建材秒知道
登录
建材号 > 设计 > 正文

开关电源电路设计秘笈之如何选择正确的工作频率

无奈的盼望
专一的草莓
2022-12-31 09:22:23

开关电源电路设计秘笈之如何选择正确的工作频率

最佳答案
知性的凉面
美好的咖啡豆
2025-07-28 01:30:58

本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。

为您的电源选择正确的工作频率

为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。

我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。

图1.1显示的是降压电源频率与体积的关系。频率为100kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。

该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET的裸片面积成反比关系。MOSFET面积越大,其电阻和传导损耗就越低。

开关损耗与MOSFET开关的速度以及MOSFET具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(F)的关系。传导损耗(Pcon)与工作频率无关,而开关损耗(PswF1和PswF2)与工作频率成正比例关系。因此更高的工作频率(PswF2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。

但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。

如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。

最新回答
负责的硬币
魁梧的彩虹
2025-07-28 01:30:58

操作设备:戴尔电脑

操作系统:win10

操作软件:multisim2017

1、打开软件,如下图所示:

2、在工具栏找到‘basic’,如下图所示:

3、选中‘switch’,在右边的‘component’里就会有各种各样的开关,右边有电路图,如下图所示:

4、点击选中之后点击‘ok’,如下图所示:

5、一个开关就放置好,如下图所示:

眯眯眼的彩虹
传统的母鸡
2025-07-28 01:30:58

图1 所示,D C - D C 为一个带有关断控制端SHDN的直流稳压电源芯片,M C U 是一个单片机。当按下S 1时,Q 1 和D 1 导通, 稳压芯片工作, 为单片机供电。单片机马上将相应的I / O 引脚置为输出高, 这时Q 1 和Q 2导通, 整个电路进入工作状态。

而后单片机再将这个I /O 引脚设置为输入, 由于上拉电阻R 4 的存在,Q 1 和Q 2一直导通。单片机一直扫描相应I / O 输入状态,如果S 1没有按下去,则这个I/O 将始终为高。当S1 再次按下去时,D2 导通,单片机检测到这个I / O 引脚输入为低,这时单片机就将这个I/O 设置成输出为低的状态。Q2 截止,如果按键抬起,Q 1 也会截止, 稳压芯片将不会为单片机提供电压, 整个电路处于关断状态。

扩展资料

对于一般的AVR 单片机来说,内部都有BOD(BrowndownDetection)电路。这个电路具有低电压检测功能:当输入电压由高变低时, 单片机就会自动复位。如图1 所示,想关机的时候,按下S 1 ,单片机输出低。按键抬起后,Q 1 、Q 2 截止, 单片机掉电。

然而单片机的B O D 电路检测到单片机的电压突然降低后, 就会使单片机复位,并将I/O 设置为上拉状态,Q1、Q2 导通,导制电路再次开启。加入C1 后,使单片机掉电后要对C 1进行充电, 而在C 1充电没有达到单片机工作最低电压期间,Q1、Q2 已经截止了, 从而打乱了单片机复位操作。

开朗的香菇
俏皮的云朵
2025-07-28 01:30:58

继电器设计电路(开关电路):

继电器(Relay),也称电驿,是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字符号“J”。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。

http://baike.baidu.com/link?url=qADmOQtNMHI4yogCGWjSCi2KFU2ThoyuLjvXm9s8nGsk2Jfzb-F8O2qFJLrc78e38W6hkEr477uDPtuqqNYrsa

大胆的路灯
失眠的鼠标
2025-07-28 01:30:58

开关逻辑电路有现成的芯片,如果你仅要电路,选用合适的芯片就很简单。如果你要懂它的原理,就得从基本的电路学起了。下面就是一个能达到你的要求的电路。

用的芯片是CD4013,它内部有两个D型触发器,可以做两个上面的电路:

忧伤的海燕
坚定的鞋子
2025-07-28 01:30:58

你好:

