建材秒知道
登录
建材号 > 设计 > 正文

普通车床的数控化改造设计方案内容有哪些

现实的板栗
和谐的蜜蜂
2023-01-26 10:28:30

普通车床的数控化改造设计方案内容有哪些?

最佳答案
优秀的早晨
合适的毛巾
2025-12-05 11:52:38

目前机床数控化改造的市场在我国还有很大的发展空间,现在我国机床数控化率不到3%。用普通机床加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,从而在国际、国内市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展,所以必须大力提高机床的数控化率。本文以车床的数控改造为例,介绍了机床数控改造的方法,包括其结构的改造设计,性能与精度的选择以及最后改造方案的确定。

机床数控改造的意义:

1)节省资金。机床的数控改造同购置新机床相比一般可节省60%左右的费用,大型及特殊设备尤为明显。一般大型机床改造只需花新机床购置费的1/3。即使将原机床的结构进行彻底改造升级也只需花费购买新机床60%的费用,并可以利用现有地基。

2)性能稳定可靠。因原机床各基础件经过长期时效,几乎不会产生应力变形而影响精度。

3)提高生产效率。机床经数控改造后即可实现加工的自动化效率可比传统机床提高3至5倍。对复杂零件而言难度越高功效提高得越多。且可以不用或少用工装,不仅节约了费用而且可以缩短生产准备周期。

1、普通车床的数控化改造设计

机床的数控改造,主要是对原有机床的结构进行创造性的设计,最终使机床达到比较理想的状态。数控车床是机电一体化的典型代表,其机械结构同普通的机床有诸多相似之处。然而,现代的数控机床不是简单地将传统机床配备上数控系统即可,也不是在传统机床的基础上,仅对局部加以改进而成(那些受资金等条件限制,而将传统机床改装成建议数控机床的另当别论)。传统机床存在着一些弱点,如刚性不足、抗振性差、热变形大、滑动面的摩擦阻力大及传动元件之间存在间隙等,难以胜任数控机床对加工精度、表面质量、生产率以及使用寿命等要求。现代的数控技术,特别是加工中心,无论是其支承部件、主传动系统、进给传动系统、刀具系统、辅助功能等部件结构,还是整体布局、外部造型等都已经发生了很大变化,已经形成了数控机床的独特机械结构。因此,我们在对普通机床进行数控改造的过程中,应在考虑各种情况下,使普通机床的各项性能指标尽可能地与数控机床相接近。

2、数控车床的性能和精度的选择

并不是所有的旧机床都可以进行数控改造,机床的改造主要应具备两个条件:第一,机床基础件必须有足够的刚性。第二,改造的费用要合适,经济性好。在改装车床前,要对机床的性能指标做出决定。改装后的车床能加工工件的最大回转直径以及最大长度、主电动机功率等一般都不会改变。加工工件的平面度、直线度、圆柱度以及粗糙度等基本上仍决定于机床本身原有水平。主要有下述性能和精度的选择需要在改装前确定。

1)轴变速方法、级数、转速范围、功率以及是否需要数控制动停车等。

2)进给运动:

进给速度:Z向(通常为8~400mm/min);X向(通常为2~100mm/min)。

快速移动:Z向(通常为1.2~4m/min);X向(通常为1.2~3m/min)。

脉冲当量:在0.025~0.005mm内选取,通常Z向为X向的2倍。

加工螺距范围:包括能加工螺距类型(公制、英制、模数、径节和锥螺纹等),一般螺距在10mm以内都不难达到。

3)进给运动驱动方式(一般都选用步进电机驱动)。

4)给运动传动是否需要改装成滚珠丝杠传动。

5)刀架是否需要配置自动转位刀架,若配置需要确定工位数。

6)其他性能指标选择:

插补功能:车床加工需具备直线和圆弧插补功能。

刀具补偿和间隙补偿:为了保证一定的加工精度,一般需考虑设置刀补和间隙补偿功能。

显示:采用数码管还是液晶或者显示器显示,显示的位数多少等问题要根据车床加工功能实际需要确定,一般来说,显示越简单成本越低,也容易实现。

诊断功能:为防止操作者输入的程序有错和随之出现的错误动作,可在数控改造系统设计时加入必要的器件和软件,使其能指示出机床出现故障或者功能失效的部分等,实现有限的诊断功能。

以上是车床数控改造时需要考虑的一些通用性能指标,有的车床改造根据需要还会有些专门的要求,如车削大螺距螺纹、在恶劣的环境下工作的防尘干扰、车刀高精度对刀等,这个时候应有针对性的专门设计。

3、车床数控改造方案选择

当数控车床的性能和精度等内容基本选定后,可根据此来确定改造方案。目前机床数控改造技术已经日趋成熟,专用化的机床数控改造系统所具备的性能和功能一般均能满足车床的常规加工要求。因此,较典型的车床数控改造方案可选择为:配置专用车床数控改造系统,更换进给运动的滑动丝杠传动为滚珠丝杠传动、采用步进电机驱动进给运动、配置脉冲发生器实现螺纹加工功能、配置自动转位刀架实现自动换刀功能。

目前较典型的经济型专用车床数控改造系统具有下列基本配置和功能:

