七年级上数学等式的性质有哪些
等式的性质 教学设计
教学设计思想:本节内容可以安排一课时,在课堂中,师生可以同做演示实验,得出等式的性质,然后教师出示巩固性练习,学生以多种形式完成。通过这节课的学习要让学生充分理解等式的意义,掌握等式变形的两条性质,通过学习,提高学生分析问题的能力。
教学目标:
1.知识与技能:
举出等式的例子;用语言叙述等式变形的两条性质。
会用等式的两条性质将等式变形;能对变形说明理由。
2.过程与方法:
通过等式的两条性质的学习,体会由等式走向新等式的解题思想,即为以后方程的同解变形打下基础;
3.情感、态度与价值观:
等式的两条性质体现了数学的对称美。
教学重点:等式概念的认识理解,等式性质的归纳。
教学难点:利用等式的两条性质变形等式。
教学方法:采取引导发现法,创设合理的问题情境,激发学生思维的积极性,充分体现学生的主体作用。
教学安排:1课时。
教具准备:投影仪、自制胶片、简单实物。
教学活动:
(一)复习引入:
上节课我们学习了方程、一元一次方程、方程的解的概念,现在学生回忆一下:
方程的定义:方程是含有未知数的等式。
师:我们可以估算某些方程的解,但是仅靠估算来解方程是困难的,因此,我们要讨论解方程,为了解方程,大家首先要想想等式有什么性质呢?
给出如下的数学关系:(出示幻灯片)
1+2=3;3x+5;
a+b=b+a; 6=2×3;
S=ab; 4+x=7。
师提出问题:观察上面式子表示了什么关系?由学生回答“相等关系”后引出等式的概念和等式的含义,分清等式的左边和右边。
教师和学生一起完成一个演示实验:
两只手中各拿4支粉笔,现在我们再分别从粉笔盒里拿出两支,放入相应手中,问两只手中粉笔个数的关系?如果我们将开始手中的粉笔各放回两支怎么样呢?扩大到原来的2倍,或缩小到原来的2倍,结果还是相等。
(二)探索新知,讲授新课
教师引导学生,把上面实验抽象为一个数学问题。
即:4=4
,。
提出问题:由上面两组等式变形,我们可以得出关于等式变形什么结论?把上面式中2改3或-5行吗?
学生活动:让全体学生参与讨论,启发学生怎么样用精炼的语言叙述,或分组推荐代表回答。
再观看下图:由它能发现什么规律?
可知:如果在平衡的天平的两边都加同样的量,天平保持平衡。
师总结等式的性质:
由前两式和第一个图可总结:1.等式的两边都加上(或减去)同一个数(或式子),结果仍相等。
由后两式和第二个图可总结:2.等式的两边都乘同一个数,或除以同一个不为0的数,结果仍相等。
提出问题:①4=4两边都加上整式如:两边都加上2a结果还是等式吗?
②第二结论中所说除数可以是零吗?
学生活动:学生回答问题后,教师对上面结论加以补充说明。
教师归纳:以上两个规律,就是我们今天学习的“等式性质”。
(三)尝试反馈,巩固练习
(教法说明)由于这组题是
教学内容:义务教育教科书七年级上册第三章第一节第二课时等式的性质。
教学目标:
1、通过天平进行物理实验从直观角度认识和用具体的数字等式来验证等式的性质。
2、经历用等式的性质进行等式变形以及解简单的一元一次方程的过程,从而初步形成解方程中的化归意识。
教学准备:
实验演示。
教学设计:
一、 创设情境,提出问题
(一)用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?
(1)
(2)
第(1)题学生可以轻松给出解答,第(2)题较复杂,估算困难,此时应提出:我们必须学习解一元一次方程的其他方法。
(二)知识储备:等式的定义。等式具有怎样的性质以及它与方程的解有怎样的联系呢?
