧气体检测仪的检测目的主要是用于安全防护,而氧分析仪的检测目的主要是对被测环境中的氧气含量分析,主要用于过程在线监测.
氧气检测仪与氧分析仪
一、数据的准确度不同:
氧气体检测仪通常只能对指定的气体提供定性分析结果。而氧分析仪则精度更高,可提供定量数据。
二、产品结构不同:
氧气体检测仪一般由气体探测器和信号转换电路构成,而氧分析仪除了气体分析模块和信号转换电路以外,还有气路分析系统\温度控制系统\压力控制系统等等。
三、检测方式不同:
氧气体检测仪的检测方式常为扩散式,只有在环境中才能检测。而氧分析仪是把采集到的气体,然后通过升出取样管的方式,吸到内部进行检验,从而进行分析的。
四、测量的目的有所不同
氧气体检测仪的检测目的主要是用于安全防护,对检测环境中的气体成分已知对应的设置不同的气体检测仪从而达到预防检测的作用。而氧分析仪的检测目的主要是测量管道\容器内的气体含量,主要用于生产工艺过程控制。
五、 完成测定全过程的操作方法不同
氧气体检测仪在应用时,只需将气体检测仪置于被测环境中仪器即可显示数值,完成检测。
氧分析仪必须将气体引入到仪器内部,进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。
更多氧分析仪区别
德国MuTec在线固体水分测量仪主要是基于一个安装在不锈钢法兰外壳里的外置的共振器的工作原理而设计的。通过共振器在测量面表面厚度100mm的圆柱形区域里形成均匀的测量场,当物料均匀的经过测量区域,会削弱此测量场的能量。这样传感器就可以给出一个信号,这个信号与物料的多少,以及物料被极化程度的难易程度成一定的比例关系,从而可以得到我们所需要的水分值。它适用于测量物料表面的的活性水分(附水)。食品安全快速检测仪主要用于各种食品与农产品中农药残留、甲醛、双氧水、有效氯、组胺、挥发性盐基氮、病害肉等的快速定量测定。其中数字表示具有的有效通道数、即可以检测N 个项目。仪器由超高亮度发光二极管光源、比色池、高灵敏度集成光电池、微处理器、全汉字大屏幕液晶屏、嵌入式微型热敏打印机、无线传输模块和集成芯片构成,可直接在大屏幕液晶屏上显示出被测样品中相关指标的含量,并打印出分析结果。食品安全检测仪可快速定量检测食品中农药残留(胆碱酯酶抑制率法)、拟除虫菊酯、茶多酚、面粉中铝、食用合成色素——胭脂红、苋菜红、日落黄、肉类新鲜度、甲醛、吊白块、双氧水、糖精(钠)、硼砂、甲醇、奶粉蛋白质、过氧化值和重金属铅等。用户可根据自己的实际需求,从中任意选择30个项目组成30合1食品安全检测仪。