1)采用单片微机为主控CPU,具有直线和圆弧插补、代码编程、刀具补偿和间隙补偿功能、数码管二坐标同时显示、自动转位刀架控制、螺纹加工等控制功能。

2)配有步进电机驱动系统,脉冲当量或控制精度一般为:Z为0.01mm,X向为0.005mm(要与相应导程的丝杠相配套)。

3)加工程序大多靠面板按键输入,代码编制,掉电自动保护存储器存储;可以对程序进行现场编辑修改和试运行操作。

4)具有单步或连续执行程序、循环执行程序、机械极限位置自动限位、超程报警,以及进给速度程序自动终止等各类数控基本功能。

4、车床数控改造实例

以CA6140型普通车床数控化改造为例,它采用了一种比较简单但是较为典型的改装方案,改造后的车床进给运动由步进电机A和B驱动,它们分别安装在床头箱内(或床身尾部)和拖板后方,通过减速齿轮和纵横向丝杠带动车床的纵横进给运动。

为使改造后的车床能充分发挥数控车床的效能,纵横向丝杠螺母副一般需要调换成滚珠丝杠螺母副。当利用原丝杠螺母副时,为了减少改造工作量,纵向驱动电机及减速箱一般装在床身尾部,这时连接车床原传动系统(主轴系统)和纵向丝杠传动的离合器尚未拆除,工作时应使处于脱开位置。同理,脱落蜗杆等原横向自动进给机构若未拆除,工作时也应使其处于空档(空挡)位置。改造后的进给脉冲当量的量值靠步进电机步距角、减速齿轮比、丝杠导程三者协调确定。三者之间换算关系可以以下式表示:

(θ/360)×(ac/bd)×T=δ

式中θ——步进电机步聚角(度);

T——所驱动丝杠导程(mm);

a,b,c,d——齿轮齿数,当单级减数时,令c、d等于1;

δ——脉冲当量值(mm)。

步进电机的参数根据阻力矩及切屑用量的大小和机床型号来选择,普通车床(如C6140、C620等)的数控改造中多采用0.08——0.15(N·m)静力矩的步进电机,如选0.08(N·m)的作为横向进给电机;选0.15(N·m)的作为纵向进给电机。

若需要,可将原刀架换成自动转位刀架,则可以用程序数控转换刀具进行切屑加工。当数控系统发出换刀信号时,首先继电器K1动作,换刀电动机正转驱动蜗轮蜗杆机构,使上刀体上升。当上刀体上升到一定的高度时,离合转盘起作用,带动上刀体旋转进行选刀。刀架上方的发信盘中对应每个刀位都安有一个传感器,当上刀体旋转到某个刀位时,该刀位的传感器向数控系统输出信号,数控系统将刀位信号与指令刀位信号进行比较,当两信号相同时,说明上刀体已旋转到所选刀位。此时数控系统控制继电器K1释放,继电器K2吸合,换刀电动机反转,活动销在反靠盘上初定位。在活动销反靠的作用下,螺杆带动上刀体下降,直到齿牙盘咬合,完成精定位,并通过蜗轮蜗杆锁紧螺母,使刀架紧固。此时数控系统控制继电器K2释放,换刀电动机停转,完成换刀动作。也可以保留原刀架仍采用手动转换刀具,但在换刀时必须设置程序暂停。如果需要加工螺纹,则要在主轴外端或其他适当部位装上一个脉冲发生器C,用它发出脉冲使步进电机准确地配合主轴的旋转而产生相应的进给运动,即保证主轴每转一转,车刀移动一个导程。

上述改造方案中,不更换丝杠方法当数控系统出现故障时,仍可以加工,但滑动丝杠螺母副容易磨损故需要经常检修,而且功率和加工精度均不如滚珠丝杠螺母副驱动方式。另外,拖板与床身的导轨不够平行或垂直,以及两者之间摩擦力过大,丝杠轴线与导轨间存在平行度误差等问题均会使驱动阻力增加。为了减阻力以提高步进电机的力矩有效率和加工精度。

机床改造完毕后,还应该对其进行安装调试及验收。一般来说,应特别注意安装的位置和基础,使机床处于良好稳定的工作环境。其次是全面检查各器件、插件的连接情况以及各油路、电路的情况,再进行数控系统的连接。当完成数控系统的调整,具备了机床联机通电试车的条件,可切断数控系统的电源,连接电动机的动力线,恢复报警设定,准备通电试车。试车的目的是考核机床的安装是否稳固,各传动、操纵、控制、润滑、液压、气动等系统是否正常和灵敏可靠。改造后的数控机床的验收是和安装调试工作同步进行的。一台机床数控改造完好后的检测验收工作是一项复杂的工作,其试验检测手段及技术要求也很高,它需要使用各种高精度的仪器,对机床的机、电、液、气各部分及整机进行单项性能综合性能检测,包括运行刚度和热变形等一系列试验,其中应特别注意机床数控功能的检验,最后得出该机床的综合评价。

经过大量实践证明普通机床数控化改造具有一定经济性、实用性和稳定性。其改造涉及到机械、电气、计算机等领域,是一项理论深、实践强的系统工程。在进行数控改造时,应该做好改造前的技术准备。改造过程中,机械修理与电气改造相结合,先易后难、先局部后全局。

