建材秒知道
登录
建材号 > 设计 > 正文

《三角形的内角和》教学设计

大方的流沙
自信的金针菇
2022-12-21 15:36:06

《三角形的内角和》教学设计

最佳答案
大力的萝莉
不安的路人
2025-12-09 02:00:16

《三角形的内角和》这一节课主要激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。以下是我为大家整理推荐关于 四年级数学 《三角形的内角和》教案,希望对大家有所帮助!

《三角形的内角和》教学设计

教材简析:

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发“三角形内角和是180度”的猜想,再通过组织操作活动验证猜想,得出结论。

教学目标:

1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180º”。

2、让学生学会根据“三角形的内角和是180 º”这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、提出猜想:

老师取一块三角板,让学生分别 说说 这三个角的度数,再加一加,分别得到这样的2个算式:90º+60º+30º=180º,90º+45º+45º=180º

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、验证猜想:

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的 方法 :比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折可以直角不动,而把两个锐角折下,正好能拼成一个直角两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180º。

4、试一试:

三角形中,角1=75º,角2=39º,角3=( )º

算一算,量一量,结果相同吗?

三、完成想想做做:

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80 º。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180 º,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360 º呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 º。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

《三角形的内角和》练习题

1、(第2题)你能连一连吗?

学生独立做,做完后把有疑问的几个选出来交流。

2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

学生围好后,互相检查验证。

3、用一张长方形纸,折出两个完全一样的直角三角形。

用一张正方形纸,折出四个完全一样的直角三角形。

让学生动手折一折,在交流的时候用“对角线“来说一说。

4、把右边这样的平行四边形纸剪成两个完全一样的锐角三角形,应该怎样剪?剪成两个完全一样的钝角三角形呢?

5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?

通过交流使学生明白:画出的线段就是原来三角形的高。

最新回答
贪玩的身影
成就的海燕
2025-12-09 02:00:16

【教学目标】

1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、经历猜测――验证――得出结论――解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

【教学重、难点】

教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。 【教学过程】

一、创设情景,提出问题

小游戏:猜一猜藏在信封后面的是什么三角形。(课件出示)

师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】

二、动手实践、自主探究

师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

1.从特殊入手――计算直角三角板的内角和。

(1)师生拿出30度直角三角板

师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

(2)再拿出45度直角三角板。

师:这是什么三角形?这个角是多少度?它的内角和是多少度?

(3)师:通过刚才的计算,你有什么发现?

生:这两个三角形内角和都是180°。

【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形――“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】

2、由特殊到一般――猜想验证,发现规律。

(1)提出猜想

师:其他所有三角形的内角和是否也是180°?

生:是、 不是……

师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。

(课件出示小组调查表四年级数学《三角形的内角和》教学设计四年级数学《三角形的内角和》教学设计。)

(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)

师:哪个小组愿意将您们组的发现与大家分享一下?

生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】

(3)揭示规律

师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是――180度,钝角三角形的内角和也是――180度,这就验证了我们的猜想。现在我们可以说所有的'三角形的内角和是(完善课题180°)。

注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

(4)方法提升。

师:我们从直角三角形――锐角三角形――钝角三角形――推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性四年级数学《三角形的内角和》】

3、剪拼法再次验证――转化思想的运用。

师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

生探究,师巡视指导,收集汇报素材。(呈现作品――说方法――统计点评)

班内交流,汇报撕拼法、折叠法。

师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想――转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】

4.课件展示――再次强化。

师:现在大家知道这几个三角形的内角和是多少度吗?

师:我们可以请电脑来给我们验证一下。

(引入白板,通过拖动演示三角形从小到大度数的不断变化)

结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】

三、巩固应用,内化提高

1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

2.练习

(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数四年级数学《三角形的内角和》教学设计教案。

(2). 求出下列三角形中各个角的度数。(书88页第9题)

(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感

素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】

四、课后思考、拓展延伸

同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(课件出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

免责声明:本文仅代表作者个人观点,与本网无关。

端庄的大树
体贴的曲奇
2025-12-09 02:00:16
三角形内角和优秀教案 篇1

教学目标:

1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

教学重、难点:

掌握三角形的内角和是180°。验证三角形的内角和是180°。

学生分析:

在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

教学流程:

一、创设情境,激发兴趣

(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)

(学生小声议论着,争论着。)

师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

生:可以把这两个三角形的内角比一比。

生:它们不是一个角在比较,可怎么比呀?

生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

二、动手操作,探索新知

1、初步感知。

师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

生汇报测量的结果:内角和约等于180°。

师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

2、用拼角法验证。

师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

生:我们手里有一些三角形,可以动手拼一拼。

生:还可以剪一剪。

师:那同学们就开始吧!

(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

生:钝角三角形的内角和也是180°。

(师板书:三角形的内角和是180°。)

【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

三、巩固新知,拓展应用

1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

3.师:(出示一个大三角形)它的内角和是多少度?

生:180 °。

师:(出示一个很小的三角形)它的内角和是多少度?

生:180 °。

师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

师:哪个对?为什么?