二、合作探究
(一)实验探究(等式的性质1):在平衡的天平两端加上(或减)同样的量,天平会发生怎样的变化?你能发现什么规律?
学生演示,回答。
(二)具体数字等式验证(等式的性质1)
教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.
得出结论:等式的性质1并且用数学符号表示
(三)实验探究(等式的性质2)在平衡的天平两端同等倍数的增加或减少砝码,天平会发生怎样的变化?你能发现什么规律?
学生演示,回答。
(四)具体数字等式验证(等式的性质2)
教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.
得出结论:等式的性质2用数学符号表示
三、学生展示
(一)追踪练习——我最棒
(1)从x=y能否得到x+5=y+5?根据什么得到的?
(2)从x=y能否得到 ?根据什么得到的?
(3)从a+2=b+2能否得到a=b?根据什么得到的?
(4)从-3a=-3b能否得到a=b?根据什么得到的?
(5)由 能否得到 ?
(二)拓展延伸
(1) 如果 2x+7=10 , 那么 2x=10-
(2) 如果 5x=4x+7 , 那么 5x - =7
(3) 如果 2a=1.5 , 那么 6a=
(4) 如果 -3x=18 , 那么 x=
(5) 如果 -5x=5y , 那么 x=
(三)易错点分析
1.在等式 两边都除以 ,可得 。这句话对吗?说出你的理由?
2.
四、应用新知识解方程:
点拔:所谓“解方程”就是要求出方程的解“ ”因此我们需要把方程转化为“ ( 为常数)”的形式.
(一)典例引路
利用等式的性质解下列方程并检验
(二) 小试牛刀
(三)超越自我
猜猜你的年龄:把你的年龄乘以2减去5的得数告诉我,我就能猜出你的年龄。
在小学五年级数学教学的过程中,解方程教学在其中有着十分重要的意义,它不仅是小学数据教学中重要的内容之一,还有利于学生问题解决能力的提升。下面是我为你整理的人教版解方程教学设计,一起来看看吧。
人教版解方程教学设计篇一教学内容:
教材P67~68例1、例2、例3及练习十五第1、2、7题。
教学目标:
知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
过程与方法:利用等式的性质解简易方程。
情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。
教学重点:
理解“方程的解”和“解方程”之间的联系和区别。
教学难点:
理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。
教学方法:
创设情境观察、猜想、验证.
教学准备:
多媒体。
教学过程
一、情境导入
谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)
教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?
引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x +3=9(教师板书)
二、互动新授
1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。
学生思考、交流,并尝试说一说自己的想法。
2.教师通过天平帮助学生理解。
出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?
(右边也要拿掉3个球。)
追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3
x =6
质疑:为什么两边都要减3呢?你是根据什么来求的?
(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)
你们的想法对吗?出示第3个天平图,证实学生的想法是对的。
3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)
4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解求解的过程就是解方程。
师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。
5.验算:x =6是不是正确答案呢?我们怎么来检验一下?
引导学生自主思考,并在小组内交流自己的想法。
通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。
即:方程左边=x +3
=6+3
=9
=方程右边
让学生尝试验算,并注意指导书写。
6.出示教材第68页例2情境图。
让学生观察图,理解图意并用等式表示出来:3x =18
引导学生:通过刚才解方程的经验尝试解决这个题。
学生自主尝试解决,教师巡视指导。
汇报解题过程:等式的两边同时除以3,解得x =6。
根据学生的回答,师板书:3x =18
3x ÷3=18÷3
x =6
质疑:你是根据什么来解答的?
引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。
让学生尝试检验计算结果是否正确。
7.出示教材第68页例3,并让学生尝试解答。
由于此题是“a-x ”类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上“x ”,但x 在等号的右边,不会继续做了。
教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上“x ”。
通过计算让学生发现,等号左边只剩下“20”,而右边是“9+x ”。
继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:
20-x =9 请学生自主尝试检验:方程左边=20-x
20-x +x =9+x =20-11
20=9+x =9
9+x =20 =方程右边
9+x -9=20-9
x =ll
8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。
小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。
三、巩固拓展
1.完成教材第67页“做一做”第1、2题。
2.完成教材第68页“做一做”第1、2题。学生自主计算解答,并集体订正答案。
四、课堂小结。师:这节课你学会了什么知识?有哪些收获?