最新回答
凶狠的海燕
善良的悟空
2025-12-05 11:52:38

http://www.cnkiw.com/viewthread.php?tid=1687&highlight=%E6%9C%BA%E5%BA%8A%E8%AF%BE%E7%A8%8B%E8%AE%BE%E8%AE%A1 目录 一、 概述 1 1.1金属切削机床在国民经济中的地位 1 1.2机床课程设计的目的 1 1.3车床的规格系列和用处 1 1.4 操作性能要求 2 二、参数的拟定 2 2.1 确定转速范围 2 2.2 主电机选择 2 三、传动设计 2 3.1 主传动方案拟定 2 3.2 传动结构式、结构网的选择 3 3.2.1 确定传动组及各传动组中传动副的数目 3 3.2.2 传动式的拟定 3 3.2.3 结构式的拟定 3 3.3转速图的拟定 4 四、 传动件的估算 5 4.1 三角带传动的计算 5 4.2 传动轴的估算 7 4.2.1 传动轴直径的估算 7 4.3 齿轮齿数的确定和模数的计算 8 4.3.1 齿轮齿数的确定 8 4.3.2 齿轮模数的计算 9 4.3.4齿宽确定 11 4.4 带轮结构设计 11 五、动力设计 12 5.1主轴刚度验算 12 5.1.1 选定前端悬伸量C 12 5.1.2 主轴支承跨距L的确定 12 5.1.3 计算C点挠度 12 5.2 齿轮校验 14 六、结构设计及说明 15 6.1 结构设计的内容、技术要求和方案 15 6.2 展开图及其布置 16 6.3 齿轮块设计 16 6.3.1其他问题 17 6.4 主轴组件设计 17 七、总结 18 八、参考文献 19

优雅的仙人掌
着急的服饰
2025-12-05 11:52:38
1.序言

本次课程设计任务是CM6132车床主传动设计。由于CM6132车床是精密,高精密加工车床,要求车床加工精度高,主轴运转可靠,并且受外界,振动,温度干扰要小,因此,本次设计是将车床的主轴箱传动和变速箱传动分开设计,以尽量减小变速箱,原电机振动源对主轴箱传动的影响。

本次课程设计包括CM6132车床传动设计,动力计算,结构设计以及主轴校核等内容,其中还有A0大图纸的CM6132车床主传动的结构图、

本次课程设计师毕业课程设计前一次对我们大学四年期间机械专业基础知识的考核和检验。它囊括了理论力学,材料力学,机械原理,机械设计,机械制造装备设计等许多机械学科的专业基础知识,因此称之为专业课程设计。它不仅仅是对我们专业知识掌握情况的考核和检验,也是一次对我们所学的知识去分析,去解决生产实践问题的运用。由于本次课程设计实践恰与2010年考研冲刺期冲突,因此在编写课程设计说明书,设计CM6132主传动结构图的过程中难免有不少纰漏和错误,恳请老师指正。

2.传动设计

本次设计在分析研究所掌握的资料的基础上,用计算法或类比法确定所设计主轴变速箱的极限转速公比,求出转速极速,选择电动机的转速和功率,拟定合适的结构式,结构网和转速图,然后拟定传动方案并绘制传动系统图,确定转速比和齿轮齿数及带轮直径等。

2.1确定转速极速

根据任务要求,Nmax=2000rpm,Nmin=45rpm,转速公比φ=1.41.则转速范围Rn:

Rn=Nmax/Nmin=44.4 (1)

依据φ,Rn,可求得主轴转速级数Z:

Z=lgRn/lgφ 1=11.98=12(2)

2.2确定结构式及结构网

由于结构上的限制,变速组中的传动副数目通常选用2或3为宜,故其结构式为:Z=2^(n)*3^(m).对于12级传动,其结构式可为以下三种形式:

12=3*2*2;12=2*3*2;12=2*2*3;

在电动机功率一定的情况下,所需传递的转矩越小,传动件和传动轴的集合尺寸就越小。因此,从传动顺序来讲,尽量使前面的传动件多以些,即前多后少原则。故本设计采用结构式为:

12=3*2*2

图1中,从轴I到轴II有三队齿轮分别啮合,可得到三种不同的传动速度;从轴II到轴III有两对齿轮分别啮合,可得到两种不同的传动速度,故从轴II到轴III可得到3*2=6种不同的传动速度;同理,轴III到轴IV有两对齿轮分别啮合,可得到两种不同的传动速度,故从轴I到轴IV共可得到3*2*2=12种不同的传动转速。

图1 3*2*2传动方案

在制定机床传动方案时,常将传动链特性的相关关系画成图,以供比较选择。该图即为结构网图。结构网只表示各传动副传动比的相关关系,而不表示数值, 因而绘制成对称形式(图2)。由于主轴的转速应满足级比规律(从低到高间成等比数列,公比为φ),故结构网上相邻两横线间代表一个公比φ。

为了使一根轴上变速范围不超过允许值,传动副输越多,级比指数应小一些。考虑到传动顺序中有前多后少原则,扩大顺序应采用前小后大的原则,即所谓的前密后疏原则。故本设计采用的结构式为:

12=3(1)*2(3)*2(6)

12:级数。

3,2,2:按传动顺序的各传动组的传动副数。

1,3,6:各传动组中级比间的空格数,也反映传动比及扩大顺序。

该传动形式反映了传动顺序和扩大顺序,且表示传动方向和扩大顺序一致。图2为该传动的结构式。

图2 12=3(1)*2(3)*2(6)结构网

2.3绘制转速图

绘制CM6132车床转速图前,有必要说明两点:

(1)为了结构紧凑,减小振动和噪声,通常限制:

a:Imin

雪白的洋葱
孤独的海燕
2025-12-05 11:52:38
1.序言

本次课程设计任务是CM6132车床主传动设计。由于CM6132车床是精密,高精密加工车床,要求车床加工精度高,主轴运转可靠,并且受外界,振动,温度干扰要小,因此,本次设计是将车床的主轴箱传动和变速箱传动分开设计,以尽量减小变速箱,原电机振动源对主轴箱传动的影响。

