建材秒知道
登录
建材号 > 设计 > 正文

长方体的体积教学设计

专注的钢笔
老实的小懒猪
2023-03-01 00:20:57

长方体的体积教学设计

最佳答案
欢呼的鸡
眯眯眼的小鸽子
2025-05-01 00:16:11

长方体的体积教学设计 篇1

教学目标:

1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。

2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。

3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。

教学重点:

体积公式的运用及公式的推导过程。

教学难点:

体验公式的推导过程。

教学过程:

一、比较大小,复习引入

1、比一比。出示书包、文具盒。问:谁大?谁小?

其实刚才我们在比他们的什么?体积指的是什么?

2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)

小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。

3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?

4、揭示课题。

二、动手操作,感知认识

1、拿出12个1立方分米的正方体,小组合作摆一个长方体,并说说它的长、宽、高是多少?体积是多大?

2、汇报交流。问:你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?

还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)

3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?

4、再一次合作摆,小学数学教案《长方体的体积》。边摆边说你们组摆的长方体的长、宽、高是多少?又是怎么摆的?

三、启发探究,自主建构

1、出示长5分米、宽3分米、高2分米的长方体。

问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)

问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)

2、汇报交流。并演示摆的过程。

3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?

4、听要求摆。

(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。

(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。

5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。

四、解决疑难,运用拓展

1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。

2、自己求数学书的体积。

3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?

4、小结正方体的体积公式。

五、全课总结

长方体的体积教学设计 篇2

[教学目标]

1、在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。

2、通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。

3、进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。

[教学准备]

教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。

[教学过程]

一、创设情境,导入新课

谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?

明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)

揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)

[设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]

二、操作探究,发现规律

启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

学生回忆后,电脑演示推导长方形面积公式的过程。

出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?

学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。

谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?

谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

明确活动要求:

(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。

(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

(3)填完表格后,同桌核对数据,并交流自己的.发现。

学生按要求操作、交流,教师巡视。

组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)

板书:长方体的体积=长×宽×高。

启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

[设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]

三、再次探索,验证规律

出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?

学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。

根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)

出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。

提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)

明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。

反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)

提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?

再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?

引导学生用示意图表示出思考过程。

[设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]

四、引导概括,得出公式

提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?

揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?

板书:V=abh。

和同桌说一说你还知道了什么?

让学生口算各题的得数,并交流计算时的思考过程。

五、巩固练习,应用拓展

1、完成“试一试”。

出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?

指导测量、记录数据后独立解答。

出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?

学生独立完成后,组织反馈。

2、完成第26页“练一练”第1题。

先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。

3、完成练习六第2题。

出示题目,让学生自由读题。

提问:计算冷藏车的容积,为什么要从里面量?

学生独立完成计算,并组织反馈。

六、全课小结,梳理学法

提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?

七、课堂作业

练习六第1题。

长方体的体积教学设计 篇3

教学目标

(1)理解体积的含义。

(2)认识常用的体积单位:立方米、立方分米、立方厘米。

(3)能正确区分长度单位、面积单位和体积单位的不同。

过程与方法

(1)运用观察实验的方法理解体积的含义。

(2)结合生活中的事物感知体积单位的大小。

情感态度与价值观

(1)发展学生的空间观念,培养学生的思维能力。

(2)渗透事物之间普遍联系的辩证唯物主义。

教学重点

使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。

教学难点

帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。

教学用具

教师准备:盛有红色

水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。

教学过程

一、揭示课题

我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。

二、探索研究

1.实验观察

观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?

观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?

图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?

结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)

加深理解:

(1)你知道什么是长方体和正方体的体积?

(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?

(3)做第30页的“做一做”。

2.教学体积单位。

(1)介绍体积单位。

常用的体积单位有:立方米、立方分米、立方厘米。

(2)1立方米、1立方分数、1立方厘米的体积各有多大。

1立方厘米:

①让学生拿出1立方厘米的小正方体并量出它的棱长。

②看看我们身边的什么的体积大约1立方厘米。

1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。

1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?

(3)建立表象,感知大小

投影显示第36页的第2题,让学生口答。

3.长度单位、面积单位、体积单位的联系与区别。

投影显示第31页的“做一做”的第一题,让学生说。

三、课堂实践

1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。

2、做练习七的第3题,学生独立做后集体订正。

四、课堂小结

学生小结今天学习的内容。

长方体的体积教学设计 篇4

教学内容:

人教版数学第十册第29页——30页的内容及相应的练习题。

教学目的:

1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。

2、让学生经历长方体体积公式的推导过程,理解体积计算公式。

3、培养学生动手拼摆能力,观察、归纳推理能力。

教学重点:

体积公式的推导过程、体积公式的应用。

教学难点:

体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)。

教学准备:

学生分成2人小组,每组准备一些数量的小正方体、练习题单。

教学过程:

一、直接导入

师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。

板书:长方体的体积。

二、猜测、为学生指名探究方向

1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?

2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。

3、师:

(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。

(2)猜测一下长方体的体积可能和长方体的什么有关?

4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。

三、探究体积公式推导过程

1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。

2、同桌合作:课件出示:合作要求:

(1)齐读要求。

(2)先摆,再观察,最后再填表。

3、学生动手操作,教师巡视指导。

4、全班交流:

(1)小组汇报结果。

(2)观察表格思考:你有什么发现?同桌先互说。

(3)全班交流发现。

(4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?

结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。

5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的体积=长×宽×高;V=abh。

6、回顾刚才的推导过程,同桌互说。

7、及时练习:出示一个长方体的文具盒。

师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。

四、课堂练习

1、口算填表(见题单)。

2、小法官:

(1)两个体积相等的长方体,它们的长宽高一定相等。()

(2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()

3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)

4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)

五、小结下课

通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数;长方体的体积=长×宽×高;V=abh。

课后反思:

1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。

2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。

3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。

4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。

最新回答
风中的毛豆
迅速的裙子
2025-05-01 00:16:11

导语:《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。下面是儿童网我为您收集整理的教学设计,希望对您有所帮助。

   教学内容: 冀教版《数学》六年级下册第29—31页。

教学目标 :1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2.探索并掌握圆柱体积公式,能计算圆柱的体积。

3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学重点:探索并掌握圆柱体积公式,能计算圆柱的体积

教学难点:探索并掌握圆柱体积公式

教具准备:两个不易直观比较体积大小的圆柱桶,探索体积的课件

执教者: 张聪棉

教学时数:一课时

教学过程:

一、情境导入

出示准备好的圆柱筒,同学们这两个物体,哪个大一些,

谁大就是指它的体积大,今天我们就学习--圆柱体的体积

师:看到课题你能想到哪些有关的数学知识?或想知道什么数学知识?

