建材秒知道
登录
建材号 > 设计 > 正文

电气设计有哪些要求(设计规范,选型整定等)

怕黑的哑铃
坚强的墨镜
2023-02-28 10:39:50

电气设计有哪些要求(设计规范,选型整定等)

最佳答案
务实的老鼠
拉长的牛排
2025-06-29 19:33:48

电气原理图设计 为满足生产机械及工艺要求进行的电气控制电路的设计电气工艺设计为电气控制装置的制造,使用,运行,维修的需要进行的生产施工设计第一节 电气控制设计的原则和内容一,电气控制设计的原则1)最大限度满足生产机械和生产工艺对电气控制的要求2)在满足要求的前提下,使控制系统简单,经济,合理,便于操作,维修方便,安全可靠3)电器元件选用合理,正确,使系统能正常工作4)为适应工艺的改进,设备能力应留有裕量二,电气控制设计的基本内容1.电气原理图设计内容1) 拟定电气设计任务书2)选择电力拖动方案和控制方式3)确定电动机的类型,型号,容量,转速4)设计电气控制原理图5)选择电器元件及清单6)编写设计计算说明书2. 电气工艺设计内容1)设计电气设备的总体配置,绘制总装配图和总接线图2)绘制各组件电器元件布置图与安装接线图,标明安装方式,接线方式3)编写使用维护说明书第二节 电力拖动方案的确定和电动机的选择一,电力拖动方案的确定1,拖动方式的选择2,调速方案的选择3,电动机调速性质应与负载特性相适应二,拖动电动机的选择(一)电动机选择的基本原则1)电动机的机械特性应满足生产机械的要求,与负载的特性相适应2)电动机的容量要得到充分的利用3)电动机的结构形式要满足机械设计的安装要求,适合工作环境4)在满足设计要求前提下,优先采用三相异步电动机(二)根据生产机械调速要求选择电动机一般---三相笼型异步电动机,双速电机调速,起动转矩大---三相笼型异步电动机调速高---直流电动机,变频调速交流电动机(三)电动机结构形式的选择根据工作性质,安装方式,工作环境选择(四)电动机额定电压的选择(五)电动机额定转速的选择(六)电动机容量的选择1,分析计算法:此外,还可通过对长期运行的同类生产机械的电动机容量进行调查,并对机械主要参数,工作条件进行类比,然后再确定电动机的容量.第三节 电气控制电路设计的一股要求一,电气控制应最大限度地满足生产机械加工工艺的要求设计前,应对生产机械工作性能,结构特点,运动情况,加工工艺过程及加工情况有充分的了解,并在此基础上设计控制方案,考虑控制方式,起动,制动,反向和调速的要求,安置必要的联锁与保护,确保满足生产机械加工工艺的要求.二,对控制电路电流,电压的要求应尽量减少控制电路中的电流,电压种类,控制电压应选择标准电压等级.电气控制电各常用的电压等级如表10-2所示.三,控制电路力求简单,经济1.尽量缩短连接导线的长度和导线数量 设计控制电路时,应考虑各电器元件的安装立置,尽可能地减少连接导线的数量,缩短连接导线的长度.如图10-l.2.尽量减少电器元件的品种,数量和规格 同一用途的器件尽可能选用同品牌,型号的产品,并且电器数量减少到最低限度.3.尽量减少电器元件触头的数目.在控制电路中,尽量减少触头是为了提高电路运行的可靠性.例如图10-2a所示.4.尽量减少通电电器的数目,以利节能与延长电器元件寿命,减少故障.如图10-3a所示.四,确保控制电路工作的安全性和可靠性1.正确连接电器的线圈 在交流控制电路中,同时动作的两个电器线圈不能串联,两个电磁线圈需要同时吸合时其线圈应并联连接,如图10-4b所示.在直流控制电路中,两电感值相差悬殊的直流电压线圈不能并联连接.2正确连接电器元件的触头 设计时,应使分布在电路中不同位置的同一电器触头接到电源的同一相上,以避免在电器触头上引起短路故障.3防止寄生电路 在控制电路的动作过程中.意外接通的电路叫寄生电路.4.在控制电路中控制触头应合理布置.5.在设计控制电路中应考虑继电器触头的接通与分断能力.6,避免发生触头"竞争","冒险"现象竞争:当控制电路状态发生变换时,常伴随电路中的电器元件的触头状态发生变换.由于电器元件总有一定的固有动作时间,对于一个时序电路来说,往往发生不按时序动作的情况,触头争先吸合,就会得到几个不同的输出状态,这种现象称为电路的"竞争".冒险:对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出,这种现象称为"冒险".7.采用电气联锁与机械联锁的双重联锁.五,具有完善的保护环节电气控制电路应具有完善的保护环节,常用的有漏电保护,短路,过载,过电流,过电压,欠电压与零电压,弱磁,联锁与限位保护等.六,要考虑操作,维修与调试的方便第四节 电气控制电路设计的方法与步骤一,电气控制电路设计方法简介设计电气控制电路的方法有两种,一种是分析设计法,另一种是逻辑设计法.分析设计法(经验设计法):根据生产工艺的要求选择一些成熟的典型基本环节来实现这些基本要求,而后再逐步完善其功能,并适当配 置联锁和保护等环节,使其组合成一个整体,成为满足控制要求的完整电路.逻辑设计法:利用逻辑代数这一数学工具设计电气控制电路.在继电接触器控制电路中,把表示触头状态的逻辑变量称为输人逻辑变量,把表示继电器接触器线圈等受控元件的逻辑变量称为输出逻辑变量.输人,输出逻辑变量之间的相互关系称为逻辑函数关系,这种相互关系表明了电气控制电路的结构.所以,根据控制要求,将这些逻辑变量关系写出其逻辑函数关系式,再运用逻辑函数基本公式和运算规律对逻辑函数式进行化简,然后根据化简了的逻辑关系式画出相应的电路结构图,最后再作进一步的检查和优化,以期获得较为完善的设计方案.二,分析设计法的基本步骤分析设计法设计电气控制电路的基本步骤是:l)按工艺要求提出的起动,制动,反向和调速等要求设计主电路.2)根据所设计出的主电路,设计控制电路的基本环节,即满足设计要求的起动,制动,反向和调速等的基本控制环节.3)根据各部分运动要求的配合关系及联锁关系,确定控制参量并设计控制电路的特殊环节.4)分析电路工作中可能出现的故障,加入必要的保护环节.5)综合审查,仔细检查电气控制电路动作是否正确 关键环节可做必要实验,进一步完善和简化电路a三,分析设计法设计举例下面以横梁升降机构的电气控制设计为例来说明分析设计法设计电气控制电路的方法与步骤.在龙门刨床上装有横梁升降机构,加工工件时,横梁应夹紧在立柱上,当加工工件高低不同时,则横梁应先松开立柱然后沿立柱上下移动,移动到位后,横梁应夹紧在立柱上.所以,横梁的升降由横梁升降电动机拖动,横梁的放松,夹紧动作由夹紧电动机,传动装置与夹紧装置配合来完成.(一)横梁升降机构的工艺要求:(1)横梁上升时,自动按照先放松横梁一横梁上升一夹紧横梁的顺序进行.(2)横梁下降时,自动按照放松横梁一横梁下降一横梁回升一夹紧横梁的顺序进行.(3)横梁夹紧后,夹紧电动机自动停止转动.(4)横梁升降应设有上下行程的限位保护,夹紧电动机应设有夹紧力保护.(二)电气控制电路设计过程1.主电路设计: 横梁升降机构分别由横梁升降电动机MI与横梁夹紧放松电动机W拖动.巴两台电动机均为三相笼型异步电动机,均要求实现正反转.因此采用KM1I,KM2.KM3,KM4四个接触器分别控制M1和M2的正反转,如图10-9所示.2.控制电路基本环节的设计:由于横梁升降为调整运动,故对M1采用点动控制,一个点动按钮只能控制一种运动,故用上升点动按钮犯 与下降点动按钮明 来控制横梁的升降,但在移动前要求先松开横梁,移动到位松开点动按钮时又要求横梁夹紧,也就是说点动按钮要控制KMI-KM4四个接触器,所以引入上升中间继电器KA1与下降中间继电器KA2,再由中间继电器去控制四个接触器.于是设计出横梁升降电气控制电路草图之一,如图10-9所示.3.设计控制电路的特殊环节1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止工作,同时使升降电动机MI工作,带动横梁上升.按下上升点动按钮,中间继电器KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开始放松横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下你用地 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮犯,中间继电器KAI接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中.行程开关 SQI复位,因此 KM3应加自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整定在两倍额定电流左右当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电路切断.3)横梁的下降仍按先放松再下降的方式控制,但下降结束后需有短时间的回升运动,该回升运动可采用断电延时型时间继电器进行控制.时间继电器KT的线圈由下降接触器 KMZ常开触头控制,其断电延时断开的常开触头与夹紧接触器KM3常开触头串联后并接于上升电路中间继电器KAI常开触头两端.这样,当横梁下降时,时间继电器KT线圈通电吸合,其断电延时断开的常开触头立即闭合,为回升电路工作作好准备.当横梁下降至所需位置时,松开下降点动按钮田.KMZ线圈断电释放,时间继电器KT线圈断电,夹紧接触器.3.设计控制电路的特殊环节1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止IW,同时使升降电动机 MI工作,带动横梁上升.按下上升点动按钮犯,中间继电器KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开始放松横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下 SQI,用明 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮肥,中间继电器KAI接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中,行程开关地 复位,因此 KM应加自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整定在两倍额定电流左右当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电路切断.KM3线圈通电吸合,横梁开始夹紧.此时,上升接触器KMI线圈通过闭合的时间断电器KT常开触头及KM3常开触头而通电吸合,横梁开始回升,经一段时间延时,延时断开的常开触头KT断开,KMI线圈断电释放,回升运动结束,而横梁还在继续夹紧,夹紧到一定程度,过电流继电器动作,夹紧运动停止.此时的横梁升降电气控制电路设计草图如图10-10所示.4.设计联锁保护环节横梁上升限位保护由行程开关SQZ来实现下降限位保护由行程开关SQ3来实现上升与下降的互锁,夹紧与放松的互锁均由中间继电器KAI和KAZ的常闭触头来实现升降电动机短路保护由熔断器FUI来实现夹紧电动机短路保护由熔断器FUZ实现控制电路的短路保护由熔断器F[J3来实现.综合以上保护,就使横梁升降电气控制电路比较完善了,从而得到图10-11所示完整的横梁升降机构控制电路.第五节 常用控制电器的选择一,接触器的选择一般按下列步骤进行:1.接触器种类的选择:根据接触器控制的负载性质来相应选择直流接触器还是交流接触器一般场合选用电磁式接触器,对频繁操作的带交流负载的场合,可选用带直流电磁线圈的交流按触器.2.接触器使用类别的选择:根据接触器所控制负载的工作任务来选择相应使用类别的接触器.