摩托车链条机和顶杆机的区分在哪里?平行轴在哪里,谁有图片?
分析如下:
1、摩托车链条机和顶杆机的区别:在于发动机内部气门与曲轴的传动方式。
2、链条机是用一根时规链,连接曲轴和凸轮轴,使得气门在凸轮轴的转动下进行进排气的工作。
3、顶杆机是用两根顶杆,通过下部连接在曲轴上的凸轮及摇架,上部推动气门摇架的工作方式来使气门进行进排气工作的。
4、链条机和顶杆机是四冲程摩托车的两冲配气方式,即控制气门开闭的部件分别为正时链条和气门顶杆,平衡轴是为平衡曲轴以运转中产生的惯性震动,装在曲轴前面或后面,其重块与曲柄方向相反,如下图所示。
链条机图片如下:
顶杆机图片如下:
平衡轴,雅马哈YBR发动机图片如下:
平衡轴,本田CBF/OTR发动机图片如下:
扩展资料:
摩托车由发动机、传动系统、行走系统、转向、制动系统和电气仪表设备五部分组成。摩托车的总体结构及各部件名称。
发动机
1、摩托车发动机的特点
(1)发动机为二冲程或四冲程汽油机。
(2)采用风冷冷却,有自然风冷与强制风冷两种。一般机型采用依靠行驶中空气吹过气缸盖、气缸套上散热片带走热量的自然风冷冷却方式。大功率摩托车发动机为了保证车速较低与未起步行驶前发动机的冷却,采用装风扇和导风罩、利用强制导入的空气吹冷散热片的强制风冷冷却方式。
(3)发动机的转速高,一般在5000转/分以上。升功率(每升发动机排量所发出的有效功率)大,一般在60千瓦/升左右。这说明摩托车发动机的强化程度高,发动机外形尺寸小。
(4)发动机曲轴箱与离合器、变速箱设计一体,结构紧凑。
2、机体
机体由气缸盖、气缸体和曲轴箱三部分组成,缸盖由铝合金铸造有散热片,新型的四冲程摩托车发动机均采用顶置气门、链条传动、顶置凸轮轴结构方式。气缸体材料以双金属(耐磨铸铁缸套外浇铸铝散热片)为多,以得到较好的散热效果。有些摩托车采用耐磨铸铁缸体,如长江750型、嘉陵JH70型,在一些小型轻便摩托车,如玉河牌YH50Q型小排量(50立方厘米)发动机采用铝合金缸体内壁镀0.15毫米硬铬层的结构。曲轴箱由铝合金压铸由左右两箱体组合而成。有些摩托车在散热征之间加有缓冲块,以抑制散热片振动发出的噪声。
3、曲柄连杆
摩托车发动机的曲轴采用组合式,由左半曲轴、右半曲轴和曲柄销压合而成。左右两半轴的主轴颈上装有滚珠轴承,用以将曲轴支承在曲轴箱上。曲轴的两端分别装有飞轮、磁电机及离合器主动齿轮。连杆为整体式结构,大头为圆环状,内装有滚针轴承与曲柄销组合成曲柄连杆组。在二冲程发动机中活塞环在安装时要注意将活塞环的开口处对准活塞环槽里的定位销,防止活塞环在环槽内转动,产生漏气,划伤缸套上的进、排气口。
4、化油器
化油器是摩托车燃料供给系统中的一个重要部件,位于空气滤清器与发动机进气口之间。一般摩托车发动机均采用进气气流方向为平吸式,节气阀为柱塞式,浮子室式化油器。化油器结构主要由浮子室和混合室两大部分组成。浮子室位于化油器的下方,有油管经油门开关通油箱,通过浮子上的针阀,保持浮子室内油面一定的高度,使供油压力稳定。混合室的作用是将汽油蒸发雾化与空气混合,使发动机在各种负荷和转速下能得到所需的混合气。它由节艺阀、喷油针、喷油管和气、油道等组成。
通过摩托车油门手柄的转动带动油门钢丝系索操纵节气阀与喷油针的上下移动,改变进气喉管截面与供油量,以适应不同转速、负荷下对混合气的需要。在化油器的一侧装有怠速调节螺钉用来调整怠速。怠速止挡螺钉用来防止节气阀转动和调整节阀的最小开度。节气阀的上方有回位弹簧,在油门手把不转动时使节气阀处于关闭。
在有些二冲程摩托车发动机上,为避免低速时化油器出现反喷现象,在化油器与气缸体之间装有控制进气的单向簧片阀。簧片由薄弹簧钢片制成,阀座为铝合金件,上开有进气口,进气口平面与簧片接触部件粘贴有一层油橡胶,以减轻簧片与阀座的撞击和振动。在吸气时,曲轴箱内形成一定的真空度,在压差的作用下簧片阀打开混合气进入曲轴箱,当活塞下行,换气口尚未开启瞬间,曲轴箱内压力升高,簧片阀关闭,阻止混合气倒流,提高了动发动机低速时的动力性和经济性。