体积的单位有立方米,立方分米,立方厘米。相邻的单位之间的进率是1000

二、圆柱的体积公式

下面请同学看书29-31页,

二、板书课题,出示学习目标

(一)圆柱的体积公式是怎样推导出来的,

(二)圆柱的体积公式是什么。

(三)根据公式能计算圆柱的体积

三、出示自学指导

(一)先观察两次拼出的近似长方体,说一说有什么不同。再提出:等分的分数越多,拼成的长方体会怎么样?

(二)观察拼出的近似长方体和圆柱,你发现它们有什么关系?

(三)你能推导圆柱的体积计算公式吗?

四、学生自学

学生看书自学,教师巡视。

五、学生试做

学生试做

1. 底面积是25平方厘米,高4分米

2. 底面半径2分米,高10分米

3. 底面直径和高都是 20米

判断对错

1.一个圆柱形水桶,它的容积也就等于它的表面积。 ( )

2.一个长方体与一个圆柱,底面积相等,高相等,那么体积也相等。 ( )

3.底面积不相等的两个圆柱的体积一定不相等。 ( )

4.等底、等高的两个圆柱的体积相等。 ( )

5.计算一根圆柱形钢材有多少立方分米,是钢材的表面积。 ( )

填空:

1.把圆柱的底面平均分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(

)。它的底面积等于圆柱的( ),它的高就是圆柱的( )。

2.圆柱体积的计算公式是( ),用字母表示是( )。

3.一个圆柱底面积是25cm2,高是4cm,体积是( )cm3。

4.一个圆柱底面半径是2cm,高是10cm,体积是( )cm3。

六、议一议

议:“圆柱的体积公式中的底面积怎样理解?”

(1) 把圆柱体平均分成若干份,可以拼成一个()图形?这两个图形的()相等

(2) 圆柱体的体积公式是?

(3) 圆柱体的底面积是什么图形?

师:做完的同学看黑板上同学的做法,是否正确,如果有不同答案,可以上前面来改正。

评议黑板上的数学题。

小结:这节课你学会了哪些知识?

七、小测试

今天同学们的收获一定不少,现在我们做个当堂测验,只写答案不抄题,看谁又快又对(见测验题)

一、填空(每题10分)

1.把圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( )。这个长方体的底面积等于圆柱的( ),高等于圆柱的( )。因为长方体的体积等于( )乘( ),所以圆柱的体积等于( )乘( )。

2.一个圆柱的底面积是80平方厘米,高是5厘米,体积是( )平方厘米。

3.一个圆柱的体积是21平方厘米,底面积是7平方厘米,高是( )厘米。

4.一个圆柱的底面积是25平方厘米,高是0.4分米,体积是( )平方厘米。

二、判断(每题5分)

1.把一个圆柱截成两个小圆柱,它的表面积和体积都增加了。( )

2.如果两个圆柱的体积相等,那么他们的高也相等。( )

3.一个圆柱的底面半径扩大2倍,高不变,它的体积扩大2倍。( )

三、计算圆柱的体积(每题10分不写答话)

1.底面积10平方厘米,高15厘米。

2.底面直径和高都是20厘米

3.底面周长62.8厘米,高10厘米

四、一根长50分米的长方体钢材,底面是一个边长10分米的正方形。如果把它锻造成底面面积是1000平方分米的圆柱形钢材,这根圆柱钢材的高是多少分米?(15分)

教学反思:

本节的教学重难点是:1.探索并掌握圆柱体积公式,能计算圆柱的体积。

2.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学方法:我利用课件演示和实物演示来解决。让学生学会转化的数学思想。

成功之处:1.利用迁移规律引入新课,为学生创设良好的学习情境

2.遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习

3.正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果.

不足之处:1.个别学生还是对公式不会灵活应用。

2.练习题有些多,应选择一些有代表性的题,这样小测验就能有充足的时间了。

3.关注学生的有些少,尤其是应关注做错的学生,应知道为什么错,及时在课堂评价出结果会更好。

4.老师讲得多,应放手让学生自己观察自己处理自己总结,会更好。

更多相关热门文章推荐阅读:

1. 七色花的优秀教学设计及反思

2. 《我不是最弱小的》教学设计及反思

3. 《葡萄沟》教学设计及反思

4. 《圆锥的体积》教学设计及反思

5. 《从现在开始》优秀教学设计及反思

6. 《亡羊补牢》优秀教学设计及反思

7. 《可贵的沉默》优秀教学设计及反思模板

8. 人教版四年级下册《尊严》教学设计

9. 《最后一分钟》优秀教学设计及反思

圆柱的体积教学设计及反思(优秀)

坦率的缘分
乐观的热狗
2025-05-01 00:16:11
《容积和容积单位》教学设计 篇1

教学目标

知识与技能:使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。

过程与方法:培养学生的观察能力和解决问题的能力

情感态度价值观:培养学生独立思考、严肃认真的学习态度。

教学重点

建立容积和容积单位观念,容积单位换算

教具、学具准备

长方体纸盒、木盒各一个,一些细沙若干个容积为500ml的易拉罐,1dm3的正方体容器若干个,量杯、滴管若干个,一些水,例6的多媒体课件。

教学过程

一、复习导入

1、什么叫物体的体积?它常用的计量单位是什么?

2、师:(用橡皮泥做两个体积相等的长方体模型,空心,一个壁厚些)同学们,怎样才能知道这两个长方体体积?

生:可以先量出它们的长、宽、高各是多少,再算出它们的体积。

生:(动手测量)计算

师:(出示一堆细沙)请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里装的细沙会一样多吗?