本次课程设计包括CM6132车床传动设计,动力计算,结构设计以及主轴校核等内容,其中还有A0大图纸的CM6132车床主传动的结构图、

本次课程设计师毕业课程设计前一次对我们大学四年期间机械专业基础知识的考核和检验。它囊括了理论力学,材料力学,机械原理,机械设计,机械制造装备设计等许多机械学科的专业基础知识,因此称之为专业课程设计。它不仅仅是对我们专业知识掌握情况的考核和检验,也是一次对我们所学的知识去分析,去解决生产实践问题的运用。由于本次课程设计实践恰与2010年考研冲刺期冲突,因此在编写课程设计说明书,设计CM6132主传动结构图的过程中难免有不少纰漏和错误,恳请老师指正。

2.传动设计

本次设计在分析研究所掌握的资料的基础上,用计算法或类比法确定所设计主轴变速箱的极限转速公比,求出转速极速,选择电动机的转速和功率,拟定合适的结构式,结构网和转速图,然后拟定传动方案并绘制传动系统图,确定转速比和齿轮齿数及带轮直径等。

2.1确定转速极速

根据任务要求,Nmax=2000rpm,Nmin=45rpm,转速公比φ=1.41.则转速范围Rn:

Rn=Nmax/Nmin=44.4 (1)

依据φ,Rn,可求得主轴转速级数Z:

Z=lgRn/lgφ+1=11.98=12(2)

2.2确定结构式及结构网

由于结构上的限制,变速组中的传动副数目通常选用2或3为宜,故其结构式为:Z=2^(n)*3^(m).对于12级传动,其结构式可为以下三种形式:

12=3*2*2;12=2*3*2;12=2*2*3;

在电动机功率一定的情况下,所需传递的转矩越小,传动件和传动轴的集合尺寸就越小。因此,从传动顺序来讲,尽量使前面的传动件多以些,即前多后少原则。故本设计采用结构式为:

12=3*2*2

图1中,从轴I到轴II有三队齿轮分别啮合,可得到三种不同的传动速度;从轴II到轴III有两对齿轮分别啮合,可得到两种不同的传动速度,故从轴II到轴III可得到3*2=6种不同的传动速度;同理,轴III到轴IV有两对齿轮分别啮合,可得到两种不同的传动速度,故从轴I到轴IV共可得到3*2*2=12种不同的传动转速。

图1 3*2*2传动方案

在制定机床传动方案时,常将传动链特性的相关关系画成图,以供比较选择。该图即为结构网图。结构网只表示各传动副传动比的相关关系,而不表示数值, 因而绘制成对称形式(图2)。由于主轴的转速应满足级比规律(从低到高间成等比数列,公比为φ),故结构网上相邻两横线间代表一个公比φ。

为了使一根轴上变速范围不超过允许值,传动副输越多,级比指数应小一些。考虑到传动顺序中有前多后少原则,扩大顺序应采用前小后大的原则,即所谓的前密后疏原则。故本设计采用的结构式为:

12=3(1)*2(3)*2(6)

12:级数。

3,2,2:按传动顺序的各传动组的传动副数。

1,3,6:各传动组中级比间的空格数,也反映传动比及扩大顺序。

该传动形式反映了传动顺序和扩大顺序,且表示传动方向和扩大顺序一致。图2为该传动的结构式。

图2 12=3(1)*2(3)*2(6)结构网

2.3绘制转速图

绘制CM6132车床转速图前,有必要说明两点:

(1)为了结构紧凑,减小振动和噪声,通常限制:

a:Imin>=1/4

b:Imax<=2(斜齿轮<=2.5)

所以,在一个变速组中,变速范围要小于等于8,对应本次设计,转速图中,一个轴上的传动副间最大不能相差6格。

c:前缓后急原则;

即传动在前的传动组,其降速比小,而在后的传动组,其降速比大。

(2)CM6132车床转速图与它的主传动系统图密切相关。故在绘制它的转速图钱,先要确定其主传动系统图。

图3 CM6132普通车床主传动系统图

如图3所示,CM6132型普通车床采用分离式传动,即变速箱和主轴箱分离。III,IV轴为皮带传动。在主轴箱的传动中采用了背轮机构(IV,V同轴线),解决了传动比不能过大(受极限传动比限制)的问题。

CM6132型普通车床(12级转速,公比φ=1.41)采用了背轮机构后的转速图,如图4所示。图中轴号的顺序对应传动系统图图3.

图4 CM6132型普通车床转速图

由于最高转速Nmax=2000rpm,且CM6132机床功率一般为3.0KW左右。为满足转速和功率要求,选择Y系列三相异步电动机型号为:Y100L2-4,其技术参数见下表.

表1 Y100L2-4型电动机技术数据

2.4 齿轮齿数的估算

为了便于设计和制造,同一传动组内各齿轮的模数常取为相同。此时,各传动副的齿轮齿数和相同。

显然,齿数和太小,则小齿轮的齿数少,将会发生根切,或造成其加工齿轮中心孔的尺寸不够(与传动轴直径有关),或造成加工键槽(传递运动需要)时切穿齿根;若齿数和太大,则齿轮结构尺寸大,造成主传动系统结构庞大。因此,应根据传动轴直径等适当选取。

本次设计共包含I-II轴传动组,II-III轴传动组,IV-V传动组和V-VI(主轴)传动组四个齿轮副传动组。现根据各传动组内传动副的传动比草拟出多种齿数和,见下表2,至于具体

每对传动副齿数和和各齿轮齿数的确定留待各轴直径估算确定后再确定。

表2 各种传动比齿轮齿数和及齿数

2.5带轮直径的确定

本次设计中,存在着电动机到I轴,III轴到VI的两组皮带轮传动,其传动比分别为1.43:1和1:1.一般机床上采用V带,根据电动机转速和功率即可确定带型号,传动带数2~5个最佳。

根据带轮传递功率和转速,对于电动机到I轴选择A型带,I轴上带轮直径D2=180mm,电动机轴上带轮直径D1=176mm,采用5根带。

III轴到IV轴选择A型带(A带直径小,承载能力强),III轴上带轮直径D3=140mm,IV轴上带轮直径D4=140mm,采用2根带。

3.动力计算

3.1电机功率的确定

如前所述,对于国产CM6132普通车床,机床功率一般为3.0KW.选择Y100L2-4型号异步电动机。其额定功率为3KW.

