染色体位置9q21.3_q22是什么意思?~19p13.2_3是什么意思?~p、q分别表示什么?~
46代表人有46个染色体,XX代表女性。
inv(9)(p13q22)代表9号染色体短臂,13区与长臂,22区发生倒位。
p:染色体部位区域正链条。
q:染色体部位区域负链条。
扩展资料:
染色体的主要化学成份是脱氧核糖核酸(DNA)和蛋白质构成,染色体上的蛋白质有两类:一类是低分子量的碱性蛋白质即组蛋白(histones),另一类是酸性蛋白质,即非组蛋白蛋白质(non-histone proteins)。
非组蛋白蛋白质的种类和含量不十分恒定,而组蛋白的种类和含量都很恒定,其含量大致与DNA相等。所以人们早就猜测,组蛋白在DNA·蛋白质纤丝的形成上起着重要作用。Kornberg根据生化资料,特别是根据电镜照相。
最先在1974年提出绳珠模型(beads on-a-string model),用来说明DNA·蛋白质纤丝的结构。纤丝的结构单位是核小体,它是染色体结构的最基本单位。
核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。我们知道,DNA分子具有典型的双螺旋结,一个DNA分子就像是一条长长的双螺旋的纤丝。一条染色体有一个DNA分子。
DNA双螺旋依次在每个组蛋白8聚体分子的表面盘绕约1.75圈,其长度相当于140个碱基对。组蛋白8聚体与其表面上盘绕的DNA分子共同构成核小体。在相邻的两个核小体之间,有长约50~60个碱基对的DNA连接线。
在相邻的连接线之间结合着一个第5种组蛋白(H1)的分子。密集成串的核小体形成了核质中的100埃左右的纤维,这就是染色体的“一级结构”,就像成串的珠子一样,DNA为绳,组蛋白为珠,被称作染色体的“绳珠模型”如图→在这里,DNA分子大约被压缩了7倍。
参考资料来源:百度百科-染色体
Y染色体是人类一对性染色体中的一条,另一条是X染色体。人类有23对染色体,其中22对常染色体男女都一样,而性染色体决定性别,女性是XX,男性是XY。Y染色体是祖传父、父传子、子传孙的,因此顺着Y染色体,能找出一个家族的整个父系链条。理论上说,同一个姓的男子,Y染色体都应该是相同的。
线粒体基因组是母系遗传的,但儿女都传,不像Y染色体传男不传女。Y染色体就像父系社会中一个家族的传家宝,只传家族男丁,并在子孙世代之间相传。
Y染色体在父子间流传
但是,一些男权主义者想拿Y染色体给男尊女卑的封建糟粕思想找科学依据,还是醒醒吧。Y染色体在20世纪初才发现,父系社会早在5000年前就形成了,而且Y染色体的自然特性也和父权传统文化相去甚远。
Y染色体的遗传贡献太小
Y染色体上最重要的是SPY基因,该基因能触发雄性发育,对精子合成至关重要。因此,有Y染色体才能成为雄性。但除此之外,Y染色体就没有其他重要功能了,它与性格、智力、外貌等重要的特质统统没有关系。
人类基因组测序现在已经完成,共有20412个编码蛋白的基因,其中Y染色体上只有71个,在基因组中所占比例还不到1%。X染色体比Y大得多,有842个基因,线粒体DNA有13个基因。
人类基因组
22对常染色体的编号是按大小排序的,1号最大,22号最小。X染色体与7号相当,而Y染色体和19、20号差不多大。1号染色体有2058个基因,连22号染色体都有488个基因。
父母基因重组产生子代的时候,双方每人给子女一套常染色体,母亲给子女一条X染色体,父亲给儿子一条Y,给女儿一条X。线粒体位于细胞质内,因此全由母亲提供(精子没有细胞质)。由于常染色体决定了遗传的99.9999%以上,父母对子女的影响大致均等,但还是有细微差异的。
从子女的角度看,由于X染色体大于Y,母亲对儿子的影响大于父亲。只考虑染色体的话,父母对女儿的影响几乎均等。
性染色体遗传示意图
从父母的角度看,母亲给予子女的是均等的,而父亲给女儿的多于给儿子的。这些遗传科学结论,与父权社会中轻视母系传承、重男轻女的传统做法正好相反。
Y染色体可追溯到侏罗纪
距今约1.66亿年前,原始哺乳动物分化为两支:南楔齿兽类和北楔齿兽类,分别是今天原兽亚纲和兽亚纲的祖先。Y染色体在北楔齿兽类中产生,并传给所有兽亚纲成员。沿着Y染色体往上溯源,理论上能一直追溯到恐龙时代的中华侏罗兽,当时人的祖先还远远不是人。