师:同学们,像刚才你们看到的那样,盒子所能容纳细沙的体积,就是盒子的容积。

二、探求新知

1、教学容积的概念。

师:你认为还有什么物体也有容积呢?

生1:水桶里盛满水,这些水的体积就是水桶的容积。

生2:饮料瓶里装满饮料,饮料的体积就是饮料瓶的容积。

生3:茶叶桶所能容纳茶叶的体积,就是茶叶桶的容积。

……

(补充)仓库能容纳货物的体积,箱子里装书的体积,一个妈妈正往桶里装水,等。

教师:瓶子、油筒、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。(板书课题)

2、认识容积单位。

(1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计量单位一般就用体积单位。如上面盒子的容积可以用什么单位?

(2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。

举例:护工把一瓶药水交给病人,嘱咐说:“每天吃2毫升。”。司机对加油站的工作人员说,“加20升汽油。”商店里货架上的可乐,外包装上标着500ml……

(3)感知毫升和升

师:1ml究竟有多少呢?请大家认真观察。

(出示一个小量杯,请学生上台指出1ml所在的刻度。)

师:请同学们猜一猜,如果用滴管来滴水,滴几滴水可能是1ml?

(生猜测)

师生验证。

实际猜测药瓶容积。

师:把这1毫升的水倒进1立方厘米的正方体容器里面,刚好到满。

提问:这个这实验说明什么?(1ml=1cm3)

提问:大家想一想1升是多少毫升?相互讨论。

汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。

(出示一个易拉罐)每个小组都有一个易拉罐,请先看一看,它的容积是多少毫升?然后根据活动内容分小组进行活动。

(屏幕出现活动内容:易拉罐的容积有多少毫升?几个易拉罐的容积是1L?1L水大约可以倒满几杯?一杯水大约有多少毫升?然后再动手试一试,通过实验你发现了什么?)……

师:请你们想一想,除了上面的易拉罐,哪些物品上也标有毫升或升?

生1:牛奶盒子上标有毫升。

师:不错,有一种牛奶盒子上就标着250ml。

生2:我家的“凉拌醋”瓶子上标有500ml。

生3:我家吃的“金龙鱼”油瓶上标有5L。

……

师:请大家看屏幕,先认真想一想,再看怎么填。

[屏幕出示:5L= ( )ml,500ml= ( )L,2.4L=( )ml=( )cm3,2750ml=( )L=( )dm3。]

3、教学例5

师:请大家认真想一想,长方体和正方体容器容积的计算方法是什么?

教师讲解:容器容积的计算方法,跟体积的计算方法相同。但必须注意,计量的时候要从容器的里面量长、宽、高,才能更准确地算出它的容积是多少。

(屏幕出示例5,学生读题。)

①让学生尝试解答。

②解答:5 4 2=40(dm3)

40dm3=40L

答:这个油箱可装汽油40L。

讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成长。汽油是液体,最用好“L”作单位。

“做一做”

三、巩固应用

1、填空

1 L=( )ML 450毫升=( )升 6.4升=( )毫升

2、判断

(1)一个游泳池的容积大约是2000毫升。( )

(2)一个杯子能装水1升,这个杯子的容积就是1升。( )

(3)一个正方体的木箱,它的体积和容积一样大。( )

3、完成教材第53页练习九的第1~3题

四、全课总结

师:谁能谈谈这节课的收获?(生回答略)

《容积和容积单位》教学设计 篇2

教学目的:

1、让学生在具体情境中感受并认识容积,联系实际初步形成1升、1毫升的容量观念,通过实验操作体会1升、1毫升有多少。

2、知道容积和体积的联系与区别,知道容积单位和体积单位之间关系,掌握容积单位之间的进率。

3、让学生在课前课后的实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣和学好数学的信心,获得积极的数学学习情感和解决实际问题的能力。

教具准备:

多媒体课件,一个1升的量杯,一个标有毫升刻度的量筒, 4盒250毫升的牛奶盒,1盒1升的牛奶盒,一个1立方分米的正方体盒子和一袋沙。

学情分析:

本课是在学生已经认识了体积以及体积单位的进率的基础上,继续认识容积以及计量液体的体积常用的容积单位升和毫升,认识1升=1000毫升,知道容积和体积的联系与区别,知道容积单位和体积单位之间关系。五年级的学生有了一定的收集信息能力,有意识让学生收集饮料瓶、饮料盒,并先看一看上面的信息。

教学过程:

一、复习导入

1、什么叫体积?

2、常用的体积单位有哪些?它们之间的关系呢?

3、怎样计算长方体和正方体的体积?公式呢?

4、导入课题

师:展示一盒1升装的牛奶。提问:你会计算这个盒子的体积吗?你知道里面装的是什么?你会计算盒里面牛奶的体积吗?

师:今天,我们就来学习物体的容积和容积单位。

二、观察实验——探索新知

1、感受容积意义

(1)情境出示集装箱,演示往里面装货物的过程。

交流:生活中有哪些物体能装些什么?谁来说一说?

生:碗能装饭。

生:瓶能装水、油。

生:箱子、冰箱。

师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器。那么什么叫做物体的容积?你能用自己的话说一说吗?

这些容器所能容纳物体的体积,通常叫做它们的容积。生活中也有称为容量。

(2)在量杯里倒入一部分的沙,这部分沙的体积是不是这个量杯的容积?

把沙倒入量杯并且使之高出量杯口,这些沙的体积是不是这个量杯的容积呢?

那多少沙子的体积才是这个量杯的容积呢?

[设计意图:以学生的事实知识与生活经验为基础的教学原则,请学生课前进行必要的观察、感知容器、容积,在课堂上进一步的引导,感悟,从形象思维上升到抽象思维,认识容积的意义。]

2、探索容积单位

常用的容积单位有哪些呢?

一个长方体的仓库里存放着水泥,从里面量仓库长10米,宽8米,高6米,能容纳多少水泥?