3.2主轴的估算

在设计之初,由于确定的仅仅是一个方案,具体构造尚未确定,因此只能根据统计资料,初步确定主轴的直径。

3.2.1主轴前端轴颈的直径D1

表3 各类机床主轴前端轴颈的直径D1

图5 机床主轴结构图

如表3所示,本次设计,选择D1=80mm。

3.2.2主轴后轴颈D2

一般机床主轴后轴颈D2=(0.7~0.85)D1,取D2=60mm。

需要说明的是,主轴的前后轴颈一般指主轴上与滚动轴承配合的那段轴颈,故D1,D2应为5的整数倍。

3.3中间传动轴的初算

根据生产经验,一般机床每根轴的当量直径d与其传递的功率P,计算转速Nj,以及允许的扭转角[Ф]有如下经验公式:

d>=11sqrt(sqrt(P/Nj[Ф]))(3)

式中,P:该传动轴传递的额定功率,P=η*Pe,单位KW。

η:电机到该轴传动件传动效率总值。

d:当量直径,单位cm。

Nj:计算转速,单位rpm。

对于花键轴,轴内径一般要比d小7%。

3.3.1允许扭转角[Ф]的确定

一般,机床各轴的允许扭转角参考值见表4.

表4 机床各轴允许扭转角[Ф]

本次设计,中间传动轴允许扭转角[Ф]均取1.2°。

3.3.2计算转速Nj的确定

计算转速Nj是指主轴或其他传动轴传递全部功率的最低转速,对于等比传动的中型通用机床,主轴计算转速一般为:

Nj=Nmin*φ^(Z/3 -1)

故本次设计,Nj=125rpm。根据转速图图4,即可确定各轴的计算转速见下表。

表5 各轴的计算转速

3.3.3 各轴传递功率的确定

各轴的传递功率N=η*Pe。在确定各轴效率时,不考虑轴承的影响,但在选取各轴齿轮传递效率时,取小值以弥补轴承带来的误差。一般机床上格传动元件的效率见下表。

表6 机械传动效率

变速箱圆柱齿轮传动选取8级精度,主轴箱精度要求高,选取7级精度。由表4,表5,表6以及公式(3)即可确定各轴传递效率以及当量直径。见下表:

表7 机床各中间传动轴传递功率及计算直径

3.4齿轮模数的估算

按接触疲劳强度或弯曲强度计算齿轮模数比较复杂,而且有些系统各参数都已知道的情况后方可确定,所以,只在草图完成后校核用。在画草堂前,先估算,再选用标准齿轮模数,一般同一变速组中的齿轮取同一模数,一个主轴,变速箱中的齿轮采用1~2种模数。传动功率的齿轮模数一般取大于2mm。在中型机床中,主轴变速箱中的齿轮模数常取2.5,3,4mm。

由中心距A及齿数Z1,Z2,可求齿轮模数为:

m=2A/(Z1+Z2) (4)

根据生产实践经验,按齿面点蚀估算的齿轮中心距有如下公式:

A>=370(P/Nj)^(1/3) (5)

式中,Nj:大齿轮的计算转速,单位为rpm。

P:该齿轮传递功率,单位为KW。

从I轴到II轴,P=2.85KW,Nj=1400rpm,则AI II>=46.9mm。

从II轴到III轴,P=2.76KW,Nj=1000rpm,则AII III>=52.0mm。

从III轴到IV 轴,P=2.55KW,Nj=355rpm,则AIII IV>=71.4mm。

由(4)以及表2各轴齿轮传动齿数和,对于最小齿数和,则有各轴应满足的最低模数。

故对于I轴,II轴,(Z1+Z2)min=48,AI II>=46.9mm,则m>=1.95mm。

对于II轴,III轴,(Z1+Z2)min=46,AI II>=52.0mm,则m>=2.26mm。

对于III轴,IV轴,(Z1+Z2)min=76,AI II>=71.4mm,则m>=1.87mm。

因而,对于变速箱内圆柱齿轮传动,统一取m=2.5mm。由于主轴传递扭矩大,故对于主轴箱内齿轮模数取3mm。

3.5各轴直径及各齿轮齿数的确定。

在生产实际中,轴上齿轮的传动主要靠周向键连接来实现的,花键连接以其对中性好,导向性能好,应力集中小等优点获得广泛应用。因而本次设计中,所有的传动轴均采用花键轴,通过各轴的当量直径来选取适当标准的花键轴径,再通过花键轴径来选取轴上各齿轮传动副的齿数。具体各花键轴尺寸,齿轮齿数和的选取见下表。

表8 各花键轴参数以及相应传动副齿轮齿数和

这里需要说明三点:

(1)花键轴参数尺寸代表Z-D*d*b。Z表示花键轴齿数,D表示花键轴大径,d表示小径,b表示齿宽,具体图样见下图:

图6 矩形花键轴

(2)齿轮齿数的选取,应保证齿轮齿根与花键轴大径配合的轮毂面不得小于3~5mm。

(2)如A0图纸绘制的CM6132车床主传动系统图所示,轴IV做成带有齿轮的中空轴套,起卸荷左右,这样可将带轮的张紧力引起的径向力通过轴套,滚动轴承传至机身上,保证主轴的运转不受带轮张紧力的影响。