如负载是一般任务则选用AC—3使用类别负载为重任务则应选用AC-4类别,如果负载为一般任务与重任务混合时,则可根据实际情况选用AC—3或AC-4类接触器,如选用AC—3类时,应降级使用.3.接触器额定电压的确定: 接触器主触头的额定电压应根据主触头所控制负载电路的额定电压来确定.4.接触器额定电流的选择 一般情况下,接触器主触头的额定电流应大于等于负载或电动机的额定电流,计算公式为式中I.——接触器主触头额定电流(A)H ——经验系数,一般取l~1.4P.——被控电动机额定功率(kw)U.——被控电动机额定线电压(V).当接触器用于电动机频繁起动,制动或正反转的场合,一般可将其额定电流降一个等级来选用.5.接触器线圈额定电压的确定: 接触器线圈的额定电压应等于控制电路的电源电压.为保证安全,一般接触器线圈选用110V,127V,并由控制变压器供电.但如果控制电路比较简单,所用接触器的数量较少时,为省去控制变压器,可选用380V,220V电压.6.接触器触头数目: 在三相交流系统中一般选用三极接触器,即三对常开主触头,当需要同时控制中胜线时,则选用四极交流接触器.在单相交流和直流系统中则常用两极或三极并联接触器.交流接触器通常有三对常开主触头和四至六对辅助触头,直流接触器通常有两对常开主触头和四对辅助触头.7.接触器额定操作频率 交,直流接触器额定操作频率一般有600次/h,1200次/h等几种,一般说来,额定电流越大,则操作频率越低,可根据实际需要选择.二,电磁式继电器的选择应根据继电器的功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流来选择.1.电磁式电压继电器的选择根据在控制电路中的作用,电压继电器有过电压继电器和欠电压继电器两种类型.表10-3列出了电磁式继电器的类型与用途.交流过电压继电器选择的主要参数是额定电压和动作电压,其动作电压按系统额定电压的1.l-1.2倍整定.交流欠电压继电器常用一般交流电磁式电压继电器,其选用只要满足一般要求即可,对释放电压值无特殊要求.而直流欠电压继电器吸合电压按其额定电压的0.3-0.5倍整定,释放电压按其额定电压的0.07-0.2倍整定.2.电磁式电流继电器的选择根据负载所要求的保护作用,分为过电流继电器和欠电流继电器两种类型.过电流继电器:交流过电流继电器,直流过电流继电器.欠电流继电器:只有直流欠电流继电器,用于直流电动机及电磁吸盘的弱磁保护.过电流继电器的主要参数是额定电流和动作电流,其额定电流应大于或等于被保护电动机的额定电流动作电流应根据电动机工作情况按其起动电流的1.回一1.3倍整定.一般绕线型转子异步电动机的起动电流按2.5倍额定电流考虑,笼型异步电动机的起动电流按4-7倍额定电流考虑.直流过电流继电器动作电流接直流电动机额定电流的1.1-3.0倍整定.欠电流继电器选择的主要参数是额定电流和释放电流,其额定电流应大于或等于直流电动机及电磁吸盘的额定励磁电流释放电流整定值应低于励磁电路正常工作范围内可能出现的最小励磁电流,一般释放电流按最小励磁电流的0.85倍整定.3.电磁式中间继电器的选择应使线圈的电流种类和电压等级与控制电路一致,同时,触头数量,种类及容量应满足控制电路要求.三,热继电器的选择热继电器主要用于电动机的过载保护,因此应根据电动机的形式,工作环境,起动情况,负载情况,工作制及电动机允许过载能力等综合考虑.1.热继电器结构形式的选择对于星形联结的电动机,使用一般不带断相保护的三相热继电器能反映一相断线后的过载,对电动机断相运行能起保护作用.对于三角形联结的电动机,则应选用带断相保护的三相结构热继电器.2.热继电器额定电流的选择原则上按被保护电动机的额定电流选取热继电器.对于长期正常工作的电动机,热继电器中热元件的整定电流值为电动机额定电流的0.95-1.05倍对于过载能力较差的电动机,热继电器热元件整定电流值为电动机额定电流的0.6一0.8倍.对于不频繁起动的电动机,应保证热继电器在电动机起动过程中不产生误动作,若电动机起动电流不超过其额定电流的6倍,并且起动时间不超过6S,可按电动机的额定电流来选择热继电器.对于重复短时工作制的电动机,首先要确定热继电器的允许操作频率,然后再根据电动机的起动时间,起动电流和通电持续率来选择.四,时间继电器的选择1)电流种类和电压等级:电磁阻尼式和空气阻尼式时间继电器,其线圈的电流种类和电压等级应与控制电路的相同电动机或与晶体管式时间继电器,其电源的电流种类和电压等级应与控制电路的相同.2)延时方式:根据控制电路的要求来选择延时方式,即通电延时型和断电延时型.3)触头形式和数量:根据控制电路要求来选择触头形式(延时闭合型或延时断开型)及触头数量.4)延时精度:电磁阻尼式时间继电器适用于延时精度要求不高的场合,电动机式或晶体管式时间继电器适用于延时精度要求高的场合.5)延时时间:应满足电气控制电路的要求.6)操作频率:时间继电器的操作频率不宜过高,否则会影响其使用寿命,甚至会导致延时动作失调.五,熔断器的选择1.一般熔断器的选择:根据熔断器类型,额定电压,额定电流及熔体的额定电流来选择.(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件来选择,其保护特性应与被保护对象的过载能力相匹配.对于容量较小的照明和电动机,一般是考虑它们的过载保护,可选用熔体熔化系数小的熔断器,对于容量较大的照明和电动机,除过载保护外,还应考虑短路时的分断短路电流能力,若短路电流较小时,可选用低分断能力的熔断器,若短路电流较大时,可选用高分断能力的RLI系列熔断器,若短路电流相当大时,可选用有限流作用的Rh及RT12系列熔断器.(2)熔断器额定电压和额定电流:熔断器的额定电压应大于或等于线路的工作电压,额定电流应大于或等于所装熔体的额定电流.(3)熔断器熔体额定电流1)对于照明线路或电热设备等没有冲击电流的负载,应选择熔体的额定电流等于或稍大于负载的额定电流,即 IRN≥IN式中IRN——熔体额定电流(A)IN——负载额定电流(A).2)对于长期工作的单台电动机,要考虑电动机起动时不应熔断,即IRN≥(1.5~2.5)IN轻载时系数取1.5,重载时系数取2.5.3)对于频繁起动的单台电动机,在频繁起动时,熔体不应熔断,即IRN≥(3~3.5)IN4)对于多台电动机长期共用一个熔断器,熔体额定电流为IRN≥(1.5~2.5)INMmax+∑INM式中INMmax——容量最大电动机的额定电流(A)∑INM——除容量最大电动机外,其余电动机额定电流之和(A).(4)适用于配电系统的熔断器:在配电系统多级熔断器保护中,为防止越级熔断,使上,下级熔断器间有良好的配合,选用熔断器时应使上一级(干线)熔断器的熔体额定电流比下一级(支线)的熔体额定电流大1-2个级差.2.快速熔断器的选择(l)快速熔断器的额定电压:快速熔断器额定电压应大于电源电压,且小于晶闸管的反向峰值电压U.,因为快速熔断器分断电流的瞬间,最高电弧电压可达电源电压的1.5-2倍.因此,整流二极管或晶闸管的反向峰值电压必须大于此电压值才能安全工作.即UF≥KI URE式中UF-一硅整流元件或晶闸管的反向峰值电压(V)URE——快速熔断器额定电压(V)KI——安全系数,一般取1,5-2.(2)快速熔断器的额定电流:快速熔断器的额定电流是以有效值表示的,而整流M极管和晶闸管的额定电流是用平均值表示的.当快速熔断器接人交流侧,熔体的额定电流为IRN≥KI IZmax式中IZmax——可能使用的最大整流电流(A)KI——与整流电路形式及导电情况有关的系数,若保护整流M极管时,KI按表10-4取值,若保护晶闸管时,KI按表10-5取值.当快速熔断器接入整流桥臂时,熔体额定电流为IRN≥1.5IGN式中IGN——硅整流元件或晶闸管的额定电流(A).六,开关电器的选择(一)刀开关的选择刀开关主要根据使用的场合,电源种类,电压等级,负载容量及所需极数来选择.(1)根据刀开关在线路中的作用和安装位置选择其结构形式.若用于隔断电源时,选用无灭弧罩的产品若用于分断负载时,则应选用有灭弧罩,且用杠杆来操作的产品.(2)根据线路电压和电流来选择.刀开关的额定电压应大于或等于所在线路的额定电压刀开关额定电流应大于负载的额定电流,当负载为异步电动机时,其额定电流应取为电动机额定电流的1.5倍以上.(3)刀开关的极数应与所在电路的极数相同.(二)组合开关的选择组合开关主要根据电源种类,电压等级,所需触头数及电动机容量来选择.选择时应掌握以下原则:(1)组合开关的通断能力并不是很高,因此不能用它来分断故障电流.对用于控制电动机可逆运行的组合开关,必须在电动机完全停止转动后才允许反方向接通.(2)组合开关接线方式多种,使用时应根据需要正确选择相应产品.(3)组合开关的操作频率不宜太高,一般不宜超过300次/h,所控制负载的功率因数也不能低于规定值,否则组合开关要降低容量使用.(4)组合开关本身不具备过载,短路和欠电压保护,如需这些保护,必须另设其他保护电器.(三)低压断路器的选择低压断路器主要根据保护特性要求,分断能力,电网电压类型及等级,负载电流,操作频率等方面进行选择.(1)额定电压和额定电流:低压断路器的额定电压和额定电流应大于或等于线路的额定电压和额定电流.(2)热脱扣器:热脱扣器整定电流应与被控制电动机或负载的额定电流一致.(3)过电流脱扣器:过电流脱扣器瞬时动作整定电流由下式确定IZ≥KIS式中IZ——瞬时动作整定电流(A)Is——线路中的尖峰电流.若负载是电动机,则Is为起动电流(A)K考虑整定误差和起动电流允许变化的安全系数.当动作时间大于20ms时,取K=1.35当动作时间小于 20ms时,取 K=1.7.(4)欠电压脱扣器:欠电压脱扣器的额定电压应等于线路的额定电压.(四)电源开关联锁机构电源开关联锁机构与相应的断路器和组合开关配套使用,用于接通电源,断开电源和柜门开关联锁,以达到在切断电源后才能打开门,将门关闭好后才能接通电源的效果,实现安全保护.七,控制变压器的选择控制变压器用于降低控制电路或辅助电路的电压,以保证控制电路的安全可靠.控制变压器主要根据一次和二次电压等级及所需要的变压器容量来选择.(1)控制变压器一,二次电压应与交流电源电压,控制电路电压与辅助电路电压相符合.(2)控制变压器容量按下列两种情况计算,依计算容量大者决定控制变压器的容量.l)变压器长期运行时,最大工作负载时变压器的容量应大于或等于最大工作负载所需要的功率,计算公式为ST≥KT ∑PXC式中ST——控制变压器所需容量(VA)∑PXC——控制电路最大负载时工作的电器所需的总功率,其中PXC为电磁器件的吸持功率(W)KT一一一控制变压器容量储备系数,一般取1.1-1.25.2)控制变压器容量应使已吸合的电器在起动其他电器时仍能保持吸会状态,而起动电器也能可靠地吸合,其计算公式为ST≥0.6 ∑PXC +1.5∑Pst式中 ∑Pst_同时起动的电器总吸持功率(W).第六节 电气控制的施工设计与施工一,电气设备总体配置设计组件的划分原则是:l)将功能类似的元件组成在一起,构成控制面板组件,电气控制盘组件,电源组件等.2)将接线关系密切的电器元件置于在同一组件中,以减少组件之间的连线数量.3)强电与弱电控制相分离,以减少干扰.4)为求整齐美观,将外形尺寸相同,重量相近的电器元件组合在一起.5)为便于检查与调试,将需经常调节,维护和易损元件组合在一起.电气设备的各部分及组件之间的接线方式通常有:l)电器控制盘,机床电器的进出线一般采用接线端子.2)被控制设备与电气箱之间为便于拆装,搬运,尽可能采用多孔接插件.3)印刷电路板与弱电控制组件之间宜采用各种类型接插件.总体配置设计是以电气控制的总装配图与总接线图的形式表达出来的,图中是用示意方式反映各部分主要组件的位置和各部分的接线关系,走线方式及使用管线要求.总体设计要使整个系统集中,紧凑要考虑发热量高和噪声振动大的电气部件,使其离开操作者一定距离电源紧急控制开关应安放在方便且明显的位置.