引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。
作业:教材第70~71页练习十五第1、2、7题。
板书设计:
解方程(1)
例1: 例2: 例3:
x -3=9 方程左边=x +3 3x =18 20 - x =9
x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x
x =6 =9 x=6 20=9+x
=方程右边 9+x =20
所以,x =6是方程的解 9+x -9=20-9
x =ll
使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。
教学反思:
在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
一元一次方程是初中数学教学中的重点和难点,在教学过程中教师和学生都有 有心无力 的感觉,如何将一元一次方程与实际应用更好地结合起来是教学一元一次方程中的核心问题,什么是一元一次方程呢?怎么解呢?下面是我整理的什么是一元一次方程,欢迎阅读。
什么是一元一次方程只含有一个未知数、未知数的最高次数为1的等式叫做一元一次方程(linear equation in one unknown)使方程左右两边的值相等的未知数的值,叫做方程的解(solution)
一元一次方程基本信息标准形式
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax=b( )。其中 是未知数的系数, 是常数, 是未知数。未知数一般常设为 , , 。
方程特点
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
变形公式
( , 为常数, 为未知数,且 )
求根公式
一元一次方程的标准形式:ax+b=0 (a≠0)
其求根公式为:x=-b/a
一元一次方程只有一个根
通常解法
去分母→去括号→移项→合并同类项→未知项系数化为1(即化为x=a的形式)
两种类型
(1)总量等于各分量之和。将未知数放在等号左边,常数放在右边。如: 。
(2)等式两边都含未知数。如: , 。
方程举例
3y=-1
5z+2=5
2x=1
5a+4=13×32
都是一元一次方程。
一元一次方程 起源“方程”一词来源于中国古算术书《九章算术》。在这本著作中,已经列出了一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。
主要用途
一元一次方程通常可用于做应用题,如工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题等。[1]
补充说明
合并同类项
(1)依据:乘法分配律
(2)把所含字母相同且相同字母的指数也相同的项合并成一项常数计算后合并成一项
(3)合并时次数不变,只是系数相加减。
移项
(1)依据:等式的性质一
(2)含有未知数的项变号后都移到方程左边,把常数项移到右边。
(3)把方程一边某项移到另一边时,一定要变号(如:移项时将+改为-)。
等式性质
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时乘或除以一个不为零的代数式,等式仍然成立。
等式的性质三:等式两边同时乘方,等式仍然成立。
解方程都是依据等式的这三个性质。
解的定义:使方程左右两边相等的未知数的值叫做方程的解,也可以说是满足方程的一个数值
一元一次方程解法步骤一、去分母
做法:在方程两边各项都乘以各分母的最小公倍数
依据:等式的性质二
二、去括号
一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
三、移项
做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质一
四、合并同类项
做法:把方程化成ax=b(a≠0)的形式
依据:乘法分配律(逆用乘法分配律)
五、系数化为1
做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
依据:等式的性质二.