(4)III轴和IV轴间为皮带轮1:1传功。

4 结构设计

结构设计包括主轴箱,变速箱的结构,以及传动件(传动轴,轴承,齿轮,带轮,离合器,卸荷装置等),主轴组件,箱体以及连接件的结构设计和布置等等。

4.1齿轮的轴向布置

本次设计中有多处使用了滑移齿轮,而滑移齿轮必须保证当一对齿轮完全脱离后,令一对齿轮才能进入啮合,否则会产生干涉或变速困难。所以与之配合的固定齿轮间的距离应保证留有足够的空间,至少不少于齿宽的两倍,并留有Δ=1~2mm的间隙。

齿轮齿宽一般取b1=(6~12)m,对变速箱内齿轮传动副模数m=2.5mm,我设计的齿轮宽度b=6m=15mm 。而对于主轴箱内m=3mm,b2=20mm,故变速箱内相邻固定齿轮间距离B应不小于32mm。

图7 齿轮的轴向布置

4.2传动轴及其上传动元件的布置

4.2.1 I轴的设计

图8 I轴及其上传动元件布置图

I轴上为三联滑移齿轮,相应的花键轴段尺寸为6-32*28*7。左右端均选取深沟球轴承,其型号分别为6205,6206。右端为5齿皮带轮,与I轴平键连接,电机工头右端V带轮将动力传至I轴,又通过滑移齿轮传动力至II轴。

4.2.2 II轴的设计

图9 II轴及其上传动元件布置图

II轴上为5个固连齿轮,左边3个为与I轴配合的齿轮,右边2各与III轴配合。相应花键轴段尺寸为6-32*28*7,左,右端均为型号为6205的深沟球轴承。动力从I轴传至II轴,并通过右边两齿轮传动力至III轴。

4.2.3 III轴的设计

图10 III轴及其上传动元件布置图

III轴上有2联滑移齿轮,与II轴的2个固定齿轮啮合。与之配合的相应花键轴段尺寸为6-35*30*10。左,右均为型号为6206的深沟球轴承。左端为2齿皮带轮,动力从II轴传至III轴,再通过左边的V带轮传动力至IV轴。

4.2.4 IV轴的设计

图11 IV轴及其上传动元件布置图

IV 轴实际上是带有齿轮,并套在主轴左端的套筒。两个型号为6214的深沟球轴承支撑套筒增加其刚度。左端为2齿皮带轮,左边螺母可调整其轴向位置。动力从III轴径皮带轮传至IV轴,再通过右边齿轮将动力传出。

4.2.5 V轴的设计

图12 V轴及其上传动元件布置图

V轴实际上是背轮机构,其上2个滑移齿轮,与控制主轴内齿离合器滑动的拨叉盘用螺栓固连在一起,进而达到变速目的。与之配合的花键轴尺寸参数为6-40*35*10。左右均为型号为6206的深沟球轴承。当拨动滑移齿轮,使左端齿轮与IV轴齿轮啮合时,主轴将得到低6级转速。若拨动滑移齿轮,使与之故连得拨叉主轴上齿轮直接与IV轴齿轮啮合时,主轴将得到高8级转速。

4.2.6主轴的设计

图13 主轴及其上传动元件布置图

主轴上装有受V轴(背轮机构)上拨叉盘控制的内齿离合器,以及固连在主轴上的与V轴右端小齿轮的齿轮。当IV轴齿轮直接与内齿离合器啮合时,主轴将得到高6级转速。当脱开时,故连齿轮与背轮机构恰好接通,通过两个1:2.8的减速,主轴将得到低6级转速。

由于主轴比较长,为提高其刚度,本设计采用三支撑方式,其结构要求箱上的3个支撑孔应有高的同轴度,否则温升和空载功率增大。但3孔同轴加工难度大,一般选中或后支撑为辅助支撑,只有载荷较大,轴产生弯曲变形时,辅助支撑才起作用。

本设计,前支撑作为主要支撑点,选择双列短圆柱滚子轴承,型号为NU316型,它承载能力大,摩擦系数小,温升低,极限转速高,能很好的满足设计要求,但不能承受轴向力。本设计在中支撑处选择两列51214型推力球轴承,在作辅助支撑的同时,配合前支撑承受轴向力。后支撑采用内圆外锥式滑动轴承,一方面,它能满足高速,高精度,重载,以及同时承受较大轴,径向力的要求;另一方面,它能将主轴由前向后的轴向力,充分的传至机身上,保证主轴良好的运转精度和动力性能。各滚动轴承均有螺母调整其轴向间隙,内圆外锥式滑动轴承可通过双向背帽调整其径向间隙。

4.3主轴的强度校核

主轴作为车床的输出轴,一方面,通过卡盘带动被夹工件回转,另一方面,由于主轴精度,性能要求较高,导致其结构及其上传动元件布置较复杂,因而主轴一般都较粗,且均做成中空轴,以保证在同等材料用量下,有较高的强度,刚度以及疲劳强度。

本次设计,只针对主轴进行强度校核,其它轴,以及刚度,疲劳强度校核限于篇幅不作讨论。

本次设计,主轴的动力来源有两种,一是通过背轮机构获得低6级转速,一是通过内齿离合器获得高6级转速。这两种情况下,主轴的受力状况显然不同,因而应分别进行受力分析并校核。