学生讨论后计算汇报:

10×8×6=486(立方米)。

仓库的容积等同于一个长方体的体积,但要从仓库里面量长、宽、高,计算长方体的体积用体积单位,计算仓库的容积也就用体积单位。

计算容积一般用体积单位。容积的计算方法,跟体积的计算方法相同。

在计量液体体积的时候,就要用到另一种容积单位:升和毫升。

升和毫升就是我们这节课要认识的容积单位。自学课本,再观察老师桌面上摆的教具,小组交流说说你的认识。

生:我们在量杯和量筒上,能看到刻有升和毫升的刻度,1升=1000毫升。

3、验证容积单位和体积单位的联系

验证1升=1立方分米:展示装了1立方分米砂的正方体盒,把砂倒入1升的量杯,得出1升的量杯容积是1立方分米。从而得出1升=1立方分米。

让学生根据立方分米和立方厘米以及升和毫升之间的进率关系,交流推导出1毫升=1立方厘米。

4、生活应用,感悟新知。

师:重现一盒1升装的牛奶。现在,你会计算这个盒子的体积吗?你会计算盒里面牛奶的体积吗?

师:这个盒的容积就是这个盒的体积,这句话对吗?为什么?

盒子的体积指什么?(盒子所占空间的大小。)

盒子的容积指什么?(盒子所能容纳物体的大小,这里也就是装满了的牛奶的体积。)

小结:一般说来,物体的容积比体积小。

巩固新知

判断下列说法是否正确,对的在()内打√,错的打x。

①计算容积或体积都是从容器外面量长、宽、高。

②冰箱的容积就是冰箱的体积。

③游泳池注满水,水的体积就是游泳池的容积。

《容积和容积单位》教学设计 篇3

教学目标

1、使学生知道容积的含义。

2、认识常用的容积单位,了解容积单位和体积单位的关系。

教学重点

建立容积和容积单位观念,知道容积单位和体积单位的关系。

教学难点

理解容积的含义和升、毫升的实际大小。

教学步骤

一、铺垫孕伏。

1、什么是体积?

2、常用的体积单位有哪些?它们之间的进率是多少?

3、这个长方体的体积是多少?是怎样计算的?

二、探究新知。

我们已经 学习 了体积和体积单位,今天我们继续 学习 一个新的知识:容积和容积单位。(板书课题)

(一)建立容积概念。

1、学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

实验题目:计算出长方体盒的体积。

把长方体盒装满细沙,计算细沙的体积。

2、学生汇报结果。

长方体盒的体积:先从外面量出长方体盒的长。宽。高,再计算其体积。

细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长。宽。高,再计算其体积。

教师追问:计算细沙的体积为什么要从长方体里面量长。宽。高?

3、师生共同小结。

教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积。我们看见过汽车上的油箱,油箱里装满汽油。这就是油箱的容积。长方体鱼缸里盛满水,它就是鱼缸的容积。

师生归纳:容器所能容纳的物体的体积,就是它们的容积。(板书)

4、比较物体体积和容积的相同和不同。

相同点:体积和容积都是物体的体积,计算方法一样。

不同点:体积要从容器外量长。宽。高;容积要从里面量长。宽。高。

所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积。(出示长方体木块)

(二)认识容积单位。

1、教师指出:计量容积,一般就用体积单位。但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升。(板书:升 毫升)

2、出示量杯:这就是1升的量杯。

出示量筒:这就是刻有毫升刻度的量筒。

3、教师演示升和毫升之间的关系:

①认识量筒上1毫升的刻度,找出100毫升的刻度。

②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止。

板书:1升=1000毫升

4、学生演示容积单位和体积单位间的关系:

①把1升的红色水倒人1立方分米的正方体盒里

小结:1升=1立方分米

②把1毫升的红色水倒入1立方厘米的正方体盒里

小结:1毫升=1立方厘米

5、小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

6、反馈练习。

3升=( )毫升 2700毫升=( )升

2.57升=( )毫升 640毫升=( )升

2.4升=( )毫升 3.5升=( )立方分米

500毫升=( )升 760毫升=( )立方厘米

(三)计算物体的容积。

1、教学例1。

一种汽车上的油箱,里面长8分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

8×5×4=160(立方分米)

160立方分米=160升

答:这个油箱可以装汽油160升。

2、反馈练习。

一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

12×6×5=360(立方分米)

360立方分米=360000毫升

答:这个水箱可以装水360000毫升。

三、全课小结。

这节课我们 学习 了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

四、随堂练习。

1、填空。

(1)( )叫做容积。

(2)容积的计算方法跟( )的计算方法相同。但要从( )是长、宽、高。

(3)6.09立方分米=( )升=( )毫升

1750立方厘米=( )毫升=( )升

435毫升=( )立方厘米=( )立方分米

9.8升=( )立方分米=( )立方厘米

2、判断。

(1)冰箱的容积就是冰箱的体积。( )

(2)一个薄塑料长

方体(厚度不计),它的体积就是容积。( )

(3) 立方分米( )

3、选择。

(1)计量墨水瓶的容积用( )作单位恰当。

①升 ②毫升

(2)3毫升等于( )立方分米。

①0.3 ②0.3 ③0.003

4、一种背负式喷雾器,药液箱发容积是14升。如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?

五、布置作业。

1、手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米。这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)

2、把调查的实际数字填在括号里。

一小瓶红药水是( )毫升。

一瓶墨水是( )毫升

汽车(或拖拉机)油箱的容积是( )升

六、板书设计

容积和容积单位

容器所容纳物体的体积,就叫做它们的容积。

1升=1000毫升 1升=1立方分米 1毫升=1立方厘米

例6。一种汽车上的油箱,里面长8分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

8×5×4=160 (立方分米) 160立方分米=160升

答:这台油箱可以装汽油160升。

《容积和容积单位》教学设计 篇4

学情分析:

容积和容积单位的教学是在体积和体积单位之后,学生对体积有了一定的认识,体积单位已掌握,并很明白其大小关系,以及它们之间的进率,能用其解决问题。容积的概念较抽象,理解是重点,教学中应让学生多说。从表象抽象出概念,在教学容积单位以及它们的关系时,让学生多观察感知。因此本节设计以学生观察、动手实践为主,感受升和毫升,让学生在动手操作中学到知识。

教学目标:

知识与技能:

1、 使学生认识常用的容积单位升和毫升。

2、 掌握升和毫升间的进率以及它们和体积单位间的关系。

3、 理解容积和体积的概念既有区别又有联系。

过程与方法:

1、 经历容积概念的探究与理解过程。

2、 通过比较明确容积单位与体积单位的.区别与联系。

情感态度价值观:

1、 培养学生的观察意识和探究意识。

2、 培养小组合作意识,体验合作乐趣,体验数学与生活的密切联系。

3、 渗透事物之间是相互联系的辩证唯物主义思想。

教学重点:

建立容积概念,掌握容积单位间的进率。

教学难点:

理解容积与体积的联系和区别。

教法与学法:

教法:引导观察表述,实际操作演示。

学法:观察思考,动手操作,小组合作交流。

教学准备:

教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,1dm3的自制的可盛水的纸盒,2个500ml的饮料瓶,10ml钙铁锌口服液,习题纸,小黑板(复习题),5ml注射器1支

学生:贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

教学过程:

一、复习导入:

1、 什么叫做物体的体积?

2、 常用体积单位有哪些?你知道他们之间的关系吗?

填一填:

2.04m3=( )dm3 ( )dm3=12000cm3

1400cm3=( )dm3 1.2m3=( )dm3=( )cm3

(设计意图:复习是为了为容积和容积单位的学习做铺垫,为单位换算提供方法)

大家练习做得很好,相信大家在掌握旧知识的基础上,今天的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

二、理解容积的概念

1、观察发现,引出容积。

出示长方体纸盒:什么是这个长方体盒子的体积?打开盒子,你发现了什么?(空的)可以放什么?(学生说一说)我们把这个盒子所能容纳物体的体积,叫做盒子的容积。

出示墨水瓶:指出墨水瓶所能容纳物体的体积叫做墨水瓶的容积。

(设计意图:初步感知体积与容积的区别和联系)

2、理解容积的含义。

利用你准备的学具来说说,什么是它们的容积。

3、什么是容积呢?

像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。

(设计意图:引导学生充分交流,引导学生由表象抽象出概念,这样学生对概念的理解就加深了。)

4、 容积和体积的区别与联系。

你能说说容积和体积有什么区别和联系吗?

小组讨论,交流汇报。

区别:体积求的是物体占空间的大小。(外部)

容积求的是物体所能容纳空间的大小。(内部)

(设计意图:让学生在交流中体会体积和容积的区别与联系)

三、认识容积单位以及与体积单位之间的关系

1、 明确计量容积使用体积单位。

常用的体积单位有:立方厘米、立方分米、立方米

2、认识升和毫升。

a、 观察学具,看看你所带的物品上所标示的净含量,你发现了什么?小组交流。

汇报:发现它们的单位都是(L、 ml),而且这些东西里边装的是液体。

(设计意图:引导学生从生活中发现数学,认识容积单位在生活中的应用。)

b、 在计量液体的体积时,如水、油等,常用容积单位升(L)和毫升(ml)并板书。当遇到液体体积很大时,例如:计量蓄水池里的水的体积,就用立方米。

c、 指名说说你所带物品的容积是多少?

3、探究L 、ml与体积单位的关系

你们想知道L和ml与体积单位间的关系吗?请大家认真观察。

(1)介绍量杯,观察1L的刻度线,并往里边倒入1L水。感受1L的大小。(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)

(2)出示装有1ml红墨水的注射器,观察并感受1ml的大小。

(3)演示操作:

将1升水倒入1立方分米的正方体盒中,(由于纸盒自制,要盛水需套塑料袋,倒水时需要边倒边解释,由于水的张力使塑料袋紧贴纸盒四壁。)你发现了什么?

将1毫升水挤入1立方厘米的正方体盒中,你发现了什么?

通过你的发现,你得出了什么结论?

1升=1立方分米 1毫升=1立方厘米

(设计意图:实际操作演示让学生看得更直观,不仅感受了1升和1毫升的大小,并使得升和毫升与体积单位间的关系,化抽象为直观形象,在理解的基础上加深记忆。)

4、研究L 与ml的关系

演示:将两瓶500ml的水倒入量杯中,观察量杯的刻度你发现了什么?得出了什么结论?

1L=1000 ml

(设计意图:通过观察,理解它们之间的关系)

5、 估算1L的大小

(1)小组活动:将一瓶矿泉水倒在纸杯中,看看可以倒几杯。估计一下一杯水大约有多少毫升,几杯水大约是1升。

小组活动,交流汇报。

(2)倒入量杯,验证估算结果。

(设计意图:培养学生的估算能力,让学生估算大约几杯水是1L,之后倒入量杯证实学生的估计。再次真实地感受1L的大小。)

四、拓展延伸

说一说,你在生活中见到过哪些物品上标有升和毫升?

(设计意图: 联系生活实际,让数学回归生活,激发学生学习的兴趣,培养学生细心观察的良好习惯。)

五、练习巩固

1、完成答题

纸上练习一。

填一填:

一瓶钢笔水的容积是60( )

摩托车油箱的容积是8( )

一瓶矿泉水的容积是600( )

运货集装箱的容积约是40( )

微波炉的容积是45( )

集体订正、纠错。

2、完成答题纸上练习二。

化一化:

4 L =( )ml 4800 ml =( )L

2.4 L =( )ml 500 ml =( )L

785 ml=( )cm3=( )dm3 7.5 L=( )dm3=( )cm3

8.04 dm3=( )L =( )ml 2750 cm3=( )ml=( )L

你能说说是怎么换算的吗?

六、课堂小结

通过今天的学习,你有哪些收获呢?