解方程口诀
去分母,去括号,移项时,要变号,同类项,合并好,再把系数来除掉。
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
同解原理
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
求根公式
由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程:ax+b=0 (a≠0)。
可得出求根公式 。
函数解法
由于一元一次函数都可以转化为ax+b=0(a,b为常量,a≠0)的形式,所以解一元一次方程就可以转化为:
当某一个函数值为0时,求相应的自变量的值。从图像上看,这就相当于求直线y=kx+b(k,b为常量,k≠0)与x轴交点的横坐标的值。
一元一次方程学习实践在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题。一元一次方程牵涉到许多的实际问题,例如工程问题、植树问题、比赛比分问题、行程问题、流水行船问题、相遇问题、追及问题、分段收费问题、盈亏问题、利润问题。
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式,即方程(equation)。
例如:
(1)4x=24
(2)1700+150x=2450
(3)0.52x-(1-0.52)x=80
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
一元一次方程教学设计教学目标
(1)使学生初步掌握一元一次方程解简单应用题的方法和步骤,并会列出一元一次方程解简单的应用题
(2)培养学生观察能力,提高他们分析问题和解决问题的能力
(3)使学生初步养成正确思考问题的良好习惯。
重点及难点
一元一次方程解简单的应用题的方法和步骤。
过程设计
(1)从学生原有的认知结构提出问题:在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1:某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
(2)师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2.某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,所以 x=50000。
答:原来有50000千克面粉。
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (还有,原来重量=运出重量+剩余重量原来重量-剩余重量=运出重量)
教师应指出:
1.这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程
2.例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤然后,采取提问的方式,进行反馈。
最后,根据学生总结的情况,教师总结如下:
1.仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数
2.根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步)
3.根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等方程两边的代数式的单位要相同题中条件应充分利用,不能漏也不能将一个条件重复利用等
4.求出所列方程的解
5.检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
6.最好能用计算器再进行一次验算。
教学手段
引导——活动——讨论[3]
教学方法
启发式教学。
教学过程
主要概念:
1、方程:含有未知数的等式叫做方程。 2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。 3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。 4、解方程:求方程的解的过程叫做解方程。
等式的性质:
等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
解一元一次方程的一般步骤及根据:
1.去分母——等式的性质二
2.去括号——分配律
3.移项——等式的性质一
4.合并——分配律
5.系数化为1——等式的性质二
6.验根——把根分别代入方程的左右边看求得的值是否相等
注意事项
(1)分母是小数时,根据分数的基本性质,把分母转化为整数
(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号
(3)去括号时,不要漏乘括号内的项,不要弄错符号
(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项
(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号
(6)不要生搬硬套解方程的步骤,具体问题具体分析,,找到最佳解法。[4]
等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。则:
〔1〕a+c=b+c
〔2〕a-c=b-c
等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。
3若a=b,则b=a(等式的对称性)。
4若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。 整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
一元一次方程
[编辑本段]
只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程,通常形式是ax+b=0(a,b为常数,a不等于零)。
1去分母 方程两边同时乘各分母的最小公倍数。
2去括号 一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。
3移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
4合并同类项 将原方程化为AX=B〔A不等于0〕的形式。
5系数化为1 方程两边同时除以未知数的系数,得出方程的解。
同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
列一元一次方程解应用题的一般步骤:
1认真审题
2分析已知和未知的量
3找一个等量关系
4解方程
5检验
6写出答,解
教学设计示例
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000.
