建材秒知道
登录
建材号 > 设计 > 正文

CDMP(Data Architecture)

哭泣的大白
辛勤的月饼
2022-12-31 06:24:48

CDMP(Data Architecture)

最佳答案
搞怪的万宝路
爱听歌的板凳
2025-08-14 17:01:53

数据架构师需定义和维护的具体事宜:

总体数据架构实施包括:

企业数据架构工作

企业数据架构影响项目和系统开发的范围边界

企业数据架构项目相关的活动

将企业数据架构活动嵌入到项目过程中的三种方式

数据架构可能会影响项目的范围,把企业数据架构问题和项目组合管理进行整合,能促进路线图的实施,有助于获得更好的项目效果。

架构设计可以针对当前,也可面向未来,还可是已实施并完成的,甚至为准备退役的产品,无论哪种情况,其工作成果都应该存档管理

运用模型和图标呈现信息是指以已定义好的且达成共识的一套图标来表达待说明内容的一种方式,具体使用规范如下:

架构标准接受率

可以测量项目与已建立的数据架构的紧密程度及项目与企业架构参与流程的遵循度。追踪项目预期的衡量指标也有助于理解和采纳执行过程中出现的

问题

实施趋势:对跟踪企业架构改善组织实施项目能力的程度,至少沿两个方向进行改善

使用/重用/代替/废弃测量,决定使用新架构构建与重用、代替或废弃构件的比例

项目执行效率测量,测量项目的交付时间和可重用构件及指导构件的交付改进成本

业务价值度量指标:追踪向期待的业务效果和利益方向的发展过程

业务敏捷性改进:解释生命周期改进或改变的好处,改进延误成本的测量方法

业务质量:测量业务案件是否按期完成;基于新创建或集成的数据导致业务发生的改变,测量项目是否实际交付了这些变更。

业务操作质量:测量改进效率的方法,实例包括准确性改进、时间减少,由于数据错误而导致的纠错费。

业务环境改进:实例包括由于数据错误减少而改变的客户保留率和在递交报告中当局评论的减少率。

最新回答
可靠的流沙
冷酷的猎豹
2025-08-14 17:01:53

大数据管理数据处理过程图

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察力。大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。随着业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。

平台数据架构流程图

标准大数据平台架构,标准大数据平台架构,大数据平台架构,数据仓库,数据集市,大数据平台层级结构,数据挖掘,举报,包含该模版的分享。数据架构设计(数据架构组) 概述 总体描述 相对于业务架构和应用架构,数据架构在总体架构中处于基础和核心地位。

产品体验结构流程图

产品的功能结构图,产品功能结构图,产品主要流程图,产品的核心流程,我们继续围绕着得到app的核心流程探究。还原产品,产品结构、核心流程体验、核心页面体验的情况,而不仅仅是界面表层;从产品视角、用户视角来分析,而不是自我感觉,撰写报告,推出报告。产品体验从产品现状、目标用户及场景、关键功能体验

程序流程图

程序流程图又称程序框图,是用统一规定的标准符号描述程序运行具体步骤的图形表示。程序框图的设计是在处理流程图的基础上,通过对输入输出数据和处理过程的详细分析,将计算机的主要运行步骤和内容标识出来。

软件开发周期

软件生命周期(Software Life Cycle,SLC)是软件的产生直到报废或停止使用的生命周期。软件生命周期内有问题定义、可行性分析、总体描述、系统设计、编码、调试和测试、验收与运行、维护升级到废弃等阶段一个软件产品或软件系统也要经历孕育、诞生、成长、成熟、衰亡等阶段

软件测试流程鱼骨图

软件测试流程: 需求分析,制订测试计划,设计测试用例与编写,实施测试,提交缺陷报告,生成测试总结和报告。软件测试按照研发阶段一般分为5个部分:单元测试、集成测试、确认测试、系统测试、验收测试。根据设计用例的方法不同,黑盒测试包括等价划分法、边界值分析法、错误推测法、因果图法等。