学生交流学习所得。

七、板书设计:

容 积 像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

和 一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

容积单位 计量液体:升(L)、毫升(ml)、立方米(m3)

它们间的关系:1L= 1dm3

1 ml=1 cm3

1L=1000 ml

简单的钢笔
健忘的小熊猫
2025-05-01 00:16:11
教学内容:课本的第29页到30页。

教学目标的确定:

表面上看是要掌握长方体和正方体体积的计算公式。但是比这个目标更重要的是,理解计算公式的来龙去脉。就是要在头脑中清晰地建立公式的推导过程。这是在发展学生的数学思维。具体的讲就是发展学生的空间想象力,联想力,推理和证明。这就是所谓的数学教育的重点在于发展学生的数学思维。要让学生把数学知识之间建立起联系,从碎片化的数学知识,到网状互联的知识结构,这是从浅表学习到深度学习的标志。只有深度学习能够发展学生的思维,而且所学的知识掌握也更加牢固,学生运用知识的能力也就越来越强。反之,如果仅仅是掌握了长方体和正方体的计算公式,表面上看,学生也能够做相关的习题,但学生的学习力却没有得到真正的发展。

基于此教学目标可以确定为:通过实验,(因为是网课,可以在头脑中想象模拟实验过程)用自己的话说出正方体和长方体体积计算公式的含义。一个长方体的体积就是它所含有体积单位的个数。把一个长方体切割成一个个的体积单位小正方体。小正方体的个数跟长方体的棱长(长宽高)有关。用小正方体摆出不同形状的长方体,所用正方体(体积单位)的个数=长方体的长(个数)×宽(个数)×高(层数/个数)。

教学设计的思路:

一、充分利用课本。课本儿是学生学习的最基本的学习材料。也是老师最基本的教学材料。所以有人直接把课本儿等同于教材。其实“教材”所包含的内容远远多于课本儿,课本只是老师教学的材料之一,但却是最重要的材料。所以无论什么学科都要充分利用课本,并且要教会学生如何使用课本,在听课的过程中,及时在课本上做标记和笔记。做作业之前要看课本,通过课本儿把知识再次重现。复习的时候要首先看课本儿。

二、充分利用知识的迁移。教学最重要的一点就是要知道学生已经知道了什么。这是教学的起点。让学生从已知到未知,这就是温故而知新的过程。子曰:“温故而知新,可以为师矣。”可见训练学生利用已有知识进行学习的知识迁移能力是多么重要。学生的这一能力足够强的时候就可以“无师自通”,进而可以为别人的老师。这样就培养了学生的自主学习能力。“教是为了不教”就可成为现实。

教材分析解读:

这节课所要教授的长方体和正方体的计算公式,是建立在前几节课的基础上的。我们来看看前几节课的知识跟这节课有什么样的关系。

课本儿在长方体和正方体的初步认识之后,课本的第20页安排了“做一做”。这里的做一做不只是做习题,而是动手做一做。这是小学生学习的一个显著特色,就是能够动手做的,能够体验的就必须让学生去动手做,去亲身体验。这就是体验式学习。而众所周知,体验式学习的效果是所有学习方式中最佳的。

用小正方体按要求搭建成稍大一些的正方体或者长方体。我认为:这些题目的设计目的就是为长方体和正方体的体积计算公式的推导做铺垫的。

学生在搭建的过程中,在头脑中清晰的构建出小正方体和稍大一些的正方体之间的关系。小正方体和长方体的关系。以及正方体和长方体的关系。如果把小正方体看成是单位是一的正方体,那么它就是体积单位。在我们教授长度单位、面积以及其他单位的时候,就应该一次又一次的让学生明白:所谓计算数量就是计算所含计量单位的多少。计算面积就是计算所含面积单位的多少。那么计算一个物体的体积也就是就是计算这个物体所含体积单位的多少。

当学生用小正方体搭建出稍大一些的正方体的时候,进一步思考这两个正方体之间的体积大小关系。正方体体积的计算公式就呼之欲出。

同样当学生用小正方体搭建出一个长方体的时候,通过乘法快速计数体积单位,那么长方体的体积公式也呼之欲出。。

练习五第22页的第八题,是用另一种方式建构学生知识结构,让学生从另一个方面清晰小正方体与长方体之间的关系。这也是在为体积计算公式的推导做铺垫。第26页的第13题。同样也是这个意义,只不过不再是小拼成长方体。而是长方体切割成小正方体。为使用切割法探究长方体的体积埋下了伏笔。

在第29页的情景图中,主问题:怎样知道一个长方体的体积呢?

男生说:“如果能把它切成大小相同的小正方体就好了。”那么大小相同的小正方体,是不是可以理解为体积单位呢?一个长方体里面含有多少个体积单位,它的体积就是多少。我们老师教课就是要让学生从课本里读出这一层意思。读懂了课本的这一层意思,就明白了男生所说的含义。

反过来说,明白了这一点,就可以引导学生,既然一个长方体里所含体积单位的个数就是它的体积,那么我们可以用体积单位来拼成长方体,来探究长方体体积的计算规律。所以就有了下面的实验探究长方体与小正方体之间的关系

无独有偶。课本在学习了体积单位之后,28页又安排了做一做。

第一题说一说1厘米、1平方厘米、1立方厘米分别是用来计量什么量的单位,他们有什么不同?

这道题正是要建构学生对长度单位,面积单位,体积单位之间的联系,通过“联系”进行“区别”。因为他们之间有着内在联系,所谓“点移动成线,线移动成面,面移动成体”,一维空间是线,二维空间是间,三维空间是体。线段有长短,面积有大小,体积占空间。

第2小题,下面的图形是用棱长是1cm的小正方体拼成的,说出它们的体积各是多少?

这道题的设计意图,再一次强化小正方体和长方体体积之间的关系。以及和各种形状物体体积之间的关系。无论是什么形状的物体所占的体积都是指他所含有体积单位的量。

教学流程设计:

一、联系已知:请同学们打开课本。前后联系着看:课本的第20页安排了“做一做”、第22页的第8题、第28页做一做和第29页的情境图。用自己的话说一说长方体体积与小正方体之间的关系。计算一个长方体或正方体体积的本质是计算什么的数量?