生:180°对,因为它还是一个三角形。

师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

师:你真聪明。(课件演示。)

四、小结

师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

五、探究性作业

求下面几个多边形的内角和。(图形略。)

【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

反思:

1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。

2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设

三角形内角和优秀教案 篇2

尊敬的各位评委老师:

大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

一、教材分析

“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标

1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点

教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析

通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析

本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

六、课前准备

1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程

(一)、创设情境,激趣导入

导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的.内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

(二)、自主探究、合作交流

1、探索特殊三角形内角和

拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

90°+45°+45°=180°

从刚才两个三角形内角和的计算中,你发现了什么?

2、探索一般三角形的内角和

一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

3、汇报交流

请小组代表汇报方法。

1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

没有统一的结果,有没有其他方法?

2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

4)教师课件验证结果。

请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

学生回答后教师板书:三角形的内角和是180°

为什么有的小组用测量的方法不能得到180°?(误差)

4、验证深化

质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

谁能说一说不能画出有两个直角的三角形的原因?

(三)、应用规律,解决问题:

揭示规律后,学生要掌握知识,就要通过解答实际问题。

1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

第二关,提高练习,

①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

让学生灵活应用隐含条件来解决问题,进一步提高能力。

2、小组合作练习,完成相应做一做。

(四)、课堂总结,效果检测。

一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

(五)作业课下继续探究三角形,看你有什么新发现。

八、板书设计

通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

懦弱的悟空
威武的鸡翅
2025-12-09 02:00:16

一、教学目标

知识与技能:知道三角形的内角和是180°,会用平行线的性质与平角的定义证明三角形的内角和等于180°。

过程与方法:在证明三角形内角和为180°的过程中,了解辅助线的作用,能准确、规范地利用辅助线进行证明。

情感态度与价值观:在探讨、交流的过程中体会数学的,并获得数学活动经验,提高逻辑思维的能力。

二、教学重难点

重点:三角形的内角和定理的证明。

难点:利用所学知识证明三角形的内角和为180°辅助线的作法及作用。

三、教学过程

(一)创设情境,导入新课

问题1:三角形内角和是多少?我们是通过怎样的拼剪得到的?

预设:三角形的内角和是180°,将三角形的三个内角剪下,拼成一个平角,平角是180°,所以三角形的内角和是180°。

老师板书:画图

问题2:利用这种方法得到的结论准确吗?

学生思考,教师强调:在剪拼的过程中有时候会产生误差,所以这种方法是不准确的。

(二)探究新知

问题3:观察图①②,直线l有什么特点,它存在吗?

学生回答:图①中的直线l∥BC,图②中的直线l∥AB。直线l都不存在,是我们自己画上去的。

问题4:这种原图中不存在,我们为了解题需要而自己加上的线被称之为辅助线,利用图①,你能想出“证明三角形内角和等于180°”的方法吗?

预设:利用平行的性质和平角的定义可以证明。

学生自行在练习本上进行证明,教师巡视,指导纠错。

已知:△ABC。求证:∠A+∠B+∠C=180°。

证明:如图,过点A作直线l,使l∥BC。

∵l∥BC,∴∠2=∠4(两直线平行,内错角相等)

同理,∠3=∠5.

∵∠1,∠4,∠5组成平角,

∴∠1+∠4+∠5=180°(平角定义)

∴∠1+∠2+∠3=180°(等量代换)

即∠BAC+∠B+∠C=180°

(三)巩固提高

1.一个三角形最多有几个直角?为什么?

2.一个三角形最多有几个钝角?为什么?

3.一个三角形最多有几个锐角?为什么?

(四)小结作业

本节课我们利用什么证明三角形的内角和定理?辅助线的作用是什么?

思考:对于三角形内角和定理的证明,想想其他添加辅助线的方法,下节课共同分享。

四、板书设计

五、教学反思

魁梧的未来
知性的小懒猪
2025-12-09 02:00:16

一、说教材

1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。

2、教材简析

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。

3、教学目标

(1)让学生探索发现三角形的内角和是180°。

(2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。

(3)进一步发展学生空间观念。

4、教学重点

探索发现三角形的内角和是180°。

5、教具准备

多媒体课件

6、学具准备

每人准备几个不同类型的三角形。

二、说教法、学法

新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的`设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。

三、说教学过程

(一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲。通过本节课的学习,你有什么收获?你还有什么问题吗?

彪壮的玫瑰
热情的含羞草
2025-12-09 02:00:16
这里有,是免费的,不需要注册:

http://www.kejiannet.com/soft/html/906.html软件名称:三角形的内角和

软件类型:Flash

运行环境:Win9X/Win2000/WinXP/Win2003/

软件语言:简体中文

软件大小:249

KB

软件简介:

三角形的内角和下载地址::

http://www.kejiannet.com/soft/html/906.html

呆萌的长颈鹿
缓慢的信封
2025-12-09 02:00:16
三维目标”是指知识目标、能力目标和情感目标,是用以指导课堂教学过程的基本要素。如何设计好“三维目标”是教学设计的关键环节, “三维目标”设计的合理性直接影响着课堂教学过程和教学效果。笔者在多年的教学实践和观课