答:原来有 50 000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
二元一次方程
[编辑本段]
二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。
二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
消元的方法有两种:
代入消元法
加减消元法
三元一次方程
[编辑本段]
三元一次方程:含有三个未知数的一次方程。
三元一次方程组:由几个一元一次方程组成并含有三个未知数的方程组叫做三元一次方程组。
三元一次方程组的解:利用消元思想使三元变二元,再变一元。
方程是初等代数中的重要内容,方程的知识在生产实践中有广泛应用。中国古代对方程就有研究。在《九章算术》中载有“ 方程 ”一章 ,距今已近2000年 ,书中方程是指多元联立一 次方程组 。13 世纪秦九韶首创正负开方术 ,即一元高次方程的数值解法 。在西方,英国 W.G.霍纳于 1819 年才发现类似的近似方法。14世纪朱世杰对含有四个未知数的高次联立方程组的研究已达到了很高的水平。
一元二次方程
一元二次方程:含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。
一般形式:ax2+bx+C=0(a=/0)
解法:1.公式法(直接开平方法)
2.配方法
3.因式分解法
二元一次方程
二元一次方程:含有两个未知数且未知数的最高次数为1的整式方程叫做二元一次方程。
在平面直角坐标系中,任何关于x、y的二元一次方程都表示一条直线。
二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。
一、教学目标:
(一)知识技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质将不等式变形。
(二)数学思考
1.通过联想等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)解决问题
1.学生经历观察、探究、归纳、总结等过程,获得解决数学问题的经验和方法,能够运用不等式的基本性质解决简单的问题。
2.通过运用不等式的基本性质将不等式变形,形成解决问题的一些基本策略,发展学生用数学意识。
(四)情感态度
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。培养学生对数学的好奇心与求知欲,并从数学学习活动中获得成功的体验,树立自信心。
二、教学重点:
探索不等式的三条基本性质并能正确运用它们将不等式变形。
三、教学难点:
不等式基本性质3的探索与运用。
四、教学方法:自主探究——合作交流
五、教学媒体:投影仪
六、教学过程:
【活动一】
问题1.举例说明什么是不等式?
学生积极口答。
问题2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-3=12, 则x=15 ( )
( 2 ) 若3x=12, 则 x=4 ( )
( 3 ) 若x-3>12 则 x>15 ( )
( 4 ) 若3x>12 则 x>4 ( )
教师用投影出示问题,学生思考、回答,(1)、(2)小题唤起对旧知识——等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。
教师小结:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。
在本次活动中,教师应重点关注:(1)学生对等式基本性质的记忆和理解;(2)学生对不等式变形结果的推断。
设计意图:通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。
【活动二】
问题2.由等式性质1你能猜想一下不等式具有什么样的性质吗?
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。此时教师加以引导,“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题3.你能通过实验、猜想,得出进一步的结论吗?
同桌同学通过实例验证得出结论,师生共同总结不等式性质1。
问题4.你能由等式性质2进一步猜想不等式还具有什么性质吗?
学生可能会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。教师不置可否,而是鼓励学生实践是检验真理的唯一标准。
问题5.你能和小伙伴一起来验证你们的猜想吗?
学生在四人小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
设计意图:把猜想作为教学的出发点,启发学生积极思维,探索规律,把课堂变为学生再发现、再创造的乐园。让学生在“做”数学中学数学,真正成为学习的主人。
问题6.在不等式两边都乘0会出现什么情况?
问题7.如果a、b、c表示任意数,且a<b,你能用a、b、c把不等式的基本性质表示出来码?
教师指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识。
设计意图:把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,对培养学生的思维能力有十分重要的意义。
问题8.想一想,不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
在本次活动中,教师应重点关注:(1)学生是否能够运用类比猜想并通过对具体实例的验证、归纳、概括,得出不等式的三条基本性质;(2)学生在不等式的基本性质2、3的探索中是否能正确分类;(3)学生对不等式的基本性质2、3与等式的基本性质2的比较与认识。
设计意图:引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
【活动三】
问题9.你能运用不等式的基本性质解决问题吗?
1.课本61页例2
教师解释x>a或x<a的特点,并由学生依据不等式的基本性质口述解题过程,然后投影示范。
2.课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答,教师投影示范。
设计意图:对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。
问题10.你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
同桌之间互说悄悄话,传授学习窍门。
设计意图:及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。
3.小军的困惑
小军用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?
小军可糊涂了……
聪明的同学,你能告诉小军他究竟错在什么地方吗?
同桌讨论,教师对活动积极、细心的同学提出表扬。
设计意图:通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。
4.孙悟空火眼金睛
①a>2, 则3a___2a
②2a>3a,则 a ___ 0
在本次活动中,教师应重点关注:学生能否正确运用不等式的基本性质将不等式进行简单地变形。特别是在运用不等式基本性质3时是否注意到了两个改变:性质符号的改变和不等号方向的改变。
设计意图:通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
【活动四】
拓广探索:
你来决策
咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?