最新回答
顺心的金针菇
闪闪的抽屉
2025-06-29 19:33:48

建筑电气,是指随建筑物的建筑和结构的电气。一般包括:照明、防蕾接地、弱电类。

工艺电气设计,是按工艺设备的供电要求,进行电气设计。

在工业院经常遇到,建筑电气、工艺电气设计由两家完成的情况。

建筑电气设计主要考虑厂房照明,和电气减灾,等等普通的电气设计,工艺配电必须在工业设计院中由设备设计专业以及自动化,传动等专业提出条件后来进行统筹考虑。

精明的抽屉
时尚的冰淇淋
2025-06-29 19:33:48
电气原理图设计

为满足生产机械及工艺要求进行的电气控制电路的设计

电气工艺设计

为电气控制装置的制造,使用,运行,维修的需要进行的生产施工设计

第一节 电气控制设计的原则和内容

一,电气控制设计的原则

1)最大限度满足生产机械和生产工艺对电气控制的要求

2)在满足要求的前提下,使控制系统简单,经济,合理,便于操作,维修方便,安全可靠

3)电器元件选用合理,正确,使系统能正常工作

4)为适应工艺的改进,设备能力应留有裕量

二,电气控制设计的基本内容

1.电气原理图设计内容

1) 拟定电气设计任务书

2)选择电力拖动方案和控制方式

3)确定电动机的类型,型号,容量,转速

4)设计电气控制原理图

5)选择电器元件及清单

6)编写设计计算说明书

2. 电气工艺设计内容

1)设计电气设备的总体配置,绘制总装配图和总接线图

2)绘制各组件电器元件布置图与安装接线图,标明安装方式,接线方式

3)编写使用维护说明书

第二节 电力拖动方案的确定和电动机的选择

一,电力拖动方案的确定

1,拖动方式的选择

2,调速方案的选择

3,电动机调速性质应与负载特性相适应

二,拖动电动机的选择

(一)电动机选择的基本原则

1)电动机的机械特性应满足生产机械的要求,与负载的特性相适应

2)电动机的容量要得到充分的利用

3)电动机的结构形式要满足机械设计的安装要求,适合工作环境

4)在满足设计要求前提下,优先采用三相异步电动机

(二)根据生产机械调速要求选择电动机

一般---三相笼型异步电动机,双速电机

调速,起动转矩大---三相笼型异步电动机

调速高---直流电动机,变频调速交流电动机

(三)电动机结构形式的选择

根据工作性质,安装方式,工作环境选择

(四)电动机额定电压的选择

(五)电动机额定转速的选择

(六)电动机容量的选择

1,分析计算法:

此外,还可通过对长期运行的同类生产机械的电动机容量进行调查,并对机械主要参数,工作条件进行类比,然后再确定电动机的容量.

第三节 电气控制电路设计的一股要求

一,电气控制应最大限度地满足生产机械加工工艺的要求

设计前,应对生产机械工作性能,结构特点,运动情况,加工工艺过程及加工情况有充

分的了解,并在此基础上设计控制方案,考虑控制方式,起动,制动,反向和调速的要求,

安置必要的联锁与保护,确保满足生产机械加工工艺的要求.

二,对控制电路电流,电压的要求

应尽量减少控制电路中的电流,电压种类,控制电压应选择标准电压等级.电气控制电

各常用的电压等级如表10-2所示.

三,控制电路力求简单,经济

1.尽量缩短连接导线的长度和导线数量 设计控制电路时,应考虑各电器元件的安装

立置,尽可能地减少连接导线的数量,缩短连接导线的长度.如图10-l.

2.尽量减少电器元件的品种,数量和规格 同一用途的器件尽可能选用同品牌,型号的产品,并且电器数量减少到最低限度.

3.尽量减少电器元件触头的数目.在控制电路中,尽量减少触头是为了提高电路运行

的可靠性.例如图10-2a所示.

4.尽量减少通电电器的数目,以利节能与延长电器元件寿命,减少故障.如图10-3a所示.

四,确保控制电路工作的安全性和可靠性

1.正确连接电器的线圈 在交流控制电路中,同时动作的两个电器线圈不能串联,两个电磁线圈需要同时吸合时其线圈应并联连接,如图10-4b所示.

在直流控制电路中,两电感值相差悬殊的直流电压线圈不能并联连接.

2正确连接电器元件的触头 设计时,应使分布在电路中不同位置的同一电器触头接到电源的同一相上,以避免在电器触头上引起短路故障.

3防止寄生电路 在控制电路的动作过程中.意外接通的电路叫寄生电路.

4.在控制电路中控制触头应合理布置.

5.在设计控制电路中应考虑继电器触头的接通与分断能力.

6,避免发生触头"竞争","冒险"现象

竞争:当控制电路状态发生变换时,常伴随电路中的电器元件的触头状态发生变换.由于电器元件总有一定的固有动作时间,对于一个时序电路来说,往往发生不按时序动作的情况,触头争先吸合,就会得到几个不同的输出状态,这种现象称为电路的"竞争".

冒险:对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出,这种现象称为"冒险".

7.采用电气联锁与机械联锁的双重联锁.

五,具有完善的保护环节

电气控制电路应具有完善的保护环节,常用的有漏电保护,短路,过载,过电流,过电压,欠电压与零电压,弱磁,联锁与限位保护等.

六,要考虑操作,维修与调试的方便

第四节 电气控制电路设计的方法与步骤

一,电气控制电路设计方法简介

设计电气控制电路的方法有两种,一种是分析设计法,另一种是逻辑设计法.

分析设计法(经验设计法):根据生产工艺的要求选择一些成熟的典型基本环节来实现这些基本要求,而后再逐步完善其功能,并适当配 置联锁和保护等环节,使其组合成一个整体,成为满足控制要求的完整电路.

逻辑设计法:利用逻辑代数这一数学工具设计电气控制电路.

在继电接触器控制电路中,把表示触头状态的逻辑变量称为输人逻辑变量,把表示继电

器接触器线圈等受控元件的逻辑变量称为输出逻辑变量.输人,输出逻辑变量之间的相互关

系称为逻辑函数关系,这种相互关系表明了电气控制电路的结构.所以,根据控制要求,将

这些逻辑变量关系写出其逻辑函数关系式,再运用逻辑函数基本公式和运算规律对逻辑函数

式进行化简,然后根据化简了的逻辑关系式画出相应的电路结构图,最后再作进一步的检查

和优化,以期获得较为完善的设计方案.

二,分析设计法的基本步骤

分析设计法设计电气控制电路的基本步骤是:

l)按工艺要求提出的起动,制动,反向和调速等要求设计主电路.

2)根据所设计出的主电路,设计控制电路的基本环节,即满足设计要求的起动,制动,

反向和调速等的基本控制环节.

3)根据各部分运动要求的配合关系及联锁关系,确定控制参量并设计控制电路的特殊

环节.

4)分析电路工作中可能出现的故障,加入必要的保护环节.

5)综合审查,仔细检查电气控制电路动作是否正确 关键环节可做必要实验,进一步

完善和简化电路a

三,分析设计法设计举例

下面以横梁升降机构的电气控制设计为例来说明分析设计法设计电气控制电路的方法与

步骤.

在龙门刨床上装有横梁升降机构,加工工件时,横梁应夹紧在立柱上,当加工工件高低

不同时,则横梁应先松开立柱然后沿立柱上下移动,移动到位后,横梁应夹紧在立柱上.所

以,横梁的升降由横梁升降电动机拖动,横梁的放松,夹紧动作由夹紧电动机,传动装置与

夹紧装置配合来完成.

(一)横梁升降机构的工艺要求:

(1)横梁上升时,自动按照先放松横梁一横梁上升一夹紧横梁的顺序进行.

(2)横梁下降时,自动按照放松横梁一横梁下降一横梁回升一夹紧横梁的顺序进行.

(3)横梁夹紧后,夹紧电动机自动停止转动.

(4)横梁升降应设有上下行程的限位保护,夹紧电动机应设有夹紧力保护.

(二)电气控制电路设计过程

1.主电路设计: 横梁升降机构分别由横梁升降电动机MI与横梁夹紧放松电动机W拖

动.巴两台电动机均为三相笼型异步电动机,均要求实现正反转.因此采用KM1I,KM2.

KM3,KM4四个接触器分别控制M1和M2的正反转,如图10-9所示.

2.控制电路基本环节的设计:由于横梁升降为调整运动,故对M1采用点动控制,一个

点动按钮只能控制一种运动,故用上升点动按钮犯 与下降点动按钮明 来控制横梁的升降,但在移动前要求先松开横梁,移动到位松开点动按钮时又要求横梁夹紧,也就是说点动按钮要控制KMI-KM4四个接触器,所以引入上升中间继电器KA1与下降中间继电器KA2,再由中间继电器去控制四个接触器.于是设计出横梁升降电气控制电路草图之一,如图10-9所示.

3.设计控制电路的特殊环节

1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止

工作,同时使升降电动机MI工作,带动横梁上升.按下上升点动按钮,中间继电器KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开始放松横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下你用地 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.

2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮犯,中间继电器KAI

接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时

使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中.行程开关 SQI复位,因此 KM3应加

自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控

制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹

紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整

定在两倍额定电流左右当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电

路切断.

3)横梁的下降仍按先放松再下降的方式控制,但下降结束后需有短时间的回升运动,该回升运动可采用断电延时型时间继电器进行控制.时间继电器KT的线圈由下降接触器 KMZ常开触头控制,其断电延时断开的常开触头与夹紧接触器KM3常开触头串联后并接于上升电路中间继电器KAI常开触头两端.这样,当横梁下降时,时间继电器KT线圈通电吸合,其断电延时断开的常开触头立即闭合,为回升电路工作作好准备.当横梁下降至所需位置时,松开下降点动按钮田.KMZ线圈断电释放,时间继电器KT线圈断电,夹紧接触器.

3.设计控制电路的特殊环节

1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止

IW,同时使升降电动机 MI工作,带动横梁上升.按下上升点动按钮犯,中间继电器

KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开

始放松横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下 SQI,

用明 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈

的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.

2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮肥,中间继电器KAI

接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时

使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中,行程开关地 复位,因此 KM应加

自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控

制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹

紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整

定在两倍额定电流左右当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电

路切断.KM3线圈通电吸合,横梁开始夹紧.此时,上升接触器KMI线圈通过闭合的时间断电器KT常开触头及KM3常开触头而通电吸合,横梁开始回升,经一段时间延时,延时断开的常开触头KT断开,KMI线圈断电释放,回升运动结束,而横梁还在继续夹紧,夹紧到一定程度,过电流继电器动作,夹紧运动停止.此时的横梁升降电气控制电路设计草图如图10-10

所示.

4.设计联锁保护环节

横梁上升限位保护由行程开关SQZ来实现下降限位保护由行程开关SQ3来实现上

升与下降的互锁,夹紧与放松的互锁均由中间继电器KAI和KAZ的常闭触头来实现升降

电动机短路保护由熔断器FUI来实现夹紧电动机短路保护由熔断器FUZ实现控制电路

的短路保护由熔断器F[J3来实现.

综合以上保护,就使横梁升降电气控制电路比较完善了,从而得到图10-11所示完整的

横梁升降机构控制电路.

第五节 常用控制电器的选择

一,接触器的选择

一般按下列步骤进行:

1.接触器种类的选择:根据接触器控制的负载性质来相应选择直流接触器还是交流接触器一般场合选用电磁式接触器,对频繁操作的带交流负载的场合,可选用带直流电磁线圈的交流按触器.