5、润滑系统
四冲程发动机采用飞溅润滑与压力滑润相结合的滑润方式。二冲程发动机一般多采用在汽油内混入一定比例的QB级汽油机机油的混合润滑方式。但这种滑润方式的混合油不论发动机工况如何,均按已定的比例供给滑润油,增加了润滑油的消耗,燃烧不完全,积炭较多,有排气污染。新一代的二冲程发动机都采用分离滑润方式,装置了单独的滑润油箱和机油泵。机油泵一般采用往复柱塞式可变供油量油泵,由曲轴齿轮通过蜗轮、蜗杆驱动。供油量通过油门手把、操纵钢索与化油器节气阀联动,使机油供给量随发动机转速的变化而改变,高速时供油多,低速时供油少,供油合理,与混合滑润方式相比可节省较多的机油。机油经高速混合气吹散成微小的油雾,供给需要滑润的部位,减少进入燃烧室的机油,混合气燃烧完全,减少积炭及排气污染。
6、起动
摩托车的起动以脚蹬起动方式为主。起动机构有以幸福XF250摩托车为代表的扇形齿轮起动机构。脚蹬起动变速杆带动扇形齿轮、起动棘轮、离合器总成链轮、前链条、曲轴链轮驱动曲轴旋转,起动发动机。当发动机起动后,靠起动棘轮的单向作用及回位弹簧的作用使起动机构恢复原始位置。这种起动机构,起动时把起动变速杆拨到空档位置,踩下脚蹬即可起动。
另一种为一些引进机型所采用的起动蹬杆式起动机构。与前者不同,起动时首先要捏紧离合器手把,使离合器分离,变速杆可放在任何档次位置,不必一定要放在空档,起动后松开离合器,加大油门即可起步。当踩下起动蹬杆时,起动蹬杆轴上的棘爪与起动蹬杆传动齿轮的内棘齿啮合,使传动齿轮转动,经空转齿轮、从动齿轮、离合器齿轮、起动小齿轮驱动曲轴旋转起动发动机。起动后,脚离开起动蹬杆,复位弹簧使蹬杆反向转动、棘爪脱离与内棘齿的啮合,恢复原始位置。
在排量较大的摩托车如长江牌750D摩托车、山叶(YAMAHA)二缸摩托车、铃木(SUZUKI)GT750三缸摩托车、本田(HON-DA)CL1000四缸摩托车等都采用起动电机起动。
参考资料:百度文科:摩托车
五羊150摩托车小链条式发动机的结构,与其他发动机并没有本质区别。小链机采用顶置凸轮轴,凸轮轴安装在缸头里,曲轴通过小链条来驱动凸轮轴的转动,进而控制进、排气门的打开和关闭,完全配气过程。下面就是现在常见的五羊150摩托车发动机左侧和右侧的解剖图,供参考。
摩托车顶杆机是指发动机的配气机构采用下置凸轮轴上置顶杆作用摇臂的一种发动机。
主要作用:把发动机内部凸轮轴的作用里传递给气门摇臂以此来控制气门的开闭实现发动机的进气排气,从而实现发动机的运转,现在的顶杆机也叫CG机。
顶杆机最大的好处是动力控制较好,扭矩输出较大,但转速较低,不适合高速运行,适合高速运行的都是链条正时的上置凸轮轴的发动机。
缺点是配气机构是往复运动,外加机件质量大,高转惯性大,极高转速工作下挺柱会因为惯性跳离摇臂,产生哒哒的噪音,所以这种形式的发动机不适合相对高速运转,下图是顶杆机的配件和结构。
扩展资料:
顶杆发动机配气机构只要由气门摇臂,挺柱,下置摇臂,和凸轮轴构成,凸轮机构在曲轴箱内,这样的形式叫OHV,也就是下置凸轮式发动机,是一种比较原始的结构,其优点是结构简单可靠性高。
同时,发动机的凸轮轴安装位置有下置、中置、顶置三种形式,顶杆机(OHV)则属于前两种,下置和中置;顶置凸轮轴还分为单顶置凸轮轴(SOHC)和双顶置凸轮轴(DOHC)。和顶杆机对应的,“链条机”。
参考资料来源:百度百科-小链机
轻骑铃木GT125《骏驰》是链条机,车身较小 高速稳定性差,动力还是偏弱,如果载人上坡就略显吃力,相对骏威的暴脾气,骏驰风格偏温柔。
顶杆和链条的主要区别如下:
一、缺点不同
1、顶杆机:顶杆机不适合高转速,转速不高;噪音大,配气延时,顶杆易断裂。