云平台整体架构图

云计算的体系结构由5部分组成,分别为应用层,平台层,资源层,用户访问层和管理层,云计算的本质是通过网络提供服务,所以其体系结构以服务为核心。公认的云架构是划分为基础设施层、平台层和软件服务层三个层次的。

项目管理九大体系

项目管理思维导图包括项目采购管理、项目成本核算、时间管理等关于项目管理的九大体系。项目管理十大领域:进度、成本、质量、范围等4个核心领域,风险、沟通、采购、人力资源、干系人等5个辅助领域,1个整体领域。

产品经理项目管理思维导图

思维导图可以帮助产品经理梳理多而乱的产品思路,也可以帮助产品经理进行需求管理、产品分析等。产品经理会使用思维导图来对产品的思路进行一个有效的分析,梳理产品逻辑,然后再画原型图。一个优秀的产品经理,不仅仅是会画原型,写需求文档,更重要的是做出用户满意的产品。

项目规划时间轴流程图

项目规划时间轴流程图,对一个项目从开始到竣工的整个过程进行总结归纳。时间线图,又叫时间轴图,能以历史进程为载体,将过往的重要事项或者里程碑,标注在轴线上,并加以说明。它的作用是能够可视化内容,以图文的形式呈现出来。时间轴是一种表达事物发展进程的可视化图示,被许多商业管理人士所使用。

典雅的河马
直率的狗
2025-08-14 17:01:53

随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的 磁盘 、 IO 、 系统开销 ,甚至 性能 上的瓶颈,而单台服务器的 资源终究是有限 的。

因此在面对业务扩张过程中,应用程序对数据库系统的 健壮性 , 安全性 , 扩展性 提出了更高的要求。

以下,我从数据库架构、选型与落地来让大家入门。

数据库会面临什么样的挑战呢?

业务刚开始我们只用单机数据库就够了,但随着业务增长,数据规模和用户规模上升,这个时候数据库会面临IO瓶颈、存储瓶颈、可用性、安全性问题。

为了解决上述的各种问题,数据库衍生了出不同的架构来解决不同的场景需求。

将数据库的写操作和读操作分离,主库接收写请求,使用多个从库副本负责读请求,从库和主库同步更新数据保持数据一致性,从库可以水平扩展,用于面对读请求的增加。

这个模式也就是常说的读写分离,针对的是小规模数据,而且存在大量读操作的场景。

因为主从的数据是相同的,一旦主库宕机的时候,从库可以 切换为主库提供写入 ,所以这个架构也可以提高数据库系统的 安全性 和 可用性 ;

优点:

缺点:

在数据库遇到 IO瓶颈 过程中,如果IO集中在某一块的业务中,这个时候可以考虑的就是垂直分库,将热点业务拆分出去,避免由 热点业务 的 密集IO请求 影响了其他正常业务,所以垂直分库也叫 业务分库 。

优点:

缺点:

在数据库遇到存储瓶颈的时候,由于数据量过大造成索引性能下降。

这个时候可以考虑将数据做水平拆分,针对数据量巨大的单张表,按照某种规则,切分到多张表里面去。

但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈(单个服务器的IO有上限)。

所以水平分表主要还是针对 数据量较大 ,整体业务 请求量较低 的场景。

优点:

缺点:

四、分库分表

在数据库遇到存储瓶颈和IO瓶颈的时候,数据量过大造成索引性能下降,加上同一时间需要处理大规模的业务请求,这个时候单库的IO上限会限制处理效率。

所以需要将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。

分库分表能够有效地缓解单机和单库的 性能瓶颈和压力 ,突破IO、连接数、硬件资源等的瓶颈。

优点:

缺点:

注:分库还是分表核心关键是有没有IO瓶颈 。

分片方式都有什么呢?

RANGE(范围分片)

将业务表中的某个 关键字段排序 后,按照顺序从0到10000一个表,10001到20000一个表。最常见的就是 按照时间切分 (月表、年表)。

比如将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,银行的交易记录多数是采用这种方式。

优点:

缺点:

HASH(哈希分片)

将订单作为主表,然后将其相关的业务表作为附表,取用户id然后 hash取模 ,分配到不同的数据表或者数据库上。

优点:

缺点:

讲到这里,我们已经知道数据库有哪些架构,解决的是哪些问题,因此, 我们在日常设计中需要根据数据的特点,数据的倾向性,数据的安全性等来选择不同的架构 。

那么,我们应该如何选择数据库架构呢?