2.接触器使用类别的选择:根据接触器所控制负载的工作任务来选择相应使用类别的接触器.如负载是一般任务则选用AC—3使用类别负载为重任务则应选用AC-4类别,如果负载为一般任务与重任务混合时,则可根据实际情况选用AC—3或AC-4类接触器,如选用AC—3类时,应降级使用.

3.接触器额定电压的确定: 接触器主触头的额定电压应根据主触头所控制负载电路的额定电压来确定.

4.接触器额定电流的选择 一般情况下,接触器主触头的额定电流应大于等于负载或电动机的额定电流,计算公式为

式中I.——接触器主触头额定电流(A)

H ——经验系数,一般取l~1.4

P.——被控电动机额定功率(kw)

U.——被控电动机额定线电压(V).

当接触器用于电动机频繁起动,制动或正反转的场合,一般可将其额定电流降一个等级来选用.

5.接触器线圈额定电压的确定: 接触器线圈的额定电压应等于控制电路的电源电压.为保证安全,一般接触器线圈选用110V,127V,并由控制变压器供电.但如果控制电路比较简单,所用接触器的数量较少时,为省去控制变压器,可选用380V,220V电压.

6.接触器触头数目: 在三相交流系统中一般选用三极接触器,即三对常开主触头,当需要同时控制中胜线时,则选用四极交流接触器.在单相交流和直流系统中则常用两极或三极并联接触器.交流接触器通常有三对常开主触头和四至六对辅助触头,直流接触器通常有两对常开主触头和四对辅助触头.

7.接触器额定操作频率 交,直流接触器额定操作频率一般有600次/h,1200次/h等几种,一般说来,额定电流越大,则操作频率越低,可根据实际需要选择.

二,电磁式继电器的选择

应根据继电器的功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流来选择.

1.电磁式电压继电器的选择

根据在控制电路中的作用,电压继电器有过电压继电器和欠电压继电器两种类型.

表10-3列出了电磁式继电器的类型与用途.

交流过电压继电器选择的主要参数是额定电压和动作电压,其动作电压按系统额定电压的1.l-1.2倍整定.

交流欠电压继电器常用一般交流电磁式电压继电器,其选用只要满足一般要求即可,对释放电压值无特殊要求.而直流欠电压继电器吸合电压按其额定电压的0.3-0.5倍整定,释放电压按其额定电压的0.07-0.2倍整定.

2.电磁式电流继电器的选择

根据负载所要求的保护作用,分为过电流继电器和欠电流继电器两种类型.

过电流继电器:交流过电流继电器,直流过电流继电器.

欠电流继电器:只有直流欠电流继电器,用于直流电动机及电磁吸盘的弱磁保护.

过电流继电器的主要参数是额定电流和动作电流,其额定电流应大于或等于被保护电动机的额定电流动作电流应根据电动机工作情况按其起动电流的1.回一1.3倍整定.一般绕线型转子异步电动机的起动电流按2.5倍额定电流考虑,笼型异步电动机的起动电流按4-7倍额定电流考虑.直流过电流继电器动作电流接直流电动机额定电流的1.1-3.0倍整定.

欠电流继电器选择的主要参数是额定电流和释放电流,其额定电流应大于或等于直流电动机及电磁吸盘的额定励磁电流释放电流整定值应低于励磁电路正常工作范围内可能出现的最小励磁电流,一般释放电流按最小励磁电流的0.85倍整定.

3.电磁式中间继电器的选择

应使线圈的电流种类和电压等级与控制电路一致,同时,触头数量,种类及容量应满足控制电路要求.

三,热继电器的选择

热继电器主要用于电动机的过载保护,因此应根据电动机的形式,工作环境,起动情况,负载情况,工作制及电动机允许过载能力等综合考虑.

1.热继电器结构形式的选择

对于星形联结的电动机,使用一般不带断相保护的三相热继电器能反映一相断线后的过载,对电动机断相运行能起保护作用.

对于三角形联结的电动机,则应选用带断相保护的三相结构热继电器.

2.热继电器额定电流的选择

原则上按被保护电动机的额定电流选取热继电器.对于长期正常工作的电动机,热继电器中热元件的整定电流值为电动机额定电流的0.95-1.05倍对于过载能力较差的电动机,热继电器热元件整定电流值为电动机额定电流的0.6一0.8倍.

对于不频繁起动的电动机,应保证热继电器在电动机起动过程中不产生误动作,若电动机起动电流不超过其额定电流的6倍,并且起动时间不超过6S,可按电动机的额定电流来选择热继电器.

对于重复短时工作制的电动机,首先要确定热继电器的允许操作频率,然后再根据电动机的起动时间,起动电流和通电持续率来选择.

四,时间继电器的选择

1)电流种类和电压等级:电磁阻尼式和空气阻尼式时间继电器,其线圈的电流种类和电压等级应与控制电路的相同电动机或与晶体管式时间继电器,其电源的电流种类和电压等级应与控制电路的相同.

2)延时方式:根据控制电路的要求来选择延时方式,即通电延时型和断电延时型.

3)触头形式和数量:根据控制电路要求来选择触头形式(延时闭合型或延时断开型)及触头数量.

4)延时精度:电磁阻尼式时间继电器适用于延时精度要求不高的场合,电动机式或晶体管式时间继电器适用于延时精度要求高的场合.

5)延时时间:应满足电气控制电路的要求.

6)操作频率:时间继电器的操作频率不宜过高,否则会影响其使用寿命,甚至会导致延时动作失调.

五,熔断器的选择

1.一般熔断器的选择:根据熔断器类型,额定电压,额定电流及熔体的额定电流来选择.

(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件来选择,其保护特性应与被保护对象的过载能力相匹配.对于容量较小的照明和电动机,一般是考虑它们的过载保护,可选用熔体熔化系数小的熔断器,对于容量较大的照明和电动机,除过载保护外,还应考虑短路时的分断短路电流能力,若短路电流较小时,可选用低分断能力的熔断器,若短路电流较大时,可选用高分断能力的RLI系列熔断器,若短路电流相当大时,可选用有限流作用的Rh及RT12系列熔断器.

(2)熔断器额定电压和额定电流:熔断器的额定电压应大于或等于线路的工作电压,额定电流应大于或等于所装熔体的额定电流.

(3)熔断器熔体额定电流

1)对于照明线路或电热设备等没有冲击电流的负载,应选择熔体的额定电流等于或稍

大于负载的额定电流,即 IRN≥IN

式中IRN——熔体额定电流(A)

IN——负载额定电流(A).

2)对于长期工作的单台电动机,要考虑电动机起动时不应熔断,即

IRN≥(1.5~2.5)IN

轻载时系数取1.5,重载时系数取2.5.

3)对于频繁起动的单台电动机,在频繁起动时,熔体不应熔断,即

IRN≥(3~3.5)IN

4)对于多台电动机长期共用一个熔断器,熔体额定电流为

IRN≥(1.5~2.5)INMmax+∑INM

式中INMmax——容量最大电动机的额定电流(A)

∑INM——除容量最大电动机外,其余电动机额定电流之和(A).

(4)适用于配电系统的熔断器:在配电系统多级熔断器保护中,为防止越级熔断,使上,下级熔断器间有良好的配合,选用熔断器时应使上一级(干线)熔断器的熔体额定电流比下一级(支线)的熔体额定电流大1-2个级差.

2.快速熔断器的选择

(l)快速熔断器的额定电压:快速熔断器额定电压应大于电源电压,且小于晶闸管的反向峰值电压U.,因为快速熔断器分断电流的瞬间,最高电弧电压可达电源电压的1.5-2倍.因此,整流二极管或晶闸管的反向峰值电压必须大于此电压值才能安全工作.即

UF≥KI URE

式中UF-一硅整流元件或晶闸管的反向峰值电压(V)

URE——快速熔断器额定电压(V)

KI——安全系数,一般取1,5-2.

(2)快速熔断器的额定电流:快速熔断器的额定电流是以有效值表示的,而整流M极管和晶闸管的额定电流是用平均值表示的.当快速熔断器接人交流侧,熔体的额定电流为

IRN≥KI IZmax

式中IZmax——可能使用的最大整流电流(A)

KI——与整流电路形式及导电情况有关的系数,若保护整流M极管时,KI按表10-4

取值,若保护晶闸管时,KI按表10-5取值.

当快速熔断器接入整流桥臂时,熔体额定电流为

IRN≥1.5IGN

式中IGN——硅整流元件或晶闸管的额定电流(A).

六,开关电器的选择

(一)刀开关的选择

刀开关主要根据使用的场合,电源种类,电压等级,负载容量及所需极数来选择.

(1)根据刀开关在线路中的作用和安装位置选择其结构形式.若用于隔断电源时,选用无灭弧罩的产品若用于分断负载时,则应选用有灭弧罩,且用杠杆来操作的产品.

(2)根据线路电压和电流来选择.刀开关的额定电压应大于或等于所在线路的额定电压刀开关额定电流应大于负载的额定电流,当负载为异步电动机时,其额定电流应取为电动机额定电流的1.5倍以上.

(3)刀开关的极数应与所在电路的极数相同.

(二)组合开关的选择

组合开关主要根据电源种类,电压等级,所需触头数及电动机容量来选择.选择时应掌握以下原则:

(1)组合开关的通断能力并不是很高,因此不能用它来分断故障电流.对用于控制电动机可逆运行的组合开关,必须在电动机完全停止转动后才允许反方向接通.

(2)组合开关接线方式多种,使用时应根据需要正确选择相应产品.

(3)组合开关的操作频率不宜太高,一般不宜超过300次/h,所控制负载的功率因数也不能低于规定值,否则组合开关要降低容量使用.

(4)组合开关本身不具备过载,短路和欠电压保护,如需这些保护,必须另设其他保护电器.

(三)低压断路器的选择

低压断路器主要根据保护特性要求,分断能力,电网电压类型及等级,负载电流,操作频率等方面进行选择.

(1)额定电压和额定电流:低压断路器的额定电压和额定电流应大于或等于线路的额定电压和额定电流.

(2)热脱扣器:热脱扣器整定电流应与被控制电动机或负载的额定电流一致.

(3)过电流脱扣器:过电流脱扣器瞬时动作整定电流由下式确定

IZ≥KIS

式中IZ——瞬时动作整定电流(A)

Is——线路中的尖峰电流.若负载是电动机,则Is为起动电流(A)

K考虑整定误差和起动电流允许变化的安全系数.当动作时间大于20ms时,取

K=1.35当动作时间小于 20ms时,取 K=1.7.

(4)欠电压脱扣器:欠电压脱扣器的额定电压应等于线路的额定电压.

(四)电源开关联锁机构

电源开关联锁机构与相应的断路器和组合开关配套使用,用于接通电源,断开电源和柜

门开关联锁,以达到在切断电源后才能打开门,将门关闭好后才能接通电源的效果,实现安

全保护.

七,控制变压器的选择

控制变压器用于降低控制电路或辅助电路的电压,以保证控制电路的安全可靠.控制变压器主要根据一次和二次电压等级及所需要的变压器容量来选择.

(1)控制变压器一,二次电压应与交流电源电压,控制电路电压与辅助电路电压相符合.

(2)控制变压器容量按下列两种情况计算,依计算容量大者决定控制变压器的容量.

l)变压器长期运行时,最大工作负载时变压器的容量应大于或等于最大工作负载所需要的功率,计算公式为

ST≥KT ∑PXC

式中ST——控制变压器所需容量(VA)

∑PXC——控制电路最大负载时工作的电器所需的总功率,其中PXC为电磁器件的吸持功

率(W)

KT一一一控制变压器容量储备系数,一般取1.1-1.25.