现存哺乳动物除了原兽亚纲的鸭嘴兽和针鼹,都是有Y染色体的。动物没有姓氏可言,但它们的主要财产——领地,却是母系传承的。女儿留在母亲身边继承领地,儿子长大了远走高飞,独自闯荡,雄性通过性选择竞争获取交配权,这才是最贴合自然的模式。而父系传承是人类独有的,是社会发展下统治者私欲的产物,与私有制、阶级的出现相伴随。
中华侏罗兽,北楔齿兽类,科学家亲切地称之为“来自侏罗纪的母亲”,它也是来自侏罗纪的父亲
Y染色体基因检测显示,现存所有人类的最晚共同父系祖先是23.6万年前生活在非洲的一名男子,我们称他为“Y染色体亚当”。而非洲之外的所有人类,均源自6.9万年前中东的一名男子。要是没有基因突变,全球所有男子的Y染色体应该都是相同的。
2003年的一项研究显示,全球约有1600万名男子的Y染色体非常相似,应该都源自12世纪的一名东亚男子,最有可能的就是成吉思汗及其家族。成吉思汗也因此成为古代最成功的“播种者”。
值得注意的是,果蝇的性染色体也叫X和Y,但只是用了相同的名字,和人类的性染色体不是同源的。果蝇的Y比X还大,不参与性别形成,性别取决于X的数量,一条就是雄性,两条就是雌性。
鸭嘴兽是现存唯一一种没有Y染色体的哺乳动物
爬行动物的性别主要决定于孵化温度。而鸟类的性别决定系统和人类正好相反,它们是ZW系统,性染色体是ZZ为雄性,ZW为雌性。
Y染色体突变率极高
通过Y染色体溯源理论上可行,实际上只能用于最近几千到几万年,原因就是它的突变率特别高,每代就能积累两个突变。人类和黑猩猩99%以上的基因都是相同的,但Y染色体却有高达30%的差异。
由于哺乳动物和早期人类都生活在母系群中,没有固定婚配制度,一雌可以与多雄交配,精子活力最强的才能成功受精。因此,Y染色体对哺乳动物和早期人类发展很重要,这使它成为进化最快的染色体。
人类现存最近的亲戚:黑猩猩
此外,在减数分裂产生配子过程中,常染色体会进行同源染色体配对,同源序列进行交换和重组,从而修复突变基因。而Y染色体的同源染色体是X,它们多数基因序列不同,可重组区不足5%,因此Y上发生的突变难以通过重组而修复。
也正因为此,自然选择无法对Y染色体上的单一基因起作用,只能将整条Y作为一个整体去选择,导致选择效率异常低下。有害基因可能搭邻居有益基因的便车保留下来,有益基因也可能被有害基因包围而遭淘汰。因此,Y染色体上的“垃圾基因”是整个基因组中最多的。
最后,Y染色体还特别容易因遗传漂变而随机消失。它在种群中的出现频率只有常染色体的1/4,常染色体是每人有两条,Y是一半的人有一条,因此遗传漂变对Y的作用特别强烈。有名男子的Y可能很优秀,但他生的全是女儿,他的Y也会就此在种群中消失。
Y染色体主要单倍群的扩散
所以说,Y染色体在子子孙孙之间代代相传只是理想状态,现实中由于它的高突变率,用不了多少代就会面目全非。现代人类的Y染色体有近30个单倍群,每个单倍群都有几百甚至几千个变异型。
Y染色体终将消失
Y染色体产生之初有1400多个基因,现在已经失去了其中的95%,仅剩下71个。这主要是因为,其他染色体因突变而损伤的基因可以从同源染色体那里拷贝一份,而Y是单个的,损伤了的基因只能消失。在漫长的演化过程中,其他染色体正在越来越多地接管Y的基因和功能。Y染色体终将消失。
不过,Y染色体在诞生之初下滑很快,后期就越来越慢,现在已经进入停滞状态。700万年前人和黑猩猩分化以来,Y染色体上就没有丢失过基因了,而近2500万年只丢失了一个基因。专家预测,人类Y染色体已经走完了其生命的2/3历程,将于8000万年后完全消失,在那之后将产生新的性别决定系统。
鼹形田鼠
一些啮齿动物已经完成了这一进化,如裔鼠和鼹形田鼠,它们的Y染色体和SPY基因基因已经完全消失了,Y染色体上的部分基因已经重新转移到X染色体上了。两性的裔鼠性染色体都是XO,而鼹形田鼠都是XX。
综上所述,Y染色体和姓氏、祖产在父系传承上的一致性只是一种巧合。Y染色体对遗传的贡献很小,突变率高,而且是未来将消失的东西。科学家利用Y染色体进行父系溯源是很有用的,有人想试图以此来说明父权的合理性,注定站不住脚。
1.控制生物遗传的基本物质是DNA,而基因则是指控制某一性状的DNA片段。
2.基因位於染色体上,每一条染色体上都有许多不同的基因,它们分别控制不同的性状。
3.控制一种性状的基因通常是成对的,分别位於一对同源染色体的相对位置上,例如控制豌豆的种子颜色、人的耳垂位置等的基因皆分别位於成对的染色体上。