另外,车床主轴前端一般布置卸荷装置,可将切削过程中的切削力传至机身上,故在强度校核时不考虑切削力的影响。

由于主轴同时承受弯矩和转矩,在进行校核时,按弯矩和转矩的合成强度条件进行校核,根据第三强度理论,可推得:

σc=Mc/W=sqrt(M^2+(ε*T)^2)/W <=[σ-1b] (6)

本设计主轴的材料为经调质处理的45钢,它的许用疲劳强度[σ-1b]=60Mpa。

在验算前,先进行一些简略处理一简化计算。主轴的结构简图如图13所示,其上传动元件具体的轴向位置如A0图纸所示。这里,由于中间支撑仅做辅助支撑,在进行受力分析时,并不将其看做是支撑反力点。左右轴承集中反力作用点,均看做作用在轴承支撑的中点处。现将主轴上各传动元件的作用点位置和距离表示如下:

图14 主轴及其上元件轴向位置简图

4.3.1 高6级传动时强度验算

这种情况下,主轴上右边的固定齿轮受力,其受力简图如图15所示。

转矩 T1=9.55*10^3*P1/N1 =9.55*10^3*3*0.84/45 =531N*m

圆周力 Ft1=T1*10^3/(d1/2) =531*10^3/(76*3/2)=4658N

径向力 Fr1=Ft1*tan(20°)=1695N

水平面上的支反力:FA1=db/(da+db)*Ft1=132/(280+132)*4658N=1492N

FB1= Ft1-FA1=3166N

垂直面上的支反力:FA1’= db/(da+db)*Fr1=543N

FB1’=Fr1-FA1’=1152N

截面C处的水平弯矩:Mc=280*FA1*10^(-3)=418N*m

截面C处的垂直弯矩:Mc’=280*FA1’*10^(-3)=152N*m

截面C处的合成弯矩:Mc1=sqrt(Mc^2+Mc’^2)=445N*m

因主轴单向回转,视转矩为脉动循环,ε=[σ-1b]/ [σ0b]=0.6,则截面C处的当量弯矩为:

Mvc1= sqrt(Mc1^2+(ε*T1)^2)=547N*m

轴的受力图,转矩图,弯矩图如图15所示。

按弯扭合力来校核轴的强度:

截面C处当量弯矩最大,故可能为危险截面。已知Mc=Mvc1=547N*m。[σ-1b]=60Mpa,

σc=Mc/W=Mc/0.1dc^3 =547*10^3/(0.1*75^3)=13.0Mpa<[σ-1b]=60Mpa

所以其强度足够。

图15 低6级轴的强度计算

4.3.2 高6级传动时强度计算

这种情况下,主轴左边的内齿离合器直接与IV轴外齿啮合。其受力简图如图16所示。同理有:

转矩 T2=9.55*10^3*P2/N2 =9.55*10^3*3*0.84/355 =67.8N*m

圆周力 Ft2=T2*10^3/(d2/2) =67.8*10^3/(27*3/2)=1674N

径向力 Fr2=Ft2*tan(20°)=609N

水平面上的支反力:FA2=db/(db-da)*Ft2=552/(552-140)*1674N=2242N

FB2= Ft2-FA2=-568N

垂直面上的支反力:FA2’= db/(db-da)*Fr2=816N

FB2’=Fr2-FA2’=-207N

截面A处的水平弯矩:Ma=140*Ft2*10^(-3)=234N*m

截面A处的垂直弯矩:Ma’=280*Fr2’*10^(-3)=85.2N*m

截面A处的合成弯矩:Ma1=sqrt(Ma^2+Ma’^2)=249N*m

同理,截面A处的当量弯矩为:

Mva1= sqrt(Ma1^2+(ε*T2)^2)=252N*m

轴的受力图,转矩图,弯矩图如图16所示。

同样,截面A处当量弯矩最大,故可能为危险截面。已知Ma=Mva1=252N*m。[σ-1b]=60Mpa,

σa=Ma/W=Ma/0.1dc^3 =252*10^3/(0.1*65^3)Mpa =9.2Mpa<[σ-1b]=60Mpa

所以其强度也足够。

图16 高6级轴的强度计算

综上所述,两种情况下主轴的强度均足够,故本次设计的主轴尺寸满足要求。

5.小节

这次专业课程设计师大四上学期进行一次非常关键,非常重要的课程设计,它也是毕业设计前最后一次关于机械专业基础知识的课程设计。我个人对这次设计非常重视。

由于这次课程设计时间与考研冲突,因此很多内容特别是A0图纸的CM6132机床传动系统的结构图完成得比较仓促,其中不乏一些小错误和不合理之处。比如I轴上的三联滑移齿轮布置安排不合理,直接导致滑移齿轮间间距比较大(为了留出空间,保证齿轮之间不干涉),进而影响了I轴的轴向尺寸乃至整个变速箱的尺寸大小。再比如,变速箱内的多对齿轮啮合时,没有考虑采用公用齿轮,以减少II轴上固定齿轮的个数,从而减小II轴的轴向尺寸。还有,连接变速箱与主轴箱的V带轮尺寸较小,与庞大的主轴箱不是很协调,主轴两边端盖设计得也不尽合理……

当然,通过这次课程设计,也让我学习了很多,使我本人对机械专业的认识更深,对机床内部传动系统的结构更加清晰,而这些都是大学里课堂上的书本知识所不可能获得的,普通的考试所不可能考核检验的。从这个方面来说,课程设计不仅仅是考试以外一种考核和检验学生知识掌握情况以及运用能力方面的重要补充方式,同时学生通过课程设计,对专业基础知识和专业领域方面的信息掌握得更加牢固,更加扎实,为以后从事机械工作,以及进行生产实践活动,奠定了良好的基础。