2)控制变压器容量应使已吸合的电器在起动其他电器时仍能保持吸会状态,而起动电器也能可靠地吸合,其计算公式为

ST≥0.6 ∑PXC +1.5∑Pst

式中 ∑Pst_同时起动的电器总吸持功率(W).

第六节 电气控制的施工设计与施工

一,电气设备总体配置设计

组件的划分原则是:

l)将功能类似的元件组成在一起,构成控制面板组件,电气控制盘组件,电源组件等.

2)将接线关系密切的电器元件置于在同一组件中,以减少组件之间的连线数量.

3)强电与弱电控制相分离,以减少干扰.

4)为求整齐美观,将外形尺寸相同,重量相近的电器元件组合在一起.

5)为便于检查与调试,将需经常调节,维护和易损元件组合在一起.

电气设备的各部分及组件之间的接线方式通常有:

l)电器控制盘,机床电器的进出线一般采用接线端子.

2)被控制设备与电气箱之间为便于拆装,搬运,尽可能采用多孔接插件.

3)印刷电路板与弱电控制组件之间宜采用各种类型接插件.

总体配置设计是以电气控制的总装配图与总接线图的形式表达出来的,图中是用示意方式反映各部分主要组件的位置和各部分的接线关系,走线方式及使用管线要求.总体设计要使整个系统集中,紧凑要考虑发热量高和噪声振动大的电气部件,使其离开操作者一定距离电源紧急控制开关应安放在方便且明显的位置.

二,电气元器件布置图的设计

电气元器件布置图是指将电气元器件按一定原则组合的安装位置图.电气元器件布置的依据是各部件的原理图,同一组件中的电器元件的布置应按国家标准执行.

电柜内的电器可按下述原则布置:

l)体积大或较重的电器应置于控制柜下方.

2)发热元件安装在柜的上方,并将发热元件与感温元件隔开.

3)强电弱电应分开,弱电部分应加屏蔽隔离,以防强电及外界的干扰.

4)电器的布置应考虑整齐,美观,对称.

5)电器元器件间应留有一定间距,以利布线,接线,维修和调整操作.

6)接线座的布置:用于相邻柜间连接用的接线座应布置在柜的两侧用于与柜外电气

元件连接的接线座应布置在柜的下部,且不得低于200mrn.

一般通过实物排列来确定各电器元件的位置,进而绘制出控制柜的电器布置图.布置图

是根据电器元件的外形尺寸按比例绘制,并标明各元件间距尺寸,同时还要标明进出线的数

量和导线规格,选择适当的接线端子板和接插件并在其上标明接线号.

三,电气控制装置接线图的绘制

根据电气控制电路图和电气元器件布置图来绘制电气控制装置的接线图.接线图应按以

下原

从容的大炮
无限的小虾米
2025-06-29 19:33:48
电气原理图设计为满足生产机械及工艺要求进行的电气控制电路的设计电气工艺设计为电气控制装置的制造,使用,运行,维修的需要进行的生产施工设计第一节 电气控制设计的原则和内容一,电气控制设计的原则1)最大限度满足生产机械和生产工艺对电气控制的要求2)在满足要求的前提下,使控制系统简单,经济,合理,便于操作,维修方便,安全可靠3)电器元件选用合理,正确,使系统能正常工作4)为适应工艺的改进,设备能力应留有裕量二,电气控制设计的基本内容1.电气原理图设计内容1) 拟定电气设计任务书2)选择电力拖动方案和控制方式3)确定电动机的类型,型号,容量,转速4)设计电气控制原理图5)选择电器元件及清单6)编写设计计算说明书2. 电气工艺设计内容1)设计电气设备的总体配置,绘制总装配图和总接线图2)绘制各组件电器元件布置图与安装接线图,标明安装方式,接线方式3)编写使用维护说明书第二节 电力拖动方案的确定和电动机的选择一,电力拖动方案的确定1,拖动方式的选择2,调速方案的选择3,电动机调速性质应与负载特性相适应二,拖动电动机的选择(一)电动机选择的基本原则1)电动机的机械特性应满足生产机械的要求,与负载的特性相适应2)电动机的容量要得到充分的利用3)电动机的结构形式要满足机械设计的安装要求,适合工作环境4)在满足设计要求前提下,优先采用三相异步电动机(二)根据生产机械调速要求选择电动机一般---三相笼型异步电动机,双速电机调速,起动转矩大---三相笼型异步电动机调速高---直流电动机,变频调速交流电动机(三)电动机结构形式的选择根据工作性质,安装方式,工作环境选择(四)电动机额定电压的选择(五)电动机额定转速的选择(六)电动机容量的选择1,分析计算法:此外,还可通过对长期运行的同类生产机械的电动机容量进行调查,并对机械主要参数,工作条件进行类比,然后再确定电动机的容量.第三节 电气控制电路设计的一股要求一,电气控制应最大限度地满足生产机械加工工艺的要求设计前,应对生产机械工作性能,结构特点,运动情况,加工工艺过程及加工情况有充分的了解,并在此基础上设计控制方案,考虑控制方式,起动,制动,反向和调速的要求,安置必要的联锁与保护,确保满足生产机械加工工艺的要求.二,对控制电路电流,电压的要求应尽量减少控制电路中的电流,电压种类,控制电压应选择标准电压等级.电气控制电各常用的电压等级如表10-2所示.三,控制电路力求简单,经济1.尽量缩短连接导线的长度和导线数量 设计控制电路时,应考虑各电器元件的安装立置,尽可能地减少连接导线的数量,缩短连接导线的长度.如图10-l.2.尽量减少电器元件的品种,数量和规格 同一用途的器件尽可能选用同品牌,型号的产品,并且电器数量减少到最低限度.3.尽量减少电器元件触头的数目.在控制电路中,尽量减少触头是为了提高电路运行的可靠性.例如图10-2a所示.4.尽量减少通电电器的数目,以利节能与延长电器元件寿命,减少故障.如图10-3a所示.四,确保控制电路工作的安全性和可靠性1.正确连接电器的线圈 在交流控制电路中,同时动作的两个电器线圈不能串联,两个电磁线圈需要同时吸合时其线圈应并联连接,如图10-4b所示.在直流控制电路中,两电感值相差悬殊的直流电压线圈不能并联连接.2正确连接电器元件的触头 设计时,应使分布在电路中不同位置的同一电器触头接到电源的同一相上,以避免在电器触头上引起短路故障.3防止寄生电路 在控制电路的动作过程中.意外接通的电路叫寄生电路.4.在控制电路中控制触头应合理布置.5.在设计控制电路中应考虑继电器触头的接通与分断能力.6,避免发生触头"竞争","冒险"现象竞争:当控制电路状态发生变换时,常伴随电路中的电器元件的触头状态发生变换.由于电器元件总有一定的固有动作时间,对于一个时序电路来说,往往发生不按时序动作的情况,触头争先吸合,就会得到几个不同的输出状态,这种现象称为电路的"竞争".冒险:对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出,这种现象称为"冒险".7.采用电气联锁与机械联锁的双重联锁.五,具有完善的保护环节电气控制电路应具有完善的保护环节,常用的有漏电保护,短路,过载,过电流,过电压,欠电压与零电压,弱磁,联锁与限位保护等.六,要考虑操作,维修与调试的方便第四节 电气控制电路设计的方法与步骤一,电气控制电路设计方法简介设计电气控制电路的方法有两种,一种是分析设计法,另一种是逻辑设计法.分析设计法(经验设计法):根据生产工艺的要求选择一些成熟的典型基本环节来实现这些基本要求,而后再逐步完善其功能,并适当配 置联锁和保护等环节,使其组合成一个整体,成为满足控制要求的完整电路.逻辑设计法:利用逻辑代数这一数学工具设计电气控制电路.在继电接触器控制电路中,把表示触头状态的逻辑变量称为输人逻辑变量,把表示继电器接触器线圈等受控元件的逻辑变量称为输出逻辑变量.输人,输出逻辑变量之间的相互关系称为逻辑函数关系,这种相互关系表明了电气控制电路的结构.所以,根据控制要求,将这些逻辑变量关系写出其逻辑函数关系式,再运用逻辑函数基本公式和运算规律对逻辑函数式进行化简,然后根据化简了的逻辑关系式画出相应的电路结构图,最后再作进一步的检查和优化,以期获得较为完善的设计方案.二,分析设计法的基本步骤分析设计法设计电气控制电路的基本步骤是:l)按工艺要求提出的起动,制动,反向和调速等要求设计主电路.2)根据所设计出的主电路,设计控制电路的基本环节,即满足设计要求的起动,制动,反向和调速等的基本控制环节.3)根据各部分运动要求的配合关系及联锁关系,确定控制参量并设计控制电路的特殊环节.4)分析电路工作中可能出现的故障,加入必要的保护环节.5)综合审查,仔细检查电气控制电路动作是否正确 关键环节可做必要实验,进一步3.设计控制电路的特殊环节第五节 常用控制电器的选择一,接触器的选择一般按下列步骤进行:1.接触器种类的选择:根据接触器控制的负载性质来相应选择直流接触器还是交流接触器一般场合选用电磁式接触器,对频繁操作的带交流负载的场合,可选用带直流电磁线圈的交流按触器.2.接触器使用类别的选择:根据接触器所控制负载的工作任务来选择相应使用类别的接触器.如负载是一般任务则选用AC—3使用类别负载为重任务则应选用AC-4类别,如果负载为一般任务与重任务混合时,则可根据实际情况选用AC—3或AC-4类接触器,如选用AC—3类时,应降级使用.3.接触器额定电压的确定: 接触器主触头的额定电压应根据主触头所控制负载电路的额定电压来确定.4.接触器额定电流的选择 一般情况下,接触器主触头的额定电流应大于等于负载或电动机的额定电流,计算公式为式中I.——接触器主触头额定电流(A)H ——经验系数,一般取l~1.4P.——被控电动机额定功率(kw)U.——被控电动机额定线电压(V).

野性的芒果
怕黑的绿茶
2025-06-29 19:33:48
第四章 电气控制系统设计

本章要点:电气控制系统设计是建立在机械结构设计的基础上,并以能最大限度地满足机械设备和用户对电气控制要求为基本目标。设计包括电气原理图设计和电气工艺设计两部分,电气原理图设计是为满足生产机械及其工艺要求而进行的电气控制设计,体现了设备的自动化程度和技术的先进性,是电气控制设计的核心;电气工艺设计是为电气控制装置本身的制造、使用、运行及维修的需要而进行的设计,决定着电气控制设备的可行性、经济性、造型美观等技术和经济指标。本章主要阐述继电-接触器控制系统的电气控制设计基本原则、内容及规律,并通过应用实例对设计步骤及方法进行分析。使学生掌握简单电气控制系统的设计和实施过程。

§4.1电气控制系统设计的基本原则和内容

现代工业控制系统的核心设备及关键技术的多样化,使电气控制系统设计的中心内容有了很大的差异。传统继电—接触器控制系统设计是在原理电路设计基础上,重点是对电路的工艺设计;单片机控制系统设计中必须对单片机本身作系统配置;PLC控制系统是将硬件和软件分开,着力进行软件的编程设计。但是,不论什么控制系统,在设计规划时,必须符合设计的基本原则。

§4.1.1电气控制系统设计的基本原则

1、最大限度地满足生产机械和生产工艺对电气控制的要求,这些生产工艺要求是电气控制设计的依据。因此在设计前,应深入现场进行调查,搜集资料,并与生产过程有关人员、机械部分设计人员、实际操作者密切配合,明确控制要求,共同拟定电气控制方案,协同解决设计中的各种问题,使设计成果满足生产工艺要求。

