建材秒知道
登录
建材号 > 设计 > 正文

利用Redis设计库存系统的苦与乐

无私的热狗
美丽的香水
2022-12-31 04:59:00

利用Redis设计库存系统的苦与乐

最佳答案
危机的睫毛
玩命的宝马
2025-08-22 10:48:11

在秒杀等高并发场景下,既要保证库存安全,也要拥有极高的系统性能。从存储结构上,很多同学会选用Redis,毕竟Redis的单线程操作特性,很好地避免了线程安全的问题,同时具备极高的读写性能。

我们先来看下库存系统设计的几大核心要点:

1. 库存安全:既要保证线程安全,也要防止出现超卖

2. 同步响应:业务场景基本不允许异步响应库存扣减结果

3. 性能极限:在seckill场景下,性能总是被要求越高越好

我们来看下如何利用Redis来解决上面的三个问题。

一.库存安全

利用Redis来做库存扣减,避免超限的"方法"很多,坑也很多,我们先来看下常用的陷阱有哪些。

1. 先获取当前库存值进行比较,再进行扣减

defdecr_stock():conn=redis_conn()key="productA"current_storage=conn.get(key)current_storage_int=int(current_storage)ifcurrent_storage_int<=0 :return0result=conn.decr(key)returnresult

我们先在Redis中拿到当前的库存值,然后check是否已经扣减到了零,如果已经扣减到了零,则直接return;否则,就利用Redis的decr原子操作进行扣减,同时返回扣减后的库存值。

这种方法的问题很明显,在并发条件下,会出现脏读,设想一个场景,AB两个请求进来,A获取的库存值为1,B获取的库存值为1,然后两个请求都被发到redis中进行扣减操作,然后这种场景下,A最后得到的库存值为0;但是B最后得到的库存值为-1,超限。

2. 先扣减库存,再做比较,跟进情况是否做回滚

defdecr_stock():conn=redis_conn()key="productA"current=conn.decr(key)ifcurrent>=0:returncurrentelse:          #回滚库存conn.incr(key)return0

直接先对库存值进行扣减,得到当前的库存值;然后,对此库存值进行check,如果库存>=0,则返回库存值,如果库存<0,则回滚库存,以便于防止负库存量的存在。

Redis Decr命令:DECR 命令会返回键 key 在执行减1操作之后的值。

这种做法引入了两个新的问题:

1).如果大批量的并发请求过来,redis承受的写操作的量,是加倍的,因为回滚库存的存在导致的。所以这种情况下,高并发量进来,极有可能将redis的写操作打出极限值,然后会出现很多redis写失败的错误警告

2). Redis的Decr操作和回滚操作无法保证原子性,在宕机情况下,容易产生数据不一致

3.先扣库存,然后通过整数溢出控制,根据情况进行回滚

defdecr_stock():conn=redis_conn()key="productA"current=conn.decr(key)      #通过整数控制溢出的做法ifcheck_overflow(current):returncurrentelse:          #回滚库存conn.incr(key)return0  defcheck_overflow(stock):      #如果当前库存未被递减到0,则check_number为int类型,isinstance方法检测结果为true      #如果当前库存已被递减到负数,则check_number为long类型,isinstance方法检测结果为falsecheck_number=sys.maxint - stockcheck_result=isinstance(check_number,int)returncheck_result

这种做法和方法2类似,只是比对部分由直接和0比对,变成了通过检测integer是否溢出的方式来进行。这样就彻底解决了高并发情况下,直接和零比对,限制不住的问题了。

虽然此种做法,相对于做法二说来,要靠谱很多,但是仍然解决不了在高并发情况下,redis写并发量加倍的问题,极有可能某个促销活动,在开始的那一刻,直接将redis的写操作打出问题来。

4.基于分布式锁的库存扣减

defdecr_stock():key ="productA"    lock = getLock(key)iflocked ==1:        current_storage = conn.get(key)        current_storage_int = int(current_storage)ifcurrent_storage_int<=0:return0        result = conn.decr(key)returnresultelse:return"someone in it"

Redis在2.8以后支持Lua脚本的原子性操作,可以用来做分布式锁,解决超限的问题。

5. All in Lua

defstorage_scenario_six():        conn = redis_conn()lua ="""                local storage = redis.call('get','storage_seckill')                if  storage ~= false then                    if tonumber(storage) >0 then                        return redis.call('decr','storage_seckill')                    else                        return 'storage is zero now, can't perform decr action'                    end                else                    return redis.call('set','storage_seckill',10)                end              """result = conn.eval(lua,0)        print(result)