教师投影出示题目,学生在小组内讨论交流,教师深入学生之中,点拨、引导,最后展示解题过程。
在本次活动中,教师应重点关注:学生在面临实际问题时,是否主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
设计意图:利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。
七、小结:
这节课你有哪些收获?有何体会?你认为自己的表现如何?
教师引导学生回顾、思考、交流。
教师重点关注:(1)学生归纳总结能力;(2)能否对问题有进一步思考;(3)能否发表自己的见解,倾听他人的意见,反思学习过程;(4)学生对性质的理解程度。
设计意图:回顾、总结、矫正、提高。学生自觉形成本节的课的知识网络。
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
工作计划 只是给未来工作设定的一个大体框架,当然还是需要每个月、每一周、每一天的合理安排和具体实施,而它所起到的是督促、提示作用。以下是我整理的初中数学 教学工作计划 ,希望可以提供给大家进行参考和借鉴。
初中数学教学工作计划1
一、指导思想
本学期我们数学教研组以学校的工作计划为指导思想,以全面提高教学质量为中心,以集体备课研究为重点,深入开展教法和学法的研究,用创新的教学理念指导教学实践。
通过落实教学常规,加强课堂教学研究,探索适应新课程改革的教学模式,促进教师教学观念的更新和教学、教研水平的提高, 总结 新课程改革中形成的 经验 及存在的问题,努力提高我校的数学教学质量,为把本教研组建设成为一支强有力的队伍,根据学校的有关规定,结合本组的实际,特制定本学期的教研组工作计划。
二、工作任务和目标
1、按时完成本学期的教学工作计划和总结。
2、写够教案节数,数学组每人要写54节。
3、认真上好一节公开课。
4、积极参加听评课活动,每位教师要听课12节以上,组长要听15节以上。全教研组要集中评课三次以上,各备课组上完公开课后自行评课,要求每位教师踊跃发言,并做好记录。
5、积极参加校内优质课比赛,争取在县获得名次,推荐王英红老师代表本组参赛。
6、严格落实数学教学常规,力争今年本组中考成绩进入六校联赛期考成绩再上新台阶。
7、力争本学期评上“优秀教研组”。
三、工作要求和 措施
1、认真学习新课程标准,研究新课标、新教材。要求每位教师了解初中数学教学内容,特别要了解所教阶段的全部知识、重点、难点及处理措施。
2、优化课堂教学,强化质量意识。杜绝无教案上课,杜绝准备不充分,仓促上阵。要努力提高课堂教学质量,向四十五分钟要效益。
3、注重课后 反思 ,及时的将一节课的得失记录下来,不断积累教学经验。
4、批改好每一次作业,按时检验学习成果,做到单元测验的有效、及时,对典型错误利用学生想马上知道答案的心理立即点评。
5、加强培优补差工作,全面提高数学教学质量。
6、在期末前两周举行一次 八年级 数学期考模拟考。
7、要积极观看教学录像,借鉴优秀教师的教学经验,提高自己的教学水平。
希望全组教师积极行动起来,团结协作,互帮互助,共同进步,为把我们数学组建设成为优秀的教研组而共同努力!