2、在满足控制要求前提下,设计方案力求简单、经济、合理,不要盲目追求自动化和高指标。力求控制系统操作简单、使用与维修方便。

3、正确、合理地选用电器元件,确保控制系统安全可靠地工作。同时考虑技术进步、造型美观。

4、为适应生产的发展和工艺的改进,在选择控制设备时,设备能力留有适当裕量。

§4.1.2电气控制系统设计的基本内容

电气控制系统的设计主要包括电气原理图设计和电气工艺设计两部分,是根据系统的控制要求,设计和编制出电气设备制造、使用和维修中必备的图样、清单、说明书等资料。设计的基本内容:

1、拟定电气设计任务书

电气设计任务书是电气设计的依据,是由电气设计人员、机械设计及企业管理决策人员共同分析设备的原理及动作要求、技术及经济指标而后确定的。

2、选择拖动方案

设备的拖动方法主要有电力拖动、液压传动、气动等多种,选择拖动方案是根据拖动系统的控制要求,合理选择电动机类型和参数,在电力拖动系统中还要对电动机的起动及换向方法、调速及制动方法进行方案设计。

3、选择控制方式

随着电力电子技术、计算机技术、自动控制理论的不断发展进步,机械结构及工艺水平的不断提高,电气控制技术也由传统的继电—接触器控制向顺序控制、PLC控制、计算机网络控制等方面发展,出现了多种控制方式,根据拖动方式和设备自动化程度的要求合理的选择控制方式成为设计中的一部分。

对于一般机械设备,其工作程序是固定不变的,多选用继电—接触器控制对经常变换加工工序的设备可采用PLC控制,对复杂控制系统(自动生产线、加工中心等)采用工业控制计算机和组态软件控制。

4、设计电气控制原理图、合理选用元器件,编制元器件目录清单。

电气原理图主要包括主电路、控制电路和辅助电路。根据电气原理合理选择元器件,并列写元器件清单。

5.设计电气设备制造、安装、调试所必需的各种工艺性技术图纸(设备布置图、元器件安装底板图、控制面板图、电气安装接线图、电气互连图等),并以此依据编制各种材料定额清单。

6.编写设计说明书和使用说明书。

§4.2拖动方案的确定原则和电动机的选择

§4.2.1电力拖动方案的确定原则

生产机械电力拖动方案主要根据生产机械调速要求来确定。

1、对于无电气调速要求的生产机械

一般在不需要电气调速和起、制动不频繁时,应首先考虑采用笼型异步电动机拖动,只有在负载静转矩很大或有飞轮的拖动装置中,才考虑采用绕线转子异步电动机。当负载很平稳,容量大且起制动次数很少时,采用同步电动机更为合理。

2、对于要求电气调速要求的生产机械

①调速范围D=2~3,调速级数≦2~4,一般采用改变极对数的双速或多速笼型异步电动机拖动。

②调速范围D<3,且不要求平滑调速时,采用绕线型异步电动机,但仅适合于短时或重复短时的场合。

③调速范围D=3~10,且要求平滑调速,在容量不大的情况下,可采用带滑差离合器的交流电动机拖动系统,若需长期运行在低速,也可考虑采用晶闸管电源的直流拖动系统。

④调速范围10~100时,可采用G-M系统或晶闸管电源的直流拖动系统。

3、确定电动机的调速性质

电动机调速性质是指电动机在整个调速范围内转矩、功率与转速的关系,是容许恒功率输出,还是恒转矩输出。电动机的调速性质应与生产机械的负载特性相适应。

§4.2.2拖动电动机的选择

电动机的选择包括电动机结构型式、电动机的额定电压、电动机额定转速、额定功率和电动机的容量等技术指标的选择。

1、电动机选择的基本原则是:

①电动机的机械特性应满足生产机械提出的要求,要与负载的负载特性相适应。保证运行稳定且具有良好的起动、制动性能。

②工作过程中电动机容量能得到充分利用,使其温升尽可能达到或接近额定温升值。

③电动机结构型式满足机械设计提出的安装要求,并能适应周围环境工作条件。

④在满足设计要求前提下,应优先采用结构简单、价格便宜、使用维护方便的三相笼型异步电动机。

2、电动机型式的选择:

①从工作方式上,不同工作制相应选择连续、短时及断续周期性工作的电动机。

②从安装方式上分卧式和立式两种。

③按不同工作环境选择电动机的防护型式,开启式适用于干燥、清洁的环境;防护式适用于干燥和灰尘不多,没有腐蚀性和爆炸性气体的环境;封闭式分自扇冷式、他扇冷式和密封式三种,前两种用于潮湿、多腐蚀性灰尘、多侵蚀的环境,后一种用于浸入水中的机械;防爆式用于有爆炸危险的环境中。

3、电动机额定电压的选择:

①交流电动机额定电压与供电电网电压一致,低压电网电压为380V,因此,中小型异步电动机额定电压为220/380V。当电机功率较大,可选用3000V、6000V及10000V的高压电动机。

②直流电动机的额定电压也要与电源电压一致,当直流电动机由单独的直流发电机供电时,额定电压常用220V及110V。大功率电动机可提高600~800V。

4、电动机额定转速的选择:

对于额定功率相同的电动机,额定转速越高,电动机尺寸、重量和成本越小,因此选用高速电动机较为经济。但由于生产机械所需转速一定,电动机转速愈高,传动机构

转速比愈大,传动机构愈复杂。因此应综合考虑电动机与机械两方面的多种因素来确定电动机的额定转速。

5、电动机容量的选择

电动机容量的选择有两种方法:

①分析计算法,该方法是根据生产机械负载图,在产品目录上预选一台功率相当的电动机,再用此电动机的技术数据和生产机械负载图求出电动机的负载图,最后,按电机的负载图从发热方面进行校验,并检查电动机的过载能力是否满足要求,如若不行,重新计算直至合格为止。此法计算工作量大,负载图绘制较难,实际使用不多。

②调查统计类比法,是在不断总结经验的基础上,选择电动机容量的一种实用方法,此法比较简单,对同类型设备的拖动电动机容量进行统计和分析,从中找出电动机容量与设备参数的关系,得出相应的计算公式。以下为典型机床的统计分析法公式

▲车床

式中,D——工件最大直径,单位为m。

▲立式车床

式中,D——工件最大直径,单位为m。

▲摇臂钻床

式中,D——最大钻孔直径,单位为mm。

▲卧式镗床

式中,D——镗杆直径,单位为mm。

§4.3 电气原理图的设计及实例

§4.3.1电气原理图设计的基本步骤及一般规律

1、电气原理图设计的基本步骤:

①根据选定的拖动方案和控制方式设计系统的原理框图,拟订出各部分的主要技术要求和主要技术参数。

②根据各部分的要求,设计出原理框图中各个部分的具体电路。对于每一部分电路的设计都是按照主电路→控制电路→联锁与保护→总体检查,反复修改与完善来进行。

③绘制系统总原理图。按系统框图结构将各部分电路联成一个整体,完善辅助电路,绘成系统原理图。

④合理选择电气原理图中每一电器元件,制订出元器件目录清单。

2、电气原理图设计中的一般规律:

①电气控制系统应满足生产机械的工艺要求。

在设计前,应对生产机械工作性能、结构特点、运动情况、加工工艺工程及加工情况有充分的了解,并在此基础上考虑控制方案,如控制方式、起动、制动、反向及调速要求,必要的联锁与保护环节,以保证生产机械工艺要求的实现

②尽量减少控制电路中电流、电压的种类,控制电压选择标准电压等级。

电气控制电路中常用的电压等级见表4-1所示。

表4-1 常用控制电压等级

控制电路类型

常用的电压值/V

电源设备

交流电力传动的控制电路较简单

交流

380、220

不用控制电源变压器

交流电力传动的控制电路较复杂

110(127)、48

采用控制电源变压器

照明及信号指示电路

48、24、6

采用控制电源变压器

直流电力传动的控制电路

直流

220、110

整流器或直流发电机

直流电磁铁及电磁离合器的控制电路

48、24、12

整流器

③尽量选用典型环节或经过实际检验的控制线路。

④在控制原理正确的前提下,减少连接导线的根数与长度。

合理的安排各电器元件之间的连线,尤其注重电气柜与各操作面板、行程开关之间的连线,使电路结构更为合理。例如,图4-1(a)所示两地控制电路原理虽然正确,但因为电气柜及一组控制按钮安装在一起,距另一地的控制按钮有一定的距离,两地间的连线较多,而图4-1(b)两地间的连线较少结构更合理。

图4-1 两地控制电路

(a)

(b)

纯情的便当
淡淡的金针菇
2025-06-29 19:33:48
电气原理图设计

满足产机械及工艺要求进行电气控制电路设计

电气工艺设计

电气控制装置制造,使用,运行,维修需要进行产施工设计

第节 电气控制设计原则内容

,电气控制设计原则

1)限度满足产机械产工艺电气控制要求

2)满足要求前提,使控制系统简单,经济,合理,便于操作,维修便,安全靠

3)电器元件选用合理,确,使系统能工作

4)适应工艺改进,设备能力应留裕量

二,电气控制设计基本内容

1.电气原理图设计内容

1) 拟定电气设计任务书

2)选择电力拖案控制式

3)确定电机类型,型号,容量,转速

4)设计电气控制原理图

5)选择电器元件及清单

6)编写设计计算说明书

2. 电气工艺设计内容

1)设计电气设备总体配置,绘制总装配图总接线图

2)绘制各组件电器元件布置图与安装接线图,标明安装式,接线式

3)编写使用维护说明书

第二节 电力拖案确定电机选择

,电力拖案确定

1,拖式选择

2,调速案选择

3,电机调速性质应与负载特性相适应

二,拖电机选择

()电机选择基本原则

1)电机机械特性应满足产机械要求,与负载特性相适应

2)电机容量要充利用

3)电机结构形式要满足机械设计安装要求,适合工作环境

4)满足设计要求前提,优先采用三相异步电机

(二)根据产机械调速要求选择电机

般---三相笼型异步电机,双速电机

调速,起转矩---三相笼型异步电机

调速高---直流电机,变频调速交流电机

(三)电机结构形式选择

根据工作性质,安装式,工作环境选择

(四)电机额定电压选择

(五)电机额定转速选择

(六)电机容量选择

1,析计算:

外,通期运行同类产机械电机容量进行调查,并机械主要参数,工作条件进行类比,再确定电机容量.

第三节 电气控制电路设计股要求

,电气控制应限度满足产机械加工工艺要求

设计前,应产机械工作性能,结构特点,运情况,加工工艺程及加工情况充

解,并基础设计控制案,考虑控制式,起,制,反向调速要求,

安置必要联锁与保护,确保满足产机械加工工艺要求.

二,控制电路电流,电压要求

应尽量减少控制电路电流,电压种类,控制电压应选择标准电压等级.电气控制电

各用电压等级表10-2所示.

三,控制电路力求简单,经济

1.尽量缩短连接导线度导线数量 设计控制电路,应考虑各电器元件安装

立置,尽能减少连接导线数量,缩短连接导线度.图10-l.

2.尽量减少电器元件品种,数量规格 同用途器件尽能选用同品牌,型号产品,并且电器数量减少低限度.

3.尽量减少电器元件触数目.控制电路,尽量减少触提高电路运行

靠性.例图10-2a所示.

4.尽量减少通电电器数目,利节能与延电器元件寿命,减少故障.图10-3a所示.

四,确保控制电路工作安全性靠性

1.确连接电器线圈 交流控制电路,同作两电器线圈能串联,两电磁线圈需要同吸合其线圈应并联连接,图10-4b所示.

直流控制电路,两电值相差悬殊直流电压线圈能并联连接.

2确连接电器元件触 设计,应使布电路同位置同电器触接电源同相,避免电器触引起短路故障.

3防止寄电路 控制电路作程.意外接通电路叫寄电路.