二、同步响应

如果只用Redis来进行存储,处理完数据直接返回前端即可。如果还要持久化到DB,要尽量避免直接操作DB,因为DB往往是最大的IO瓶颈,如果要异步落库到DB,比如使用MQ。要注意处理Redis扣减和消息发送的原子性处理。

三、性能

官网上redis的读写性能能到10W/QPS左右,这个量级应该可以解决绝大部分的场景。

但是经常有同学在压测的时候达不到这个性能,主要还是卡在网络环境上,在5W/QPS的时候,带宽就超过10M/s了。所有想追求Redis的极致性能,最好还是在同机房进行调用。

最新回答
哭泣的溪流
复杂的蛋挞
2025-08-22 10:48:11

该应用场景为DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称supperid)的mapping关系,还包括了supperid的人口标签、移动端id(主要是idfa和imei)的人口标签,以及一些黑名单id、ip等数据。

在hdfs的帮助下离线存储千亿记录并不困难,然而DMP还需要提供毫秒级的实时查询。由于cookie这种id本身具有不稳定性,所以很多的真实用户的浏览行为会导致大量的新cookie生成,只有及时同步mapping的数据才能命中DMP的人口标签,无法通过预热来获取较高的命中,这就跟缓存存储带来了极大的挑战。

经过实际测试,对于上述数据,常规存储超过五十亿的kv记录就需要1T多的内存,如果需要做高可用多副本那带来的消耗是巨大的,另外kv的长短不齐也会带来很多内存碎片,这就需要超大规模的存储方案来解决上述问题。

人⼝标签主要是cookie、imei、idfa以及其对应的gender(性别)、age(年龄段)、geo(地域)等;mapping关系主要是媒体cookie对supperid的映射。以下是数据存储⽰示例:

媒体编号-媒体cookie=>supperid

supperid =>{ age=>年龄段编码,gender=>性别编码,geo=>地理位置编码 }

imei or idfa =>{ age=>年龄段编码,gender=>性别编码,geo=>地理位置编码 }

显然PC数据需要存储两种key=>value还有key=>hashmap,⽽而Device数据需要存储⼀一种

key=>hashmap即可。

存储吃紧的一个重要原因在于每天会有很多新数据入库,所以及时清理数据尤为重要。主要方法就是发现和保留热数据淘汰冷数据。

网民的量级远远达不到几十亿的规模,id有一定的生命周期,会不断的变化。所以很大程度上我们存储的id实际上是无效的。而查询其实前端的逻辑就是广告曝光,跟人的行为有关,所以一个id在某个时间窗口的(可能是一个campaign,半个月、几个月)访问行为上会有一定的重复性。

数据初始化之前,我们先利用hbase将日志的id聚合去重,划定TTL的范围,一般是35天,这样可以砍掉近35天未出现的id。另外在Redis中设置过期时间是35天,当有访问并命中时,对key进行续命,延长过期时间,未在35天出现的自然淘汰。这样可以针对稳定cookie或id有效,实际证明,续命的方法对idfa和imei比较实用,长期积累可达到非常理想的命中。

Hash表空间大小和Key的个数决定了冲突率(或者用负载因子衡量),再合理的范围内,key越多自然hash表空间越大,消耗的内存自然也会很大。再加上大量指针本身是长整型,所以内存存储的膨胀十分可观。先来谈谈如何把key的个数减少。

大家先来了解一种存储结构。我们期望将key1=>value1存储在redis中,那么可以按照如下过程去存储。先用固定长度的随机散列md5(key)值作为redis的key,我们称之为BucketId,而将key1=>value1存储在hashmap结构中,这样在查询的时候就可以让client按照上面的过程计算出散列,从而查询到value1。

过程变化简单描述为:get(key1) ->hget(md5(key1), key1) 从而得到value1。

如果我们通过预先计算,让很多key可以在BucketId空间里碰撞,那么可以认为一个BucketId下面挂了多个key。比如平均每个BucketId下面挂10个key,那么理论上我们将会减少超过90%的redis key的个数。