初中数学教学工作计划2
本学期我担任了八年级的数学教学,为了搞好这学期的数学教学工作,我计划做好以下几方面的工作:
一、理论学习
抓好 教育 理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。
二、做好各时期的计划
为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及八年级的数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。
三、备好每堂课
认真钻研新的课程标准和教材,做好初中八年级阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。
四、做好课堂教学
创设教学情境,激发学习兴趣,爱因斯坦曾经说过:“兴趣是的`老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
五、批改作业
精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。
对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。
六、做好课外辅导
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。
积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。
初中数学教学工作计划3
一、教材目标及要求:
1、一元一次不等式(组)的重点是不等式的基本性质,一元一次不等式(组)的解法及其运用,难点是不等式基本性质的理解和运用,一元一次不等式(组)的运用。
2、因式分解的重点是因式分解的四种基本 方法 ,难点是灵活运用这四种方法。
3、分式的重点是分式的四则运算,难点是分式的四则混算、解分式方程以及列分式方程解应用题。
4、相似三角形的重点是成比例线段的概念及应用和相似三角形的性质和判定,难点是灵活运用比例线段和相似三角形知识能力的培养。
5、数据的收集与处理的重点是调查方法的运用,难点是几个概念的理解、区别和应用。
6、证明(一)的重点难点都是命题的推理认证
二、教材分析:
本学期教学内容,共计六章。
教研专区全新登场教学设计 教学方法 课题研究教育论文日常工作
第一章是《一元一次不等式和一元一次不等式组》的主要内容是不等式的基本性质,一元一次不等式(组)的解法及运用。第二章《分解因式》通过具体实例分析因式分解与整式的乘法之间的关系揭示分解因式的实质,最后学习因式分解的几种基本方法。第三章《分式》本章通过分数的有关性质回顾建立了分式的概念、性质和运算法则,并在此基础上学习了分式化简求值、解分式方程及列分式方程解应用题。第四章《相似图形》本章通过两条线段的比和成比例线段等概念的学习,全面探索的相似三角形、相似多边形的性质与识别方法。第五章《数据的收集与处理》主要是概念的理解与运用。第六章《证明(一)》本章的主要内容是命题的相关概念、分类及运用。
三、学生情况分析:
八年级是九年义务教育的重要学段,也是初中学习过程中的关键时期,学习基础的`好坏,直接影响着将来能否升学。我所带的班,相对数学而言,课堂气氛有时好,有时又不容乐观,相当一部分学生学习意识淡漠,态度不端正,基础较差,还有很大的提高空间。
四、措施:
1、认真做好教育教学各方面工作。钻研课标,钻研教材认真备课、上课认真批发作业,及时辅导。
2、激发学生的学习兴趣。注重创设教学情景,发挥教学设计的教育性,培养认同感和成就感,尽可能发挥学生的学习兴趣。
3、加强学习习惯培养。陶行知说:教育就是培养习惯,有助于学生稳定提高学习成绩,发挥学生的非智力因素,弥补智力上的不足。
初中数学教学工作计划4
一、指导思想
为全面推进素质教育,培养新世纪需要的高素质人才,教育部制定了全日制义务教育各科课程新标准。以新的教育理念,优化课堂教学结构。在教学设计过程中,突出教师活动和学生活动,体现“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学基础理念。培养学生的创新精神和综合实践能力。
二、教材分析
七年级数学 下册共有六章。在教学过程中,应该清楚的认识数学学习的重要性,对各章之间的联系。然后由具体到抽象,有特殊到一般的基础性教学掌握,再有就是在整式基础上学习方程的运用。
在课本正文中设置了“思考”“探究”“归纳”等栏目,栏目中以问题、留白或填空的形式为学生提供思维发展、合作交流的空间。
在教学活动中,适当的安排“阅读与思考”“观察与猜想”“实验与探究”等课后或课外知识。加深学生对相关内容的认识和理解,扩大学生的知识面,会运用现代化信息技术手段学习。
三、学情分析
七年七班学生大多来自于农村,学生学习环境差,学生基础薄弱,缺乏对于数学的学习兴趣。为了照顾这些学生,课程进度缓慢。但部分学生学习仍非常刻苦,为了照顾这部分的同学,在教学活动中也讲解一些课外知识,从而不耽误他们每一个人的学习需求。在教学设计时多以中等偏下水平为参考标准。
四、教学要求与具体措施
1、认真备课。
