10KV配电设备的接地网怎么设计?
接地网设计内容及原则
2.1 接地网设计相关内容
首先,需要确定接地网入地电流。一方面,在计算接地网入地电流时需要充分考虑电力系统未来的发展,另一方面,故障电流经过会在接地电阻产生压降使电位升高,由于地电位升高受二次电缆与二次设备交流绝缘耐压值影响,因此要考虑二次电缆芯线上产生的感应电位。
其次,需要调研接地网处的土壤地质情况,了解接地网区域的土壤电阻率。一般是通过钻孔来掌握土壤均匀情况和测量土壤电阻率,使用物探法勘探地质结构可得到电阻率分布图,还需要现场测试钢等金属在当前土壤环境下的腐蚀速率,以便于为接地网导体的材料选择和设计提供准确的依据。
第三,需要合理确定接地网面积,增加接地网面积可有效降低接地电阻,其效果好于增加接地网导体。因此在确定接地网面积时,需要先考虑系统所处的位置情况,将电力系统的相关设施均包括在内,将接地网设计为矩形或方形形状。
第四,接地电阻的确定。《电力设备接地设计技术规程》对电力系统接地网的接地电阻有明确具体的要求,通常≤0.5Ω,如果所处区域土壤电阻率较高,接地电阻要满足规定要求的技术经济性不合理,可允许接地电阻≤5Ω,但需要采取电位隔离、均压等措施来确保接触电位差等满足要求,并测绘电位分布曲线。
第五,合理确定接地导体尺寸。要根据故障电流大小来确定接地导体的具体尺寸,例如主要配电设备的接地导体尺寸应稍大,接地导体长度也应符合一定要求,以确保接触电压在安全容许值内。由于跨步电压一般小于接触电压,因此通常接地导体的长度计算以接触电压为依据,而且转移电势的限制难度较大,故多不以转移电流来进行计算。确定接地导体长度和间距后,便可对接地网进行整体的布置,由于可以认为电流经管道等设施入地,通常接地网导体的长度计算还要考虑深埋管道或是金属材质的基础桩等设施,确保总体的导体长度和尺寸合理。
2.2 接地网设计原则
首先,为尽量降低接地网的接地电阻,可将地基钢筋等金属接地体纳入接地网系统内,保证通流容量在容许值内,接地网导体的分流效果满足设计要求。
其次,为了避免电流过于集中,可基于自然接地物再以人工接地体作辅助补充,形成连续接地导体回环,从而控制接地网区域的高电位。并在回环内沿着设备布置方向设置平行接地导体,缩短设备的接地连接。
第三,埋深通常在0.5m-1.0m,而间距保持在10.0m-15.0m,接地导体一般选择圆镀锌钢材质,需确保水平接地导体搭接可靠,而垂直接地极可设置在主要配电设备处或避雷器附近,尤其是在高电阻率土壤条件下设置长垂直接地极效果很好。
3 接地方式的选择与设计
在接地网的接地方式中,主要包括中性点不接地方式、中性点经消弧线圈接地方式、中性点经低电阻接地方式和中性点直接接地方式等。其中中性点不接地方式的优势在于发生单相接地故障时线电压不变,因此三项设备可维持正常运行,缺点在于可能产生异常过电压,而且在10kV配电网中需要每相对地电容值≤0.04μF方可确保人身直接触及网络不致伤亡,但实际上这一数值是难以实现的,漏电接地保护仅能防护间接接触而无法防护直接接触的安全。中性点经消弧线圈接地方式的运行可靠性在所有接地方式中最高,发生瞬间故障时可自动熄弧,故障点对地电位低,单相接地异常过电压小于2.8倍相电压,且残流过零后故障相电压的幅值和恢复时间得到限制,有效的避免了接地电弧重燃,可在欠补偿、全补偿和过补偿状态下良好运行,不发生串联谐振过电压,并且运行管理简单,是最适合10kV电力系统配电设备接地网选择的一种接地方式。中性点经低电阻接地方式的继电保护简单,系统运行维护也十分简单,而且单相接地异常过电压不大于2.5倍相电压,但综合投资较高,供电可靠性较低,还可能严重干扰通信设备,且故障点对地电位高,容易导致安全事故。中性点直接接地方式投资省,单相接地故障情况下其他相电压升幅最低,但对通信设备的干扰严重,单相接地电流大。
因此,在10kV中压配网中消弧线圈接地形式的使用最为广泛,当单相接地电容电流超过了允许值10A时,所有的中性点接地都可以使用这种方法来解决。但是如果电流超过150A时,电流中的谐波电流分量和有功电流分量可能大于10A,这就使消弧线圈接地不能对那部分电流进行补偿,可使用经低电阻接地运行方式。我们在进行设计的过程中要将消弧线圈的补偿作用充分发挥,将节点电流的数值降到最小,这样就算有残余电流通过,接地电弧也可以自动熄灭.