具体实现起来有一些麻烦,而且用这个方法之前你要想好容量规模。我们通常使用的md5是32位的hexString(16进制字符),它的空间是128bit,这个量级太大了,我们需要存储的是百亿级,大约是33bit,所以我们需要有一种机制计算出合适位数的散列,而且为了节约内存,我们需要利用全部字符类型(ASCII码在0~127之间)来填充,而不用HexString,这样Key的长度可以缩短到一半。

下面是具体的实现方式

参数bit决定了最终BucketId空间的大小,空间大小集合是2的整数幂次的离散值。这里解释一下为何一个字节中只有7位可用,是因为redis存储key时需要是ASCII(0~127),而不是byte array。如果规划百亿级存储,计划每个桶分担10个kv,那么我们只需2^30=1073741824的桶个数即可,也就是最终key的个数。

碎片主要原因在于内存无法对齐、过期删除后,内存无法重新分配。通过上文描述的方式,我们可以将人口标签和mapping数据按照上面的方式去存储,这样的好处就是redis key是等长的。另外对于hashmap中的key我们也做了相关优化,截取cookie或者deviceid的后六位作为key,这样也可以保证内存对齐,理论上会有冲突的可能性,但在同一个桶内后缀相同的概率极低(试想id几乎是随机的字符串,随意10个由较长字符组成的id后缀相同的概率*桶样本数=发生冲突的期望值<<0.05,也就是说出现一个冲突样本则是极小概率事件,而且这个概率可以通过调整后缀保留长度控制期望值)。而value只存储age、gender、geo的编码,用三个字节去存储。

另外提一下,减少碎片还有个很low但是有效的方法,将slave重启,然后强制的failover切换主从,这样相当于给master整理的内存的碎片。

推荐Google-tcmalloc, facebook-jemalloc内存分配,可以在value不大时减少内存碎片和内存消耗。有人测过大value情况下反而libc更节约。

1)kv存储的量级必须事先规划好,浮动的范围大概在桶个数的十到十五倍,比如我就想存储百亿左右的kv,那么最好选择30bit 31bit作为桶的个数。也就是说业务增长在一个合理的范围(10 15倍的增长)是没问题的,如果业务太多倍数的增长,会导致hashset增长过快导致查询时间增加,甚至触发zip-list阈值,导致内存急剧上升。

2)适合短小value,如果value太大或字段太多并不适合,因为这种方式必须要求把value一次性取出,比如人口标签是非常小的编码,甚至只需要3、4个bit(位)就能装下。

3)典型的时间换空间的做法,由于我们的业务场景并不是要求在极高的qps之下,一般每天亿到十亿级别的量,所以合理利用CPU租值,也是十分经济的。

4)由于使用了信息摘要降低了key的大小以及约定长度,所以无法从redis里面random出key。如果需要导出,必须在冷数据中导出。

5)expire需要自己实现,目前的算法很简单,由于只有在写操作时才会增加消耗,所以在写操作时按照一定的比例抽样,用HLEN命中判断是否超过15个entry,超过才将过期的key删除,TTL的时间戳存储在value的前32bit中。

6)桶的消耗统计是需要做的。需要定期清理过期的key,保证redis的查询不会变慢。

人口标签和mapping的数据100亿条记录。

优化前用2.3T,碎片率在2左右;优化后500g,而单个桶的平均消耗在4左右。碎片率在1.02左右。查询时这对于cpu的耗损微乎其微。

另外需要提一下的是,每个桶的消耗实际上并不是均匀的,而是符合多项式分布的。

上面的公式可以计算桶消耗的概率分布。公式是唬人用的,只是为了提醒大家不要想当然的认为桶消耗是完全均匀的,有可能有的桶会有上百个key。但事实并不没有那么夸张。试想一下投硬币,结果只有两种正反面。相当于只有两个桶,如果你投上无限多次,每一次相当于一次伯努利实验,那么两个桶必然会十分的均匀。概率分布就像上帝施的魔咒一样,当你面对大量的桶进行很多的广义的伯努利实验。桶的消耗分布就会趋于一种稳定的值。接下来我们就了解一下桶消耗分布具体什么情况:

通过采样统计

31bit(20多亿)的桶,平均4.18消耗

100亿节约了1.8T内存。相当于节约了原先的78%内存,而且桶消耗指标远没有达到预计的底线值15。

对于未出现的桶也是存在一定量的,如果过多会导致规划不准确,其实数量是符合二项分布的,对于2 30桶存储2 32kv,不存在的桶大概有(百万级别,影响不大):