不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前作好充分的准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
2、充分发挥学生的主体作用。
在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、虚心请教其他老师。
在各个章节的学习上都积极征求同级同组其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
4、认真批改作业,布置作业做到精读精练。
有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
5、做好课后辅导工作,注意分层教学。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,使之对学习萌发兴趣,提高他们的信心。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的,从而自觉的把身心投放到学习中去。
在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们辅导,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
6、积极推进素质教育。
我在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
五、其他方面
一学期中,我将始终严格要求自己,听从学校领导的安排,遵守各项 规章制度 ,认真参加各种学习,团结同事,严以律己,宽以待人,争做一名合格的人民教师。
日新月异的时代,社会对教师的素质要求更高,社会对教师的教学能力要求变化得越来越快。在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为这些早上七八点钟的太阳奉献自己的光和热。
初中数学教学工作计划5
一、指导思想:
本学期我以“促进课堂改革,提高教学实效性”为工作中心,力争让每个学生在原有基础上都有所提高。认真贯彻落实学校的教育理念,课堂上以学生为主体,大胆开创课堂教育教学方法,争取做一名优秀的数学老师。
二、工作目标:
通过本期教学,使学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。培养一批数学尖子,能掌握科学的 学习方法 。不及格人数较少。形成良好学风。形成良好的数学学习习惯。形成融洽的师生关系。使学生在德、智、体各方面全面发展。
(一)多方面学习,树立新理念
开学初就要认真通读数学新课程标准,潜心研究,反复揣摩。以《数学课程标准》基本理念为依据是用好教材的前提,所以一定要认真领会《标准》编导意图,去指导教学实践,以便采取灵活、有效的教学方法,使数学教学真正面向全体学生,促进学生全面、持续、和谐的发展。
(二)掌握学生心理特征,激发他们学习数学的积极性。
学生由小学进入中学,在心理上发生了较大的变化,开始要求“独立自主”但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣。同时在言行上,教师要切忌伤害学生的自尊心。如初一学生普遍保留小学阶段积极举手发言的良好习惯,面对孩子们这种学习热情,教师应该表示赞赏,给予肯定,同时尽可能让更多的学生有轮流发言的机会。
(三)以课堂教学为主阵地
(1)在教师这方面,首先做到要通读教材,驾驭教材,认真备课,认真备学生,认真备教法。对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,知识的达标程度教师更要掌握,使优生吃饱,差生吃好。在学生方面,把学生按座次和成绩分成学习小组,选出小组长,在课堂上发挥小组的集体力量,这样用辅优,帮差,带中间的方法来大面积提高教学质量
(2)重视学生能力的培养。
在教学中尽量做到“学生自学能学会的不讲”“在教师的引导下能自己总结的不讲”“在教师的引导下学生互相帮助下能学会的不讲。”从而培养学生的自主、合作、探究能力。充分发挥学生的主体作用,把学生的潜能全部挖掘出来。
(四)指导学生运用科学的学习方法
小学阶段科目少,内容浅,学生学习方法即使差一些,只要用心,用功,总可以应付。但是一进中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我向学生介绍的方法是:“两先,两后,”既先预习,后听课先复习,后做作业。也就是引导学生课前做好预习,发现问题,带着问题有目的性的听课,效果会更好。课后注意及时复习巩固以及经常复习巩固,使学过的知识达到永久记忆,遗忘缓慢。如果学生能真正按照此方法,再加之自己特有的.经验,一定是学起来轻松愉悦,成绩优异的。
初中数学教学工作计划五篇相关 文章 :
★ 初中数学老师教学工作计划参考五篇
★ 2020初中数学教师的工作计划5篇
★ 中学数学教学工作计划5篇
★ 初中数学教学计划五篇
★ 初中数学期末教学工作计划5篇
★ 初中数学教师工作计划5篇
★ 中学数学教学工作计划五篇模板
★ 初中数学教学计划五篇模板
★ 初中数学教学计划合集大全5篇
★ 最新初一数学教学工作计划五篇