我们通过调节电感参数可以使消弧线圈完成以下运行;在全补偿状态下,电流和系统的电容电流处于对等的关系,这时消弧线圈在接地过程中故障线路的电流等于故障残余电流和电容电流之差,同时电流值不断缩小,使接地保护的灵敏性不断降低,这样就会形成铁磁谐振,需要加装消谐装置。当配电网在运行过程中发生改变,需要及时对消弧线圈进行调整,并且合理补偿将补偿时间缩到最短。
详细内容参见: http://www.civilcn.com/dianqi/dqlw/1388738249243107.html
土壤电阻率大小受到因素的影响?
首先我们应该知道什么是土壤电阻率?
土壤电阻率介绍:
土壤电阻率和大地导电率是电力系统设计中经常用到的两个基本参数,是接地系统中一个常用的计算参量,是在施工过程或之前对土壤取样测量其导电性,导电性的大小直接影响接地装置接地电阻的大小、地网地面电位分布、接触电压和跨步电压,所以测量土壤电阻率是对地网设计具有重要的参考意义,在安装完成之后,一般只需要测量接地电阻是否合格即可。
土壤电阻率受影响的因素
首先是受土质结构和性质不同的影响,不同形式的土壤其导电性是不同,比如:多雨地区,沙漠地区和盐碱地带,其次,如果地层结构不均匀,计算出来的土壤电阻率也随着接地体的尺寸和埋设方式不同而变化,也是测量时需要注意的地方,测量时要灵活的参考合格标准,后期我们也会发布不同土壤电阻的参考值。
土壤电阻的测量
土壤电阻率的测量目前大部分是“三极法”,“四极法”两种,四极法对线阻的影响可得到消除,普片性也是高于前者,如果是测量大体积的土壤电阻率时,我们的建议是采用四极法测量。1205
用直径为50mm或者直径为25mm的圆钢插入土测,并使各探针间距相等,各间距的距离为L,要求探针入地深度为L/20cm,用导线分别从C1、P1、P2、C2各端子与四根探针相连接,若地阻仪测出电阻值为R,则土壤电阻率按下式计算:
Ф=2πRL
其中:
Ф—土壤电阻率(Ω·cm)
L—探针与探针之间的距离(cm)
R—地阻仪的读数(Ω)
注意: 这个过程是需要人工计算,显示面板不能得到土壤电阻的结果值。
关于土壤分层的土壤电阻率测量后期我们也会讲到,您可持续关注时基电力技术文章中心所发布的内容。
www.kvakva.cn
按照规定接地线要求埋地2米以下(一般而言,3米以下就是最安全的地线。),用4*40的镀锌角钢或者直径40的镀锌钢管,接地电阻不大于4欧姆。
室外接地装置主要是由接地极和接地母线组成。接地母线的埋设深度一般在0.8m~1.5m之间,为什么这样说呢。
因为我国地区气候环境差异变化,设计时会根据各地气候变化,要求埋入土壤深度在冻土层以下(在防雷接地系统的设计说明中,一般都会有‘室外接地母线敷设深度不小于***’的文字)。南方电气不能低于0.8m深度。
地线是在电系统或电子设备中,接大地、接外壳或接参考电位为零的导线。一般电器上,地线接在外壳上,以防电器因内部绝缘破坏外壳带电而引起的触电事故。
地线的符号是E可分为供电地线、电路地线两种。
零线—淡蓝色,地线是黄绿相间,如果是三孔插座,左边是零线,中间(上面)是地线,右边是火线。
三个脚中较长的脚是接地的,可称做接地脚,另外两个较短的脚是把家用电器接入电路,可称它们为导电脚。在设计电源插头时,为考虑到使用者的安全,有意识地将接地脚设计得比导电脚长几个毫米。
这是因为在插入三脚插头时,接地脚先接触插座内的接地线,这样可先形成接地保护,后接通电源。
如果家用电器的金属外壳由于绝缘体损坏等原因而带电,这时接地脚就会形成接地短路电流,使家用电器的金属外壳接地而对地放电,从而使人不被触电,起到安全保护的作用。
扩展资料:
地线分类
地线是接地装置的简称。地线又分为工作接地和安全性接地。为防止人们在使用家电及办公等电子设备时发生触电事故而采取的保护接地, 就是一种安全性接地护线。安全性接地一般包括是防雷击接地和防电磁辐射接地。
1、工作接地
工作接地是把金属导体铜块埋在土壤里, 再把它的一点用导线引出地面, 用它完成回路使设备达到性能要求的接地线。地线要求接地电阻≤4 Ω。
2、安全性接地
用电规程规定保护接地电阻应≤4 Ω, 而人体的电阻一般大于2000Ω, 根据欧姆定律, 绝缘损坏时通过人体的电流仅为总电流的1/500,进而起到保护作用。
家用电器和办公设备的金属外壳都设有接地线, 如其绝缘损坏外壳带电, 则电流沿着安装的接地线泄入大地, 以达到安全的目的, 否则会给人身安全造成危害。
参考资料来源:百度百科—地线