虽然把上面的架构全部组合在一起可以形成一个强大的高可用,高负载的数据库系统,但是架构选择合适才是最重要的。

混合架构虽然能够解决所有的场景的问题,但是也会面临更多的挑战,你以为的完美架构,背后其实有着更多的坑。

1、对事务支持

分库分表后(无论是垂直还是水平拆分),就成了分布式事务了,如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价(XA事务);如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担(TCC、SAGA)。

2、多库结果集合并 (group by,order by)

由于数据分布于不同的数据库中,无法直接对其做分页、分组、排序等操作,一般应对这种多库结果集合并的查询业务都需要采用数据清洗、同步等其他手段处理(TIDB、KUDU等)。

3、数据延迟

主从架构下的多副本机制和水平分库后的聚合库都会存在主数据和副本数据之间的延迟问题。

4、跨库join

分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表(垂直),也无法join分表粒度不同的表(水平), 结果原本一次查询就能够完成的业务,可能需要多次查询才能完成。

5、分片扩容

水平分片之后,一旦需要做扩容时。需要将对应的数据做一次迁移,成本代价都极高的。

6、ID生成

分库分表后由于数据库独立,原有的基于数据库自增ID将无法再使用,这个时候需要采用其他外部的ID生成方案。

一、应用层依赖类(JDBC)

这类分库分表中间件的特点就是和应用强耦合,需要应用显示依赖相应的jar包(以Java为例),比如知名的TDDL、当当开源的 sharding-jdbc 、蘑菇街的TSharding等。

此类中间件的基本思路就是重新实现JDBC的API,通过重新实现 DataSource 、 PrepareStatement 等操作数据库的接口,让应用层在 基本 不改变业务代码的情况下透明地实现分库分表的能力。

中间件给上层应用提供熟悉的JDBC API,内部通过 sql解析 、 sql重写 、 sql路由 等一系列的准备工作获取真正可执行的sql,然后底层再按照传统的方法(比如数据库连接池)获取物理连接来执行sql,最后把数据 结果合并 处理成ResultSet返回给应用层。

优点

缺点

二、中间层代理类(Proxy)

这类分库分表中间件的核心原理是在应用和数据库的连接之间搭起一个 代理层 ,上层应用以 标准的MySQL协议 来连接代理层,然后代理层负责 转发请求 到底层的MySQL物理实例,这种方式对应用只有一个要求,就是只要用MySQL协议来通信即可。

所以用MySQL Navicat这种纯的客户端都可以直接连接你的分布式数据库,自然也天然 支持所有的编程语言 。

在技术实现上除了和应用层依赖类中间件基本相似外,代理类的分库分表产品必须实现标准的MySQL协议,某种意义上讲数据库代理层转发的就是MySQL协议请求,就像Nginx转发的是Http协议请求。

比较有代表性的产品有开创性质的Amoeba、阿里开源的Cobar、社区发展比较好的 Mycat (基于Cobar开发)等。

优点

缺点

JDBC方案 :无中心化架构,兼容市面上大多数关系型数据库,适用于开发高性能的轻量级 OLTP 应用(面向前台)。

Proxy方案 :提供静态入口以及异构语言的支持,适用于 OLAP 应用(面向后台)以及对分片数据库进行管理和运维的场景。

混合方案 :在大型复杂系统中存在面向C端用户的前台应用,也有面向企业分析的后台应用,这个时候就可以采用混合模式。

JDBC 采用无中心化架构,适用于 Java 开发的高性能的轻量级 OLTP 应用;Proxy 提供静态入口以及异构语言的支持,适用于 OLAP 应用以及对分片数据库进行管理和运维的场景。

ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由 Sharding-JDBC 、 Sharding-Proxy 和 Sharding-Sidecar (计划中)这3款相互独立的产品组成,他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。

ShardingSphere提供的核心功能:

Sharding-Proxy

定位为透明化的 数据库代理端 ,提供封装了 数据库二进制协议的服务端版本 ,用于完成对 异构语言的支持 。

目前已提供MySQL版本,它可以使用 任何兼容MySQL协议的访问客户端 (如:MySQL Command Client, MySQL Workbench, Navicat等)操作数据,对DBA更加友好。

向 应用程序完全透明 ,可直接当做MySQL使用。

适用于任何兼容MySQL协议的客户端。

Sharding-JDBC

定位为 轻量级Java框架 ,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为 增强版的JDBC驱动,完全兼容JDBC和各种ORM框架 。

以电商SaaS系统为例,前台应用采用Sharding-JDBC,根据业务场景的差异主要分为三种方案。

分库(用户)

问题解析:头部企业日活高并发高,单独分库避免干扰其他企业用户,用户数据的增长缓慢可以不分表。

拆分维度:企业ID分库

拆分策略:头部企业单独库、非头部企业一个库

分库分表(订单)

问题解析:订单数据增长速度较快,在分库之余需要分表。

拆分维度:企业ID分库、用户ID分表

拆分策略:头部企业单独库、非头部企业一个库,分库之后用户ID取模拆分表

单库分表(附件)

问题解析:附件数据特点是并发量不大,只需要解决数据增长问题,所以单库IO足以支撑的情况下分表即可。

拆分维度:用户ID分表

拆分策略:用户ID取模分表

问题一:分布式事务

分布式事务过于复杂也是分布式系统最难处理的问题,由于篇幅有限,后续会开篇专讲这一块内容。

问题二:分布式ID

问题三:跨片查询

举个例子,以用户id分片之后,需要根据企业id查询企业所有用户信息。

sharding针对跨片查询也是能够支持的,本质上sharding的跨片查询是采用同时查询多个分片的数据,然后聚合结果返回,这个方式对资源耗费比较大,特别是对数据库连接资源的消耗。

假设分4个数据库,8个表,则sharding会同时发出32个SQL去查询。一下子消耗掉了32个连接;

特别是针对单库分表的情况要注意,假设单库分64个表,则要消耗64个连接。如果我们部署了2个节点,这个时候两个节点同时查询的话,就会遇到数据库连接数上限问题(mysql默认100连接数)

问题四:分片扩容

随着数据增长,每个片区的数据也会达到瓶颈,这个时候需要将原有的分片数量进行增加。由于增加了片区,原先的hash规则也跟着变化,造成了需要将旧数据做迁移。

假设原先1个亿的数据,hash分64个表,现在增长到50亿的数据,需要扩容到128个表,一旦扩容就需要将这50亿的数据做一次迁移,迁移成本是无法想象的。

问题五:一致性哈希

首先,求出每个 服务器的hash值 ,将其配置到一个 0~2^n 的圆环上 (n通常取32)

其次,用同样的方法求出待 存储对象的主键 hash值 ,也将其配置到这个圆环上。

然后,从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。

一致性hash的优点在于加入和删除节点时只会影响到在哈希环中相邻的节点,而对其他节点没有影响。

所以使用一致性哈希在集群扩容过程中可以减少数据的迁移。

好了,这次分享到这里,我们日常的实践可能只会用到其中一种方案,但它不是数据库架构的全貌,打开技术视野,才能更好地把存储工具利用起来。

老规矩,一键三连,日入两千,点赞在看,年薪百万!

本文作者:Jensen

7年Java老兵,小米主题设计师,手机输入法设计师,ProcessOn特邀讲师。

曾涉猎航空、电信、IoT、垂直电商产品研发,现就职于某知名电商企业。

技术公众号 【架构师修行录】 号主,专注于分享日常架构、技术、职场干货,Java Goals:架构师。

交个朋友,一起成长!

