建材秒知道
登录
建材号 > 链条 > 正文

不等式链是什么

冷静的西装
大力的热狗
2022-12-29 14:55:49

不等式链是什么

最佳答案
纯情的钻石
缓慢的薯片
2026-01-02 21:50:32

不等式链包括几个不等式,如(a²+b²)/2~(1/2)≥(a+b)/2≥(ab)½≥2/(1/a+1/b)

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

扩展资料

不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

常用定理

①不等式F(x)<G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) <G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

最新回答
朴实的西装
玩命的钻石
2026-01-02 21:50:32

高中4个基本不等式链:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。

基本不等式

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

不等式定理口诀

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图、建模、构造法。

懦弱的小鸭子
虚心的刺猬
2026-01-02 21:50:32

高中4个基本不等式链:

√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。

平方平均数≥算术平均数≥几何平均数≥调和平均数。

一、基本不等式

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

二、基本不等式两大技巧

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。

三、基本不等式中常用公式

(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)

(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)

(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)

(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)

(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)

四、不等式定理口诀

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图、建模、构造法。

兴奋的小伙
慈祥的毛巾
2026-01-02 21:50:32

高中数学基本不等式链如下:

算术平均数( arithmetic mean),又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

平方平均数(quadratic mean),又名均方根(Root Mean Square),是指一组数据的平方的平均数的算术平方根。

扩展资料:

调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。

几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。

参考资料:百度百科:几何平均数