——★关键条件是:【开关接通后】指示灯亮,5秒左右自动熄灭,【将开关断开后重新接通】则重复上述过程。请看最简单的原理图(电阻阻值很大,起到电容放电的作用,保证重新接通后重复亮灯程序):

忧心的冰淇淋
安静的楼房
2025-07-28 01:30:58

这里给一个参考的mos管开关电路,根据不同的电压电流要求,更换相关元器件的耐压、最大电流容忍、最大功耗限制参数即可:

带软开启功能的MOS管电源开关电路

具体查看《带软开启功能的MOS管电源开关电路》的说明介绍。

俏皮的白羊
傲娇的萝莉
2025-07-28 01:30:58
ZVS电路原理与设计

一、初识ZVS

ZVS是什么,度娘查的为”零电压开关(Zero Voltage Switch)“。即开关管关断时,开关管导通时,其两端的电压已经为0。这样开关管的开关损耗可以降到最低。我们平时使用的电磁炉和LLC电源都是这种谐振电源,普通的充电器等都是硬开关的,比这种谐振电源损耗要大些。所以ZVS可以做到很高效率,但是有一个缺点,就是其调节范围一般都比较窄。例如电磁炉,当我们把功率调到比较大时,为持续加热;当功率调的较小时,就开始断断续续加热,因为那个时候已经不能达到谐振状态了。像我们普通充电器那种硬开关的电源,不管空载和满载都是持续震荡的。

初次看到ZVS电路,我惊呆了,两个MOS管加几个电阻电容就能组成谐振开关。真是佩服人民的想象力啊。

该电路只需要少量元件即可达到零电压开关。功率有人做到2KW以上,几百瓦的话两个开关管只需加小型散热器即可。

于是花了几天时间对ZVS电路进行了下深入研究,让大家明白其工作原理。

一、基本电路

现在我们来进行分析其原理,首先使用proteus仿真电路进行仿真。

二、原理图分析

1.      上电时L1通入的电流为零,电源通过R1、R2是Q1、Q 2导通,L1电流逐渐增加,由于两个开关管特性差异,将导致流入两个开关管的电流不同,假设Q1电流大于Q2电流,T1将产生b为正,a为负的感应电压,于是通过T1形成正反馈,使Q1导通,Q2截止。完成启动过程。

2.      (t0~t1时间)稳态Q1导通时,由于上个周期T1电流为a到c,并且C 1两端电压为零。由于电流不能突变,T1电流将对C1充电,C1逐渐为a负c正的电压,并且正弦变大,T1电流正弦变小。此时a电压被Q1下拉到0V,所以C点电压正弦变大,Q1栅极电压被D3稳压管钳位,Q1时钟保持导通。

3.      (t1时间)当T1中电流下降为零,其能量全部释放到C1,此时C1电压达到最大值。

4.      (t1~t2时间)C1开始通过T1由c到a放电,C1电压即c点电压正弦变小,T1电流由c到a正弦变大。

5.      (t2时间)当C1能力基本放完时,c点电压下降到MOS管阀值电压左右,将通过D2使Q1进入放大区。此时C1对T1绕组由c到a放电电流达到最大值。同时由于Q1进入放大区,a点电压逐渐上升,同时通过D1使Q2也进入放大区。

6.      (t2时间)C1放电完毕,T1绕组由c到a电流达到最大值,将像C 1充电,使C1充电为a正c负的电压,同时C1两端电压正弦变大。此时两个MOS管同时进入放大区。

7.      (图3)由于T1对C1的持续充电,C1上电压为a正c负,通过两个二极管使Q2栅极电压升高,Q1栅极逐渐下降,同时正反馈形成,Q2导通,Q1截止。

8.      Q2导通与Q1导通过程类似。

9.      L1电感值比T1大,整个震荡周期中L1电流基本不变。震荡过程中L1持续为LC振荡器补充电能。