2、链条机:链条机的结构复杂,使用中比较容易出现故障;链条容易拉长,气门容易被打。
二、优点不同
1、顶杆机:中低转速(常用区域)时扭矩大,加速有力,爬坡性能强,实用性好。
2、链条机:链条机在相同排量下能通过提高转速,加大功率。体积小自重轻,机械负荷小,点火精确,能够结合很多先进技术一起使用。
三、适用情况不同
1、顶杆机:顶杆机扭矩大适合拉东西,60上跑不快。链条机比较静,低速没力适合跑快,维修复杂。
2、链条机:适合高性能大排跑车。
参考资料来源:
百度百科-顶杆
百度百科-链条
液压缸—链条给进机构是在单液压缸给进机构的基础上发展而来的。它解决了利用短行程液压缸实现两倍于液压缸活塞行程的长行程给进和提升钻具问题。这种机构在工作时,升降钻具和给进钻具的速度均为活塞运动速度的两倍,因此,又称为倍速给进机构。按结构又分为单液压缸—链条倍速给进机构和双液压缸链条倍速给进机构。
液压缸—链条倍速给进机构的工作原理见增速滑轮组图。
图3-5 增速滑轮组图
增速滑轮组图3-5,设动滑轮为主动滑轮,如其轴上为液压缸的拉力F1,挠性件自由端为提升力Ft,动滑轮(液压缸)的速度为v1,挠性件自由端提升速度为vt。从图3-5可知,它们之间的关系是:液压缸拉力F1=2Ft;提升速度vt=2v1,即提升力只是液压缸拉力的二分之一,单位时间提升所移动的距离却是液压缸移动距离的两倍。
增速滑轮组应用在给进机构中,用液压缸活塞杆推、拉动链轮,定链轮自由端带动动力头,这就构成了液压缸—链条倍速给进机构。从图3-6中可知:液压缸固定在导轨上部,活塞杆连接动链轮组,传动链条分别绕过动链轮、导轨顶及导轨底链轮,活塞杆的移动经链条带动动力头上下移动。动力头与活塞杆移动关系为倍速关系。如压力油进入液压缸4的下腔,推动活塞上移,活塞杆带动动链轮3上移,链条牵动动力头下行。若压力油进入液压缸上腔,推动活塞下移,动链轮下移而牵引动力头上升。因为动链轮置于双股链条套中,动力头固定单绳端,所以动力头移动行程必为液压缸行程的两倍。
图3-7为单液压缸-双链条带有导向的倍速给进机构结构图。有的液压岩心钻机应用了这种给进机构。其结构特点是液压缸3固定在导轨11的顶板1上,活塞杆头部与一动链轮组架13固定,链轮组架上安有4个动链轮15,四周设有8个导向轮16,导向轮沿导向杆10移动。因活塞杆有导向装置,增加活塞杆的刚性,防止弯曲。适用于长行程、提升力和给进力大的给进机构。
链条的缠绕方式(图3-7):一条链条用螺栓14固定在导轨上,经动链轮组架的上部动链轮再绕过顶部定链轮2,通过螺栓5固定在动力头拖板9上。另一条链条用螺栓8固定在导轨上,经动链轮组架的下部定链轮再绕过底部定链轮7,通过螺栓固定在动力头拖板上。
从图3-7的A-A剖面图上可看出,导轨是由冷弯矩形空心型钢焊接成的,上部矩形空心型钢作动力头拖板的滑动导轨面。
图3-6 液压缸—链条倍速机构图
机构工作时,如果给进液压缸下腔通入压力油,活塞在压力油作用下向上运动。通过活塞杆推动动链轮架向上运动。在动链轮架向上运动的同时,通过链轮驱动下部的两根链条拖动动力头拖板向下运动,实现加压钻进或下放钻具。当液压缸上腔通入压力油后,活塞向下运动。动链轮架也随之下移,通过与拖板上部连接的链条带动动力头向上运动,实现提升钻具。减压钻进时,通过调节油压,使油压按需要降低,并使压力油与液压缸上腔相通。由于油压降低,油压作用于活塞上部的力小于孔内钻具的重力,钻具靠孔内下部部分钻具重力满足钻压需要及向下给进钻具。此时,动力头拖板仍然是向下移动。
图3-7 单液压缸—双链条带有导向的倍速给进机构结构图