4.控制电路控制触应合理布置.

5.设计控制电路应考虑继电器触接通与断能力.

6,避免发触"竞争","冒险"现象

竞争:控制电路状态发变换,伴随电路电器元件触状态发变换.由于电器元件总定固作间,于序电路说,往往发按序作情况,触争先吸合,几同输状态,种现象称电路"竞争".

冒险:于关电路,由于电器元件释放延作用,现关元件按要求逻辑功能输,种现象称"冒险".

7.采用电气联锁与机械联锁双重联锁.

五,具完善保护环节

电气控制电路应具完善保护环节,用漏电保护,短路,载,电流,电压,欠电压与零电压,弱磁,联锁与限位保护等.

六,要考虑操作,维修与调试便

第四节 电气控制电路设计与步骤

,电气控制电路设计简介

设计电气控制电路两种,种析设计,另种逻辑设计.

析设计(经验设计):根据产工艺要求选择些熟典型基本环节实现些基本要求,再逐步完善其功能,并适配 置联锁保护等环节,使其组合整体,满足控制要求完整电路.

逻辑设计:利用逻辑代数数工具设计电气控制电路.

继电接触器控制电路,表示触状态逻辑变量称输逻辑变量,表示继电

器接触器线圈等受控元件逻辑变量称输逻辑变量.输,输逻辑变量间相互关

系称逻辑函数关系,种相互关系表明电气控制电路结构.所,根据控制要求,

些逻辑变量关系写其逻辑函数关系式,再运用逻辑函数基本公式运算规律逻辑函数

式进行化简,根据化简逻辑关系式画相应电路结构图,再作进步检查

优化,期获较完善设计案.

二,析设计基本步骤

析设计设计电气控制电路基本步骤:

l)按工艺要求提起,制,反向调速等要求设计主电路.

2)根据所设计主电路,设计控制电路基本环节,即满足设计要求起,制,

反向调速等基本控制环节.

3)根据各部运要求配合关系及联锁关系,确定控制参量并设计控制电路特殊

环节.

4)析电路工作能现故障,加入必要保护环节.

5)综合审查,仔细检查电气控制电路作否确 关键环节做必要实验,进步

完善简化电路a

三,析设计设计举例

面横梁升降机构电气控制设计例说明析设计设计电气控制电路与

步骤.

龙门刨床装横梁升降机构,加工工件,横梁应夹紧立柱,加工工件高低

同,则横梁应先松立柱沿立柱移,移位,横梁应夹紧立柱.所

,横梁升降由横梁升降电机拖,横梁放松,夹紧作由夹紧电机,传装置与

夹紧装置配合完.

()横梁升降机构工艺要求:

(1)横梁升,自按照先放松横梁横梁升夹紧横梁顺序进行.

(2)横梁降,自按照放松横梁横梁降横梁升夹紧横梁顺序进行.

(3)横梁夹紧,夹紧电机自停止转.

(4)横梁升降应设行程限位保护,夹紧电机应设夹紧力保护.

(二)电气控制电路设计程

1.主电路设计: 横梁升降机构别由横梁升降电机MI与横梁夹紧放松电机W拖

.巴两台电机均三相笼型异步电机,均要求实现反转.采用KM1I,KM2.

KM3,KM4四接触器别控制M1M2反转,图10-9所示.

2.控制电路基本环节设计:由于横梁升降调整运,故M1采用点控制,

点按钮能控制种运,故用升点按钮犯 与降点按钮明 控制横梁升降,移前要求先松横梁,移位松点按钮要求横梁夹紧,说点按钮要控制KMI-KM4四接触器,所引入升间继电器KA1与降间继电器KA2,再由间继电器控制四接触器.于设计横梁升降电气控制电路草图,图10-9所示.

3.设计控制电路特殊环节

1)横梁升,必须使夹紧电机MZ先工作,横梁放松,发信号,使MZ停止

工作,同使升降电机MI工作,带横梁升.按升点按钮,间继电器KAI线圈通电吸合,其触闭合,使接触器KM4通电吸合,MZ反转起旋转,横梁始放松横梁放松程度采用行程关 控制,横梁放松定程度,撞块压用 闭触断控制接触器KM4线圈断电,触闭合控制接触器KMI线圈通电,KMI主触闭合使MI转,横梁始作升运.

2)升降电机拖横梁升至所需位置,松升点按钮犯,间继电器KAI

接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电机停止工作,同

使夹紧电机始转,使横梁夹紧.夹紧程.行程关 SQI复位, KM3应加

自锁触,夹紧定程度,发信号切断夹紧电机电源.采用电流继电器控

制夹紧程度,即电流继电器KA3线圈串接夹紧电机主电路任相.横梁夹

紧,相于电机工作堵转状态,电机定电流增,电流继电器作电流整

定两倍额定电流左右横梁夹紧电流继电器作,其闭触接触器KM3线圈电

路切断.

3)横梁降仍按先放松再降式控制,降结束需短间升运,该升运采用断电延型间继电器进行控制.间继电器KT线圈由降接触器 KMZ触控制,其断电延断触与夹紧接触器KM3触串联并接于升电路间继电器KAI触两端.,横梁降,间继电器KT线圈通电吸合,其断电延断触立即闭合,升电路工作作准备.横梁降至所需位置,松降点按钮田.KMZ线圈断电释放,间继电器KT线圈断电,夹紧接触器.

3.设计控制电路特殊环节

1)横梁升,必须使夹紧电机MZ先工作,横梁放松,发信号,使MZ停止

IW,同使升降电机 MI工作,带横梁升.按升点按钮犯,间继电器

KAI线圈通电吸合,其触闭合,使接触器KM4通电吸合,MZ反转起旋转,横梁

始放松横梁放松程度采用行程关 控制,横梁放松定程度,撞块压 SQI,

用明 闭触断控制接触器KM4线圈断电,触闭合控制接触器KMI线圈

通电,KMI主触闭合使MI转,横梁始作升运.

2)升降电机拖横梁升至所需位置,松升点按钮肥,间继电器KAI

接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电机停止工作,同

使夹紧电机始转,使横梁夹紧.夹紧程,行程关 复位, KM应加

自锁触,夹紧定程度,发信号切断夹紧电机电源.采用电流继电器控

制夹紧程度,即电流继电器KA3线圈串接夹紧电机主电路任相.横梁夹

紧,相于电机工作堵转状态,电机定电流增,电流继电器作电流整

定两倍额定电流左右横梁夹紧电流继电器作,其闭触接触器KM3线圈电

路切断.KM3线圈通电吸合,横梁始夹紧.,升接触器KMI线圈通闭合间断电器KT触及KM3触通电吸合,横梁始升,经段间延,延断触KT断,KMI线圈断电释放,升运结束,横梁继续夹紧,夹紧定程度,电流继电器作,夹紧运停止.横梁升降电气控制电路设计草图图10-10

所示.

4.设计联锁保护环节

横梁升限位保护由行程关SQZ实现降限位保护由行程关SQ3实现

升与降互锁,夹紧与放松互锁均由间继电器KAIKAZ闭触实现升降

电机短路保护由熔断器FUI实现夹紧电机短路保护由熔断器FUZ实现控制电路

短路保护由熔断器F[J3实现.

综合保护,使横梁升降电气控制电路比较完善,图10-11所示完整

横梁升降机构控制电路.

第五节 用控制电器选择

,接触器选择

般按列步骤进行:

1.接触器种类选择:根据接触器控制负载性质相应选择直流接触器交流接触器般场合选用电磁式接触器,频繁操作带交流负载场合,选用带直流电磁线圈交流按触器.

2.接触器使用类别选择:根据接触器所控制负载工作任务选择相应使用类别接触器.负载般任务则选用AC—3使用类别负载重任务则应选用AC-4类别,负载般任务与重任务混合,则根据实际情况选用AC—3或AC-4类接触器,选用AC—3类,应降级使用.

3.接触器额定电压确定: 接触器主触额定电压应根据主触所控制负载电路额定电压确定.

4.接触器额定电流选择 般情况,接触器主触额定电流应于等于负载或电机额定电流,计算公式

式I.——接触器主触额定电流(A)

H ——经验系数,般取l~1.4

P.——控电机额定功率(kw)

U.——控电机额定线电压(V).

接触器用于电机频繁起,制或反转场合,般其额定电流降等级选用.

5.接触器线圈额定电压确定: 接触器线圈额定电压应等于控制电路电源电压.保证安全,般接触器线圈选用110V,127V,并由控制变压器供电.控制电路比较简单,所用接触器数量较少,省控制变压器,选用380V,220V电压.

6.接触器触数目: 三相交流系统般选用三极接触器,即三主触,需要同控制胜线,则选用四极交流接触器.单相交流直流系统则用两极或三极并联接触器.交流接触器通三主触四至六辅助触,直流接触器通两主触四辅助触.

7.接触器额定操作频率 交,直流接触器额定操作频率般600/h,1200/h等几种,般说,额定电流越,则操作频率越低,根据实际需要选择.

二,电磁式继电器选择

应根据继电器功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流选择.

1.电磁式电压继电器选择

根据控制电路作用,电压继电器电压继电器欠电压继电器两种类型.

表10-3列电磁式继电器类型与用途.

交流电压继电器选择主要参数额定电压作电压,其作电压按系统额定电压1.l-1.2倍整定.

交流欠电压继电器用般交流电磁式电压继电器,其选用要满足般要求即,释放电压值特殊要求.直流欠电压继电器吸合电压按其额定电压0.3-0.5倍整定,释放电压按其额定电压0.07-0.2倍整定.

2.电磁式电流继电器选择

根据负载所要求保护作用,电流继电器欠电流继电器两种类型.

电流继电器:交流电流继电器,直流电流继电器.

欠电流继电器:直流欠电流继电器,用于直流电机及电磁吸盘弱磁保护.

电流继电器主要参数额定电流作电流,其额定电流应于或等于保护电机额定电流作电流应根据电机工作情况按其起电流1.1.3倍整定.般绕线型转异步电机起电流按2.5倍额定电流考虑,笼型异步电机起电流按4-7倍额定电流考虑.直流电流继电器作电流接直流电机额定电流1.1-3.0倍整定.

欠电流继电器选择主要参数额定电流释放电流,其额定电流应于或等于直流电机及电磁吸盘额定励磁电流释放电流整定值应低于励磁电路工作范围内能现励磁电流,般释放电流按励磁电流0.85倍整定.

3.电磁式间继电器选择

应使线圈电流种类电压等级与控制电路致,同,触数量,种类及容量应满足控制电路要求.

三,热继电器选择

热继电器主要用于电机载保护,应根据电机形式,工作环境,起情况,负载情况,工作制及电机允许载能力等综合考虑.

1.热继电器结构形式选择

于星形联结电机,使用般带断相保护三相热继电器能反映相断线载,电机断相运行能起保护作用.

于三角形联结电机,则应选用带断相保护三相结构热继电器.

2.热继电器额定电流选择

原则按保护电机额定电流选取热继电器.于期工作电机,热继电器热元件整定电流值电机额定电流0.95-1.05倍于载能力较差电机,热继电器热元件整定电流值电机额定电流0.60.8倍.

于频繁起电机,应保证热继电器电机起程产误作,若电机起电流超其额定电流6倍,并且起间超6S,按电机额定电流选择热继电器.

于重复短工作制电机,首先要确定热继电器允许操作频率,再根据电机起间,起电流通电持续率选择.

四,间继电器选择

1)电流种类电压等级:电磁阻尼式空气阻尼式间继电器,其线圈电流种类电压等级应与控制电路相同电机或与晶体管式间继电器,其电源电流种类电压等级应与控制电路相同.

2)延式:根据控制电路要求选择延式,即通电延型断电延型.