【学生汇报刷屏,老师可以挑着浏览,也可以先不予以评判,结束发言后,直接说出自己的答案,让学生对照。有不同意见打出“不同”两字。以便老师了解学情。进一步解释自己的表达。下课之后有时间再听学生的发言。以便于个辅。】

二、探究未知:在头脑中想象虚拟实验过程。如果有小正方体,学具可以实际做一下实验过程。并做好实验记录。看看通过实验能否得出和课本里的同学同样的结论。把实验结果和结论写到纸上发群里。【老师反馈同上】

三、总结归纳:请结合实验解释长方体或正方体的体积计算公式。

四、形成结论:用字母表示长方体或正方体体积的计算公式。并举例计算。

附:课本内容

敏感的犀牛
温婉的乌龟
2025-05-01 00:16:11
圆柱的体积教学设计及反思 篇1

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2、公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积底面积高

圆柱体积底面积高

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

V=sh

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

课后“练一练”里的练习题。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

圆柱的体积教学设计及反思 篇2

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

【圆柱的体积=底面积×高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积×高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计及反思 篇3

教材简析:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

教学目的:

1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

教具:圆柱的体积公式演示教具,多媒体课件

教学过程:

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

(4)说一说长方体体积的计算公式。

2、创设问题情景。(课件显示)

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的.动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)

二、新课教学:

设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用,小学数学教案《第十一册圆柱的体积公开课》。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)

要用这个公式计算圆柱的体积必须知道什么条件?

填表:请同学看屏幕回答下面问题,

底面积(㎡)高(m)圆柱体积(m3)

63

0.58

52

(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)

例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)

解:d=6dm,h=7dm.r=3dm

S底=πr2=3.14×32=3.14×9=28.26(dm2)

V=S底h=28.26×7=197.82198dm3答:油桶的容积约是198立方分

(设计意图:使学生注意解题格式,注意体积的单位为三次方)

三.巩固反馈

1.求下面圆柱体的体积。(单位:厘米)

同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

练习:(回到想一想中)圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的2/3计算水杯中水的体积?

(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)

四.拓展练习

1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)

五.课堂小结:

1.谈谈这节课你有哪些收获。

2.解题时需要注意那些方面。

(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)

六.布置作业

1.A册习题2.7

2.拓展练习2题

教学反思:

本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

孤独的钻石
疯狂的汉堡
2025-05-01 00:16:11
    教材分析:

    本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

    学情分析:

    长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算。这节课要在此基础上掌握长方体和正方体的体积计算,掌握公式的意义和用法。

    教学目标:

    1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

    2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

    3、培养学生数学的应用意识和团队合作能力,感受数学的实用和趣味。

    教学重点:

    掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

    教学难点:

    理解体积公式的意义。

    教学方法:

    本课以学生动手操作,合作交流与探究为主,教师同时配合多洋葱数学短视频进行演示,指导学生自主学习。

 教学过程:

 (一)激情引趣,揭示课题

    我们的老朋友狗蛋遇到了问题,请大家帮助他解决。比较以下两个长方体的体积。

    你能想到什么样的方法来帮助他?猜一猜体积可能跟哪些条件有关呢?

   

    (二)操作想象,探索公式

      小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。 

    具体的过程:

 (1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高、小正方体的个数和体积。

  (2)汇报交流,学生演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

 这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

(6)利用关系,类推公式。

    通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a³,3写在a的右上角。

  (三)巩固练习,扩展应用

    1.通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

    2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

  (四)总结全课,质疑解惑。

    1.谈收获:让学生说说这节课学习了什么?

    2.质疑解惑:还有什么疑问。

    对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

(五)布置作业

    完成练习七第5—8题,运用公式计算。

    板书设计:

                  长方体和正方体的体积

    长方体的体积=长×宽×高

    V=a b h

    正方体的体积=棱长×棱长×棱长

    V= a ³

    教学反思:

    本节课,我最满意的是长方体和正方体体积的探索过程及结果。在通过动手操作,摆摆、算算,让学生自己探索,验证方法的正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。公式的推导过程,是学生个人独立思考的过程,是小组合作学习的过程。但是在操作过程中,还是发现一些问题的存在,学生的实践能力还有待于提高,学生口头表达、概括的能力还有待于提高,今后在教学过程中注重培养学生的这些能力,使数学课堂变得丰富多彩,提高教学质量 。

外向的豌豆
陶醉的小蝴蝶
2025-05-01 00:16:11
·测量物体的体积 教学设计测量物体的体积 教学设计 教学内容: 教科书第37页的教学内容。 教学目标: 1.让学生在圆柱的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,学会综合运用所学知识测量计.....·长方体与立方体体积计算 教学设计长方体与立方体体积计算 教学设计 教学目标 1、掌握长方体和正方体体积公式的推导,理解长方体和正方体体积都能用底面积乘以高来计算,能应用公式进行计算,并初步解决一些简单的实际问题。 2、在公式的推导过.....·《长方体和立方体的体积练习二》 教学设计《长方体和立方体的体积练习二》 教学设计 教学目标 使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。 教学重点、难点 重难点: 能正确运用长方体和立方体的.....·长方体与立方体体积计算 教学设计长方体与立方体体积计算 教学设计 教学目标 1、掌握长方体和正方体体积公式的推导,理解长方体和正方体体积都能用底面积乘以高来计算,能应用公式进行计算,并初步解决一些简单的实际问题。 2、在公式的推导过程中培养学生动手操作、抽象概括、归纳推理的能力,并进一步发展...·长方体和立方体的体积计算 教学设计长方体和立方体的体积计算 教学设计 教学目标 使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。 教学重点、难点 重难点: 能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。

平淡的羽毛
悲凉的大地
2025-05-01 00:16:11

作为一名默默奉献的教育工作者,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。那么大家知道正规的教案是怎么写的吗?以下是我为大家收集的《圆柱的体积》教案4篇,仅供参考,希望能够帮助到大家。

《圆柱的体积》教案 篇1

最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。

……

师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?

生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?

生1:我是从书上看到的。

(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)

生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!

师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?

(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)

师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)

生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?

师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。

师:了不起的一种想法!(师情不自禁的鼓起了掌。)

生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。

师:你真会思考问题!

生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。

生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!

师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!

……

整节课不时响起孩子们、听课老师们热烈的掌声。

过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。

现从“对话”的视角来赏析这则精彩的片段。

一、“对话”唤发出学习热情。

《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。

二、“对话”迸发出智慧的火花

“水本无华,相荡而生涟漪石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。

三、“对话”赢得心灵的敞亮和沟通

“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。

数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华不仅能增进学生的理解,更能促进教师的反思不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!