一般变电站的接地网要做成边缘闭合的形状,整体规则与否不重要,重点是计算接地电阻值要满足设计要求,还要注意选用材料的热稳定性,验算接触电压和跨步电压,几个条件必须同时满足才可以。
对人员的进出通道可以在地网外缘设置帽檐式均压带来降低边缘的跨步电压。
一、 工作接地设计方面
变电所的工作接地主要指主变压器中性点和站用变低压侧中性点的接地。1、对于主变压器,为防止在有效接地系统中出现孤立不接地系统并产生较高的工频过电压的异常运行工况,根据《防止电力生产重大事故的二十五项重点要求》中17.7、17.9条规定要求,110kV~220kV变压器中性点应有两根与主接地网不同地点连接的接地引下线,主变中性点应加装间隙并联氧化锌避雷器进行保护。且当主变中性点绝缘的冲击耐受电压≤185kV时,还应在间隙旁并联金属氧 化物避雷器,间隙距离及避雷器参数配合要进行校核。2、变电所站用变通常选用△/yn,d11接线组别的变压器,为保证站用变低压出线漏电保护能正确动 作,从而避免设备漏电对人身造成伤害,因此站用变低压系统的接地系统应结合站用变低压侧出线断路器漏电保护原理进行选择,由于目前站用变低压侧出线通常采用带四极漏电保护的断路器,即漏电保护动作电流取三相火线和中性线(零)线产生的不平衡电流,为此低压接地系统中性线和保护线应分开,故站用变低压接地只可采用TN-S、TT系统。
二、 保护接地方面
保护接地按被保护对象性质可分为一次设备保护接地和二次设备保护接地。一次设备保护接地指变压器、高压配电装置金属外壳及高压电力电缆外皮进行接地二次设备保护接地指互感器二次绕组、低压配电、保护、控制屏(柜、箱)、二次端子箱及低压配电箱外壳等进行接地。这里应注意的问题:
1、为保证一次设备保护接地的可靠性,对变压器及高压配电装置金属部分均采用双接地引下与不同的主网接地点进行连接,对可移动的配电装置高压配电柜门采用25mm2多股软铜线进行接地。若电抗器置于户内楼面布置时,为避免沿楼面钢筋形成电磁环流,对影响范围内的楼面钢筋间搭接点应用橡皮隔开。
2、二次设备保护接地除二次装置金属外壳需可靠接地外,为避免由于连接在接地网不同接地点间出现的电位差造成保护的误动作故障发生,所有互感器的二次回路只能采用一点接地:(1)对于电流互感器的二次回路一般在配电装置附近经端子排接地,但对于有几组电流互感器连接在一起的保护装置(如母差保护),则应在保护屏上经端子排接地(2)电压互感器的二次回路,则利用控制室的零相小母线的一点接入地网。同理,控制保护屏上的保护接地也应先全部连接后再经一点接入主接地网。
三、 雷电保护接地方面
雷电保护接地指为雷电保护装置(避雷针、避雷线和避雷器等)向大地泄放雷电流而设的接地。为此变电所构架避雷针(带)和避雷器不仅应采用双引下接地方式,并敷设2~3根放射状水平接地极与主网相连,以达到加强对雷电流的分流作用。
四、 防静电接地方面
现有微机保护的抗静电干扰能力较差,外界的干扰可能使微机保护发生误动,因此变电所防静电接地设计就显得犹为重要。防静电接地目的主要对保护室进行屏蔽处理,并使所有保护装置的接地处于同一等电位接地网上。实施途径: (1)在控制室四周墙壁内加装钢板网,并连接在一起与地网相连,从而对室内的保护设备进行屏蔽(2)控制室内地网采用—22*4铜排敷设成网格,各保护屏的专用接地采用25mm2的多股软铜线与铜网相连,铜网最终以一点主接地网相连。同时为方便继电保护试验,往往在控制室墙角预留1-2个铜排接地端子。
5米-10米就可以。
防雷接地施工注意事项:
1、防雷接地装置由接闪器、引下线、接地装置组成。
2、建筑物内的设备、管道构架等主要金属物和防侧击雷的门窗、栏杆以及屋面的金属物体必须接地焊接。
3、建筑物内的电气设备和建筑物天面的设备管道,突出构架以及需防铡击雷的门窗必须做好接地,需防雷的金属门窗应有两处与接地线相连,天面的金属管道应有两处接地。
4、进出建筑物的金属管道和电源穿线钢管均应与接地装置相联。
5、接地干线的接线柱应该明敷在外,与绝缘导线PE线应紧密联接,联接处应有明显的接地标记。
6、电气设备上的接地线应采用专用的接地线,并用镀锌螺栓将接地线牢固地接在电气设备的金属体上。
扩展资料
接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。
本质是在正常和事故以及电缆系统内部过电压、雷电过电压情况下,利用大地作为电流回路,将电缆接地处电位固定在允许的接地电位上。接地电位不仅与入地电流的波形和幅值有关,而且与接地体的几何尺寸、大地电阻率等参数有关。
参考资料来源:百度百科-防雷接地