Math.pow((1 - 1.0 / Math.pow(2, 30)), Math.pow(2, 32)) * Math.pow(2, 30)

对于桶消耗不均衡的问题不必太担心,随着时间的推移,写入时会对HLEN超过15的桶进行削减,根据多项式分布的原理,当实验次数多到一定程度时,桶的分布就会趋于均匀(硬币投掷无数次,那么正反面出现次数应该是一致的),只不过我们通过expire策略削减了桶消耗,实际上对于每个桶已经经历了很多的实验发生。

总结:信息摘要在这种场景下不仅能节约key存储,对齐了内存,还能让Key按照多项式分布均匀的散列在更少量的key下面从而减少膨胀,另外无需在给key设置expire,也很大程度上节约了空间。

这也印证了时间换空间的基本理论,合理利用CPU租值也是需要考虑的。

关注分布式存储技术以及分布式计算方法

英勇的白羊
喜悦的金针菇
2025-08-22 10:48:11

还记得刚工作那会,每每听到大牛们聊技术,各种专业术语,巴拉巴拉的,简直像是在听天书,比如什么中间件、分布式、SOA、无状态、热更新、懒加载、ACID、LVS、LDAP、VIP、CDN、负载均衡、鲁棒性、POJO、DSL、DI、IOC,太多太多了。一转眼快 10 年过去了,当很多新人再问到我这些名词的时候,我就在想,能不能用通俗易懂的大白话,就能聊明白这些专业的技术知识呢?

最近,给几个公司做技术咨询,经常会聊到秒杀系统。所以,借这次机会,尝试用大白话和大家聊聊 Redis 秒杀系统的设计与实现,。

说起 “秒杀”,我相信大家肯定都耳熟能详了,双十一零点抢购、手机整点抢购、抢火车票、1 元秒杀、抢红包等等,都可以说是秒杀的各种应用场景了。

秒杀系统的设计 ,难就难在,在极短的时间内,应对瞬时涌入平时成百上千倍的巨大流量,还包括各种攻击刷量作弊等未知流量,最终我们要保证在用户体验顺畅良好的情况下,不能多卖或者少卖。

而当我们公司决定要做秒杀系统的时候,我就去找业务,到时大概会有多少 UV,不知道 10 倍或者 100 倍?然后去找老板,给技术多少预算,最多平时的 10 倍不能再多了,当然越少越好,呵呵,也就是说让我们用平时最多 10 倍的预算去解决不可预估的用户流量,怎么做?要是有钱直接扔 1 万台服务器跑去吧,钱能解决的事就不是事,但问题是现在还没那么多钱,还要把事情搞定。

在聊秒杀系统设计之前,让我们先回到现实生活中,聊聊常见的“秒杀”场景和秒杀场景的独有特点,以及它们都是怎么应对的,在应对过程中都需要注意什么。

日常生活中,其实也有很多秒杀场景,比如,早上 9 点超市开门,老大爷老大妈抢购蔬菜水果,是不是? 还有,新楼盘开盘抢购,是不是? 股市开盘、交易所现场,是不是?

对的,生活中其实有太多类似场景了, 你有没有发现“秒杀”的独有特点呢?

记住了上面三个特点,我们就可以区分和确定秒杀的业务场景了。 这里我举一个特别的例子, 你说挤公交车,算不算秒杀场景呢?

下面,我再和大家聊一个关于抢猪肉的故事。

在保安部门充分讨论之后,保安大队长决定通过以下安排,在保证人员安全的前提下,还要做到相对公平。

后来,活动井然有序的开始了,但是由于猪肉销售场地太远,销售窗口又少,老大爷和老大妈们买肉又精挑细选,导致整个过程很漫长,而且外面等候的人们都开始骚动起来,这个时候保安大队长赶紧找到经理:

故事讲完了,如果我们把上面的故事,理解为秒杀业务场景,我们就可以总结出一个 秒杀系统的设计原则 了:

威武的大象
美满的手机
2025-08-22 10:48:11

每个经典的系统服务组件,我们总是能发现其赖以高性能的机制。

所以我们这次也是一样,借着Redis的专题,用实例来写点对 Reactor模式 的理解。

首先我们免不了俗,简单介绍下Reactor的相关概念:

Reactor模式的角色构成(Reactor模式一共有5中角色构成):

TODO:等有时间了实现一个多Reactor线程池模式的Demo放上来。