3)触形式数量:根据控制电路要求选择触形式(延闭合型或延断型)及触数量.

4)延精度:电磁阻尼式间继电器适用于延精度要求高场合,电机式或晶体管式间继电器适用于延精度要求高场合.

5)延间:应满足电气控制电路要求.

6)操作频率:间继电器操作频率宜高,否则影响其使用寿命,甚至导致延作失调.

五,熔断器选择

1.般熔断器选择:根据熔断器类型,额定电压,额定电流及熔体额定电流选择.

(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件选择,其保护特性应与保护象载能力相匹配.于容量较照明电机,般考虑载保护,选用熔体熔化系数熔断器,于容量较照明电机,除载保护外,应考虑短路断短路电流能力,若短路电流较,选用低断能力熔断器,若短路电流较,选用高断能力RLI系列熔断器,若短路电流相,选用限流作用Rh及RT12系列熔断器.

(2)熔断器额定电压额定电流:熔断器额定电压应于或等于线路工作电压,额定电流应于或等于所装熔体额定电流.

(3)熔断器熔体额定电流

1)于照明线路或电热设备等没冲击电流负载,应选择熔体额定电流等于或稍

于负载额定电流,即 IRN≥IN

式IRN——熔体额定电流(A)

IN——负载额定电流(A).

2)于期工作单台电机,要考虑电机起应熔断,即

IRN≥(1.5~2.5)IN

轻载系数取1.5,重载系数取2.5.

3)于频繁起单台电机,频繁起,熔体应熔断,即

IRN≥(3~3.5)IN

4)于台电机期共用熔断器,熔体额定电流

IRN≥(1.5~2.5)INMmax+∑INM

式INMmax——容量电机额定电流(A)

∑INM——除容量电机外,其余电机额定电流(A).

(4)适用于配电系统熔断器:配电系统级熔断器保护,防止越级熔断,使,级熔断器间良配合,选用熔断器应使级(干线)熔断器熔体额定电流比级(支线)熔体额定电流1-2级差.

2.快速熔断器选择

(l)快速熔断器额定电压:快速熔断器额定电压应于电源电压,且于晶闸管反向峰值电压U.,快速熔断器断电流瞬间,高电弧电压达电源电压1.5-2倍.,整流二极管或晶闸管反向峰值电压必须于电压值才能安全工作.即

UF≥KI URE

式UF-硅整流元件或晶闸管反向峰值电压(V)

URE——快速熔断器额定电压(V)

KI——安全系数,般取1,5-2.

(2)快速熔断器额定电流:快速熔断器额定电流效值表示,整流M极管晶闸管额定电流用平均值表示.快速熔断器接交流侧,熔体额定电流

IRN≥KI IZmax

式IZmax——能使用整流电流(A)

KI——与整流电路形式及导电情况关系数,若保护整流M极管,KI按表10-4

取值,若保护晶闸管,KI按表10-5取值.

快速熔断器接入整流桥臂,熔体额定电流

IRN≥1.5IGN

式IGN——硅整流元件或晶闸管额定电流(A).

六,关电器选择

()刀关选择

刀关主要根据使用场合,电源种类,电压等级,负载容量及所需极数选择.

(1)根据刀关线路作用安装位置选择其结构形式.若用于隔断电源,选用灭弧罩产品若用于断负载,则应选用灭弧罩,且用杠杆操作产品.

(2)根据线路电压电流选择.刀关额定电压应于或等于所线路额定电压刀关额定电流应于负载额定电流,负载异步电机,其额定电流应取电机额定电流1.5倍.

(3)刀关极数应与所电路极数相同.

(二)组合关选择

组合关主要根据电源种类,电压等级,所需触数及电机容量选择.选择应掌握原则:

(1)组合关通断能力并高,能用断故障电流.用于控制电机逆运行组合关,必须电机完全停止转才允许反向接通.

(2)组合关接线式种,使用应根据需要确选择相应产品.

(3)组合关操作频率宜太高,般宜超300/h,所控制负载功率数能低于规定值,否则组合关要降低容量使用.

(4)组合关本身具备载,短路欠电压保护,需些保护,必须另设其保护电器.

(三)低压断路器选择

低压断路器主要根据保护特性要求,断能力,电网电压类型及等级,负载电流,操作频率等面进行选择.

(1)额定电压额定电流:低压断路器额定电压额定电流应于或等于线路额定电压额定电流.

(2)热脱扣器:热脱扣器整定电流应与控制电机或负载额定电流致.

(3)电流脱扣器:电流脱扣器瞬作整定电流由式确定

IZ≥KIS

式IZ——瞬作整定电流(A)

Is——线路尖峰电流.若负载电机,则Is起电流(A)

K考虑整定误差起电流允许变化安全系数.作间于20ms,取

K=1.35作间于 20ms,取 K=1.7.

(4)欠电压脱扣器:欠电压脱扣器额定电压应等于线路额定电压.

(四)电源关联锁机构

电源关联锁机构与相应断路器组合关配套使用,用于接通电源,断电源柜

门关联锁,达切断电源才能打门,门关闭才能接通电源效,实现安

全保护.

七,控制变压器选择

控制变压器用于降低控制电路或辅助电路电压,保证控制电路安全靠.控制变压器主要根据二电压等级及所需要变压器容量选择.

(1)控制变压器,二电压应与交流电源电压,控制电路电压与辅助电路电压相符合.

(2)控制变压器容量按列两种情况计算,依计算容量者决定控制变压器容量.

l)变压器期运行,工作负载变压器容量应于或等于工作负载所需要功率,计算公式

ST≥KT ∑PXC

式ST——控制变压器所需容量(VA)

∑PXC——控制电路负载工作电器所需总功率,其PXC电磁器件吸持功

率(W)

KT控制变压器容量储备系数,般取1.1-1.25.

2)控制变压器容量应使已吸合电器起其电器仍能保持吸状态,起电器能靠吸合,其计算公式

ST≥0.6 ∑PXC +1.5∑Pst

式 ∑Pst_同起电器总吸持功率(W).

第六节 电气控制施工设计与施工

,电气设备总体配置设计

组件划原则:

l)功能类似元件组起,构控制面板组件,电气控制盘组件,电源组件等.

2)接线关系密切电器元件置于同组件,减少组件间连线数量.

3)强电与弱电控制相离,减少干扰.

4)求整齐美观,外形尺寸相同,重量相近电器元件组合起.

5)便于检查与调试,需经调节,维护易损元件组合起.

电气设备各部及组件间接线式通:

l)电器控制盘,机床电器进线般采用接线端.

2)控制设备与电气箱间便于拆装,搬运,尽能采用孔接插件.

3)印刷电路板与弱电控制组件间宜采用各种类型接插件.

总体配置设计电气控制总装配图与总接线图形式表达,图用示意式反映各部主要组件位置各部接线关系,走线式及使用管线要求.总体设计要使整系统集,紧凑要考虑发热量高噪声振电气部件,使其离操作者定距离电源紧急控制关应安放便且明显位置.

不要多想 这样的提问没有意义

很多烦恼都是我们自己找的

聪明的豆芽
结实的秀发
2025-06-29 19:33:48
电气设计应注意的问题:

1.供配电系统

1.1 地下变电站设计时应注意几个问题:

在地下变电站设计时除现有规范之外还应注意下列几个问题:

1.1.1 平面布置要紧凑

在符合规范的前提下,尽量做到平面布置要紧凑,要充分利用空间适当降低层高,减少地下的开挖深度。有条件者应采用上进线上出线方式。

1.1.2 出入口

出入口不能少于二个,其中一个是主要出入口(人员及设备出入口),另一个是安全出入口,另外必须考虑设备出入口,设备出入口可以采用吊装孔,但是吊装孔必须有可靠的防水措施。门宽为设备宽加200毫米,门高为设备高加300毫米,门均为防火门,内部门的开启方向应符合要求。

1.1.3 电缆进出口

电缆进出口已设有专用电缆井道,必须有防水防洪措施。

1.1.4 通风系统

地下变电站必须设置可靠的送、排风系统,宜采用下侧送上侧回(送风口距地300 毫米)。风管不能进入变电站,宜设事故排风扇。变电站的换气次数为15次/h,具体应根据发热量计算,如果采用地道风,在风道入口处应设防火阀门。

1.1.5 防水措施

地下变电站应妥善选择防水措施(如常用的有隔水法、降排水法和综合法),沿地下室的外墙内侧应设排水明沟和集水坑。

1.1.6 防洪措施

地下变电站的所有出入口均要高出站外地面,为安全起见,一般要求高出百年一遇的洪水位0.3米。附设地下变电站的室内地坪应抬高0.15米,严防水喷淋动作时的积水。

1.1.7 防潮措施

地下变电站各房间(高低压配电间、变压器间)应设置去湿机电源插座,箱板平齐。插座容量视去湿机容量而定。

1.1.8 防火措施

地下变电站应设置安全可靠的防火措施,具体可参见有关防火规范。

1.2 积极推广应用D · Yn11结线配电变压器

1.2.1 D · Yn11结线配电变压器具有低损耗、抑制高次谐波电流、容量能充分利用、零序电抗小,对切除低压侧单相接地故障有利等优点。

1.2.2 D · Yn11结线配电变压器过电流保护应采用三相三继电器星形接线,可以提高变压器过电流保护的灵敏度 ,是Y · Yn0变压器的1.155倍。若采用交流操作电源时,应采用去分流式继电保护接线方式。

1.2.3 D · Yn11结线配电变压器根据规程要求,一般设置电流速断保护、过电流保护、低压侧单相接地短路保护、其整定值计算与Y · Yn0配电变压器相同。

爱听歌的黑猫
甜甜的信封
2025-06-29 19:33:48
工艺设计你指的是哪方面的工艺了?

电气设计是指建筑电气设计,包括:强电设计(如:照明、插座、电梯、各种泵……)、弱电设计(如:网络、电话、电施)、防雷设计、楼宇自动化设计。

这样说不知道你明白了没有。

传统的镜子
大意的指甲油
2025-06-29 19:33:48
一、基本思路

电气控制柜设计的基本思路是一种逻辑思维,只要符合逻辑控制规律、能保证电气安全及满足生产工艺的要求,就可以说是一种好的设计。但为了满足电气控制设备的制造和使用要求,必须进行合理的电气控制工艺设计。这些设计包括电气控制柜的结构设计、电气控制柜总体配置图、总接线图设计及各部分的电器装配图与接线图设计,同时还要有部分的元件目录、进出线号及主要材料清单等技术资料。

二、电气控制柜总体配置设计

电气控制柜总体配置设计任务是根据电气原理图的工作原理与控制要求,先将控制系统划分为几个组成部分(这些组成部分均称作部件),再根据电气控制柜的复杂程度,把每一部件划成若干组件,然后再根据电气原理图的接线关系整理出各部分的进出线号,并调整它们之间的连接方式。总体配置设计是以电气系统的总装配图与总接线图形式来表达的,图中应以示意形式反映出各部分主要组件的位置及各部分接线关系、走线方式及使用的行线槽、管线等。

电气控制柜总装配图、接线图(根据需要可以分开,也可并在一起)是进行分部设计和协调各部分组成为一个完整系统的依据。总体设计要使整个电气控制系统集中、紧凑,同时在空间允许条件下,把发热元件,噪声振动大的电气部件,尽量放在离其它元件较远的地方或隔离起来;对于多工位的大型设备,还应考虑两地操作的方便性;控制柜的总电源开关、紧急停止控制开关应安放在方便而明显的位置。

总体配置设计得合理与否关系到电气控制系统的制造、装配质量,更将影响到电气控制系统性能的实现及其工作的可靠性、操作、调试、维护等工作的方便及质量。