《圆柱的体积》教案 篇2

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点: 掌握圆柱体积的计算公式。

教学难点: 圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。

《圆柱的体积》教案 篇3

教学内容:

P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

教学重点:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的.扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

长方体和圆柱体的底面积和体积有怎样的关系?

学生说演示过程,总结推倒公式。

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)

《圆柱的体积》教案 篇4

《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。

圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。

教学情境如下:

一:情境引入,感性认识

师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。

生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。

师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)

师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)

师:你发现了什么?

生:形状变,体积不变.

师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?

生:圆切割拼成一个近似的长方形。

师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?

生:把水倒入长方体容器中,再测量计算。

师:要求圆柱体铁块的体积呢?

生:把它浸入水中,求出排出水的体积。

师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。

二:自主探究,迁移转化

1、引导

师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。

(让学生互相讨论,应如何转化,然后组织全班汇报)

生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

2、 操作

学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。

3、感知:将圆柱体模具(已切好)当场演示。

①让一位学生把切割好的一半拿上又叉开;

②另一位学生将切割好的另一半拼合上去;

③观察得到一个什么形体?同时你发现了什么?

以四人小组为单位进行探索、讨论、总结。

小组汇报:

生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。

4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?

6、汇报:

圆柱→近似长方体

①体积相等②底面积相等③高相等④表面积不相等,

根据学生的回答板书如下:

长方体的体积=底面积×高

↓ ↓ ↓

圆 柱 体 的 体 积 =底面积×高

引导学生用字母表示计算公式:V=Sh

师:要用这个公式计算圆柱的体积必须知道什么条件?

生:底面积和高。

师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?

生:根据公式先求出半径,再求出底面积即可…

教学反思:

教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。

实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。

轻松的鼠标
大意的大船
2025-05-01 00:16:11
教学内容:

长方体的体积(北师大版小学数学第十册第46—47页内容)

教学目标:

1、知识与技能目标:使学生掌握长方体和正方体体积公式的推导过程,理解长方体和正方体的计算公式;初步学会计算长方体和正方体的体积。

2、方法目标:培养学生实际操作能力同时发展他们的空间观念。

3、情感目标:在活动中使学生感受数学与实际生活的密切关系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

教学重点:

理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。

教学难点:

掌握长方体和正方体体积公式的推导过程,理解长方体和正方体体积的计算公式

教具准备:

1立方厘米的立方体12块,多媒体课件。

学具准备:

1立方厘米的立方体12块。

教学过程:

一、创设情境 发现问题

1、比一比。出示三个物体,哪一个所占的空间大?

其实刚才我们在比他们的什么?体积指的是什么?(比较它们的体积,体积是指物体所占空间的大小)

常用的体积单位有那些?(立方厘米,立方分米,立方米)

2、学习计量物体体积方法

1)出示四个棱长为1厘米的小正方体

问:它的棱长为1厘米,体积是多少立方厘米?

2、可以看出,要计量一个物体的体积,就是看这个物体中含有多少个体积单位。

3、 揭示课题

1)出示长方体和正方体模型 问:你还能像刚才那样直接看出它们的体积吗?能比较它们的体积大小吗?

2)其实,在现实生活中,我们所接触的许多长方体和正方体,都不可能直接看出它们的体积大小,如生产电冰箱的包装箱,就要知道电冰箱的体积,能不能用这种数体积单位的方法?那么,怎样来计量它们的体积呢?今天我们就一起来探究长方体、正方体体积的方法。(板书课题:长方体和正方体的体积)。

二、探究新知

1、请同学们拿出6个1立方厘米的正方体,把它们拼在一起,摆成一排。

问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(6立方厘米)

你是怎样知道的?(因为这个长方体由6个1立方厘米正方体拼成)

2、如果使体积是12立方厘米,用几个1立方厘米的小正方体呢?长、宽、高各是多少?(长12cm、宽1cm、高1cm)

师:6立方厘米和12立方厘米的长方体,哪个体积大呢?请大家猜想一下长方体的体积的大小可能与长方体的什么有关系呢?

3、请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高各是多少,数量及体积,再填入表中。

长/cm

宽/cm

高/cm

小正方体

数量(个)

体积/cm3

第一个长方体

第二个长方体

第三个长方体

第四个长方体

师:哪组可以汇报一下你们组摆的情况

这些长方体有什么共同点?不同点?为什么形状不同而体积相等呢?

请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

摆成长方体每排用的小正方体的个数相当于长方体的长,排数相当于宽,层数相当于高。

师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

长方体的体积就是它的长、宽、高的乘积。

长方体的体积=长×宽×高

如果用v表示长方体的体积,用a、b、h分别表示长、宽、高,那么长方体的体积计算公式可以表示为:学生答:

师板书:v=a×b×h 或v=abh

师:同学们,通过实验我们已找到长方体体积的计算方法,现在我们就应用这个公式来解决一些实际问题。 出示课件

2:探索正方体的体积

 师:同学们,他的体积应该怎样求呢?(师出示一个棱长3厘米正方体) 你们能根据正方体和长方体的关系再推导出正方体体积的计算公式吗?

 生:能。

 师:谁能说说自己的推导方法?

 生1:用小正方体摆成大正方体的实验来推导。

 生2:我不同意。我认为可以根据正方体是特殊的长方体的关系来推导。

 师:你能说说你的推导方法吗?

 生2:正方体是特殊的长方体,它的长、宽、高都相等。根据长方体的体积等于长乘宽乘高,就可以推出正方体的体积等于棱长乘棱长再乘棱长。

 师:两个同学说的都有道理,同学们认为哪种方法更好呢?

 (学生们一致认为利用正方体与长方体的特殊关系推导更好。)

 教师根据学生汇报,归纳板书为:

正方体的体积=棱长×棱长×棱长

V=a×a×a =a3 

师讲解:a3 读作的a立方,表示3个a相乘。

三、巩固练习

四、小结

通过这节课的学习,有什么收获?

长方体的体积

长方体的体积=长×宽×高

v=a×b×h 或v=abh

正方体的体积=棱长×棱长×棱长

V=a×a×a 或v=a3