其特征在于弓形支架的一端与底板,的上端销轴连接,弓形支架的另一端固定有调整支架,导绳软管固定在弓形支架的外侧,两个导绳滚轮固定在导绳软管下端口处的弓形支架上,送绳器、搂禾装置、挡禾器分别设置在传动箱的下侧,一号传动轴套管的下端固定在传动箱的上端,一号传动轴套管 和二号传动轴套管的上部之间连接固定有支撑杆,调整支架 的侧面与二号传动轴套管固定连接,压绳打结装置和甩捆装置设置在二号传动轴套管的下端,一号传动设在一号传动轴套管内,一号传动轴的上端固定有一号链轮,二号传动轴设在二号传动轴套管 内,二号传动轴的上端固定有二号链轮,一号链轮与二号链轮之间设有二号链条,主链轮设在底板内,主链轮与链轮之间由链条传动连接,调整支架收割机固定连接,链轮接收割机的动力源。
长安CS35发动机正时链条图如下所示:
正时链条虽然是免维护的,但是并不能保证正时链条这里的密封能永久完好,时间久了有可能会漏机油,维修起来也是比较麻烦的。正时皮带的第三个优势是自身重量轻,传动阻力小,这对于小排量发动机很重要,本身动力就不够强因此必须要做到能量消耗小。
正时皮带有着噪音小、自身重量轻、传动阻力小、发动机结构简单等优点,但不足是容易老化(长效正时皮带除外),需要定期更换,且费用是要由消费者自己承担;正时链条的优点是使用寿命长。
扩展资料:
长安CS35汽车的正时链条的介绍如下:
很多汽车发动机都使用正时链条,与传统的皮带驱动相比,链条驱动方式的传动更可靠、更耐久,相比于橡胶皮带,金属链条的使用寿命更长、故障率更低。正时链条并非终身免维护,使用时间长了也可能会出现问题,需要进行更换。
正时链条靠润滑油进行润滑,如果发动机润滑油长时间未更换或油的品质不好,容易加剧正时链条与链轮之间的摩擦,会减少正时链条的寿命。
参考资料来源:凤凰网-17款长安CS35报价 新款长安任性CS35
参考资料来源:凤凰网-正时链条终身免维护,可为啥没能让正时皮带消亡?
链传动的缺点主要有:仅能用于两平行轴间的传动;成本高,易磨损,易伸长,传动平稳性差,运转时会产生附加动载荷、振动、冲击和噪声,不宜用在急速反向的传动中。
链传动基本结构:
链传动是啮合传动,平均传动比是准确的。它是利用链与链轮轮齿的啮合来传递动力和运动的机械传动。
1、链条
链条长度以链节数来表示。链节数最好取为偶数,以便链条联成环形时正好是外链板与内链板相接,接头处可用弹簧夹或开口销锁紧。若链节数为奇数时,则需采用过渡链节。在链条受拉时,过渡链节还要承受附加的弯曲载荷,通常应避免采用。齿形链由许多冲压而成的齿形链板用铰链联接而成,为避免啮合时掉链,链条应有导向板(分为内导式和外导式)。齿形链板的两侧是直边,工作时链板侧边与链轮齿廓相啮合。铰链可做成滑动副或滚动副,滚柱式可减少摩擦和磨损,效果较轴瓦式好。
与滚子链相比,齿形链运转平稳、噪声小、承受冲击载荷的能力高;但结构复杂、价格较贵、也较重,所以它的应用没有滚子链那样广泛。齿形链多用于高速(链速可达40m/s)或运动精度要求较高的传动。国家标准仅规定了滚子链链轮齿槽的齿面圆弧半径、齿沟圆弧半径和齿沟角的最大和最小值(详见GB1244-85)。各种链轮的实际端面齿形均应在最大和最小齿槽形状之间。这样处理使链轮齿廓曲线设计有很大的灵活性。但齿形应保证链节能平稳自如地进入和退出啮合,并便于加工。符合上述要求的端面齿形曲线有多种。最常用的齿形是“三圆弧一直线”,即端面齿形由三段圆弧和一段直线组成。
2、链轮
链轮轴面齿形两侧呈圆弧状,以便于链节进入和退出啮合。齿形用标准刀具加工时,在链轮工作图上不必绘制端面齿形,但须绘出链轮轴面齿形,以便车削链轮毛坏。轴面齿形的具体尺寸见有关设计手册。链轮齿应有足够的接触强度和耐磨性,故齿面多经热处理。小链轮的啮合次数比大链轮多,所受冲击力也大,故所用材料一般应优于大链轮。常用的链轮材料有碳素钢(如Q235、Q275、45、ZG310-570等)、灰铸铁(如HT200)等。重要的链轮可采用合金钢。小直径链轮可制成实心式;中等直径的链轮可制成孔板式;直径较大的链轮可设计成组合式,若轮齿因磨损而失效,可更换齿圈。链轮轮毂部分的尺寸可参考带轮。