6.参考文献

1.彭文生等主编. 机械设计. 第1版. 北京:高等教育出版社,2002

2.李余庆等主编. 机械制造装备设计. 第2版. 北京:机械工业出版社,2008

3.唐增宝等主编. 机械设计课程设计. 第1版. 武汉:华中科技大学出版社,2006

4.吴宗泽 主编. 机械零件设计设计受册[M]. 第1版. 北京:机械工业出版社,2004

爱听歌的宝马
傲娇的棒棒糖
2025-12-05 11:52:38

随着当今工业设备对精密程度的要求越来越高,加工设备的机械加工设备的加工的精密程度也要求越来越高。而在中国的机械加工设备的车床中普通车床占了很大比例。这已经越来越制约着当今工业的发展。而数控机床由于价格昂贵,且需要较高技术的加工工人。所以对机床进行自动化改造很是必要。本篇论文是在对普通卧式车床CA6140的基础上对其进行机电一体化改造。

作者在搜索、查阅研究大量有关资料的基础上,对机床自动化改造技术进行了深入的研究和分析,并描述了机床控制系统的设计。整个改造过程主要对车床纵、横向进给系统进行改造,丝杠选用摩擦损失小,效率高,精度高,寿命长的滚珠丝杠,电机选用步进电机,电动机与滚珠丝杠用齿轮减速;刀架改造成能自动换刀的回转刀架,由脉冲发生器来加工所需要的螺纹;整个控制系统以JKW-15T型号的单片机为中心,通过编程对机床的驱动设备进行控制以达到所需要的加工程度。

关键词:机床改造;

自动化机床;

控制系统

第一章

1

1.1机电一体化的发展

1

1.1.1机电一体化技术

1

1.1.2机电一体化发展概述

2

1.2机电一体化改造的必要性

3

1.2.1机床改造的意义

3

1.2.2机床改造的市场

4

1.3机电改造的内容

6

1.4本文的选题及主要研究内容

8

1.4.1本文的选题

8

1.4.2主要研究内容

8

1.5车床总体改造方案

9

1.5.1设计基本思路

9

1.5.2设计要求

10

第二章车床改造的机械部分设计

13

2.1进给系统机械结构改造设计

13

2.2进给伺服系统机械部分的计算与选型

15

2.2.1确定系统的脉冲当量

15

2.2.2切削力计算

16

2.3滚珠丝杠的设计计算与选用

17

2.3.1滚珠丝杠简介

17

2.3.2纵向滚珠丝杠的设计与计算

18

2.3.3横向滚珠丝杠的设计与计算

26

2.3.4滚珠丝杠的安装与使用

33

2.4电机与滚珠丝杠连接用减速齿轮的设计与校核

36

2.4.1齿轮传动

36

2.4.2纵向减速齿轮的设计与校核

37

2.4.3横向减速齿轮的设计与校核

41

2.5进给系统的步进电动机的计算与选择

45

2.5.1步进电动机

45

2.5.2纵向电机的计算与选择

48

2.5.3横向电机的计算与选择

51

2.6电动刀架选择与介绍

55

第3章

主轴脉冲发生器介绍与选型

58

3.1光电编码器原理

58

3.2主轴脉冲发生器的安装

60

3.3主轴脉冲发生器的选择

60

第四章

控制装置的选用

63

4.1

JWK-15T的简介

63

4.2

功能分配

65

4.3程序设计

67

第五章

结论

78

参考文献

79

英文原文

81

中文译文

90

97

看看这个可以吗,需要的话联系用户名扣扣,很完整的一套

动听的草丛
潇洒的未来
2025-12-05 11:52:38
1、主要技术参数:

床身最大工件回转直径(主参数)400mm,320 mm,500 mm,630 mm

最大工件长度(第二主参数,mm ) 1000mm,700mm,1500 mm,1800 mm

最大加工长度/mm 900mm,650 mm,1400 mm,1700 mm

2、主传动采用交、直流调速电动机,调速范围:10/1400r?min-1,40/800r?min-1,20/1250r?min-1,30/1450r?min-1,并可无级调速。

3、X轴(横向)、Z轴(纵向)为微机控制,采用步进电机或直流伺服电机驱动,滚珠丝杠传动,X轴(横向)脉冲当量0.005mm/脉冲,Z轴(纵向)脉冲当量0.010mm/脉冲。

4、刀架采用四方回转刀架、六角回转刀架

6、定位精度:0.03mm

7、重复定位精度:±0.015mm

8、实现功能:车削外圆、端面、内圆、圆弧、圆锥及螺纹加工

9、操作要求:起动、点动、单步运行、自动循环、暂停、停止

10、工件材料:钢、铸铁

11、刀具材料:高速钢、硬质合金

(一)设计说明书

1、数控机床发展概述

① 数控机床及其特点。

② 数控机床的工艺范围及加工精度。

③ 数控机床的经济分析。

④ 数控机床的发展趋向 。

2、数控机床总体方案的制订及比较

3、确定切削用量及选择刀具

4、传动系统图的设计计算

5、主轴箱装配图的设计计算

6、X轴(横向)、Z轴(纵向)机械装配图的设计计算

7、床鞍、刀架装配图的设计计算

8、主轴箱(进给变速箱、床身、主轴、主轴箱齿轮、丝杠、开合螺母)的零件图的设计计算

9、机床硬件电路图的设计

1、机床尺寸联系图 A0一张

2、机床传动系统图 A0一张

3、主要部件装配图 A0一张

4、机床硬件电路图 A0一张