自信的枕头
平常的棒球
2025-08-14 17:01:53

一、性能

(1)web前端性能优化:

(2)应用服务器性能优化:

(3)数据库层优化:

(4)衡量网站性能的指标(重要的有响应时间、TPS、系统性能计数器等,通过这些指标以确定系统设计是否达到目标)

(5)高可用:包括高可用的应用、高可用的服务、高可用的数据和服务于高可用的监控等,关于高可用,我还是决定开个单章讲解

二、安全性

三、可用性

四、扩展性

五、伸缩性

天下数据 是国内屈指可数的拥有多处海外自建机房的新型IDC服务商,被业界公认为“中国IDC行业首选品牌”。

天下数据 与全球近120多个国家顶级机房直接合作,提供包括香港、美国、韩国、日本、台湾、新加坡、荷兰、法国、英国、德国、埃及、南非、巴西、印度、越南等国家和地区的服务器、云服务器的租用服务,需要的请联系 天下数据 客服!

靓丽的红酒
热心的电脑
2025-08-14 17:01:53
架构意思是间架结构;构筑,建造。

把一个整体(完成人类生存的所有工作)切分成不同的部分(分工),由不同角色来完成这些分工,并通过建立不同部分相互沟通的机制,使得这些部分能够有机的结合为一个整体,并完成这个整体所需要的所有活动,这就是架构。

1、边界划分:根据要解决的问题,对目标系统的边界进行界定。

2、能力划分:对目标系统按某个原则的进行切分。切分的原则,要便于不同的角色,对切分出来的部分,并行或串行开展工作,一般并行才能减少时间。

3、交互机制:并对这些切分出来的部分,设立沟通机制。

4、根据3,使得这些部分之间能够进行有机的联系,合并组装成为一个整体,完成目标系统的所有工作。

架构可以分为:业务架构、应用架构、数据架构和技术架构。

业务(逻辑)架构:使用一套方法论对产品(项目)所涉及到的需求的业务进行业务边界划分,简单的讲就是根据一套逻辑思路进行业务的拆分,总体原则是对业务进行业务边界的划分,比如做一个企业订购服务网站,你需要把商品类目、商品、订单、订单服务、支付、退款很清晰的划分出来,而业务架构不需要考虑诸如我用什么技术开发、我的并发大怎么办、我选择什么样的硬件等等。

应用架构:应用是介于业务语言与技术语言之间,是对整个系统实现的总体上的架构,他需要指出系统的层次、系统开发的原则、系统各个层次的应用服务,例如,上述系统中可以分为、数据层(资源层)、数据服务层、中间构建服务层、业务逻辑层、表现层,并写明每个层次应用服务。应用架构是要说明产品架构分哪些应用系统,应用系统间是如何集成的,考虑两个事情:第一、考虑的是子系统间的关系。第二、考虑将可复用的组件或模块进行下沉,沉淀到平台层,为业务组件提供统一的支撑。数据(持久化)架构:对存储数据(资源)的架构方法论,其架构原则同应用架构大同小异,即考虑到各个系统应用场景、不同时间段的应用场景对数据进行诸如数据异构、读写分离、数据库或NOSQL的策略、缓存的使用、分布式数据(数据库)策略等等。数据架构主要解决三个问题:第一,系统需要什么样的数据;第二,如何存储这些数据;第三,如何进行数据架构设计。

技术架构:应用架构本身只关心需要哪些应用系统,哪些平台来满足业务目标的需求,而不会关心在整个构建过程中你需要使用哪些技术。技术架构是应接应用架构的技术需求,并根据识别的技术需求,进行技术选型,把各个关键技术和技术之间的关系描述清楚。技术架构解决的问题包括:如何进行纯技术层面的分层、开发框架的选择、开发语言的选择、涉及非功能性需求的技术选择。总体来看,首先需要熟悉业务,形成业务架构,根据业务架构,做出相应的数据架构和应用架构,最后通过技术架构落地实施。

业务架构是战略,应用架构是承上启下,一方面承接业务架构的落地,另一方面影响技术架构的选型。如何针对当前需求,选择合适的架构,如何面向未来,保证架构平滑过渡,这个是软件开发者,特别是架构师,都需要深入思考的问题。

没有最优的架构,只有最合适的架构,一切系统设计原则都要以解决业务问题为最终目标,脱离实际业务的技术情怀架构往往是空中楼阁。