人体细胞中有23对(46条)染色体。其中22对在男性与女性中都是一样的,叫常染色体;另一对为性染色体。性染色体有两种类型,X染色体和Y染色体。女性为XX染色体,男性为XY染色体。DNA是染色质中的主要成分,是遗传物质基础。在同一物种的不同细胞中DNA含量是恒定的,这是和染色体数目的恒定相关的。染色体是遗传物质的主要载体。
基因是染色体上有遗传效应的片断,在染色体上呈线性排列。染色体是遗传物质的载体,在高中阶段没有"染色体是基因的载体"这样的说法,再深层次的说法我不确定。但是染色体不是众多基因。染色体上还有一些片断,基本上或是还不能确定它有没有遗传效应,不能说它们是基因。
和端粒酶是如何保护染色体的”,让一般公众第一次听说“端粒”这个术语。
这几天在网上搜索这个名词解释的人想必不少。虽然曾经有一位知名时评家
教育我们,现而今维基百科完全可以替代科普文章了,但是还是有资深科技记者
抱怨说,看了半天维基百科有关端粒的解释也没看懂。如果没有相应的生物学知
识,的确是不容易看懂的。于是国内报道纷纷以讹传讹说端粒酶“这种染色体的
自然脱落物将引发衰老和癌症”云云。
端粒酶并不是什么“染色体的自然脱落物”,三位获奖科学家的研究当初也
不是抱着揭开人类衰老和癌症之谜这么实际的动机,而是想要解决遗传学上的一
个难题,它涉及到细胞中的遗传信息是怎么被完整地复制下去的。
每个细胞中都有一整套遗传信息,它们是用一类叫做核苷酸的化学物质来编
写的。这样的核苷酸共有四种,分别简称A、T、G、C,这就是编写遗传信息的
“字母”,它们的排列组合就是遗传信息的编码。许许多多“字母”一个挨一个
互相连接,组成一条长长的链条,也就是我们经常听到的遗传物质DNA。
每个DNA分子实际上是两条链条绞在了一起。这两条链条并不是随随便便放一
块的,而是按照A配T,G配C的方式一一对应起来,也就是说,如果一条链上的某
个位置是A,那么在另一条链上的相应位置必然是T。如果已有了一条DNA链,就可
以根据配对的原则,用零散的“字母”合成另一条链,遗传信息就是这么复制下
去的。
组成DNA的“字母”是核苷酸。核苷酸的基本结构是一个5个碳原子组成的环,
环上连着碱基、磷酸基和羟基。它们各有用处:碱基决定了这个核苷酸是什么
“字母”,而磷酸基和羟基是连接各个核苷酸的桥梁。某个核苷酸的磷酸基和前
面核苷酸的羟基结合,一个个地串起来形成DNA链。这样,在这条链的一端,就
剩下一个磷酸基没有结合,根据磷酸基在碳环上的位置,我们把它叫做5'端;而在
链的另一端,则剩下一个羟基没有结合,我们把它叫做3'端。如果一条DNA链的
走向是5'端到3'端,那么和它配对的另一条链的走向就是3'端到5'端。
细胞分裂的时候,一分为二变成两个子细胞,原来的遗传信息也要复制一分
传给子细胞。这时,原先结合在一起的两条DNA链在中间分开,一边分开,一边各
以其中的一条旧链做为模板,按配对的原则合成新的DNA链,组成两个DNA分子。
这个过程需要一种叫做聚合酶的蛋白质来完成。聚合酶只能合成5'->3'方向的DNA,
而且前面必须已先有DNA或RNA(和DNA类似但不完全相同的物质)做为引物才能开
始合成。问题就来了。其中一条旧链的起点是3',聚合酶用它做为模板合成一条
5'->3'的新链,可以一直合成下去。但是另一条旧链的起点是5',聚合酶没法用
它做模板合成3'->5'方向的DNA。
怎么办呢?细胞解决这个问题的办法是在这条旧链的起点前面的某个地方
放一小段RNA做为引物,聚合酶就从这个引物开始合成一小段5'->3'的DNA,一直
合成到复制起点。然后在前面再放一段RNA引物,再合成一小段DNA……最后就出
现了许多小段的DNA,被许多RNA引物分隔开。然后,这些RNA引物被清除掉,由
另一种聚合酶填补上DNA,这样就形成了一条完整的DNA新链了。
这条DNA新链真的就完整了吗?并没有。聚合酶在填补引物留下的空缺时,前
面必须已有DNA在那里,它才能往上填。对那些在中间的空缺,这没有问题。但是
在最末端的那段空缺,前面没有DNA,它就填不了了。这样,DNA每复制一次,末
端就会丢失一截。
人体细胞的遗传信息分布在46条染色体上,一条染色体就是一条DNA双链。
细胞每分裂一次,染色体也复制一次,染色体末端就要丢失一截,相当于遗传
信息少了一小段文字。遗传信息的复制必须非常忠实,有时改变一个字母都会引起
突变导致大麻烦,何况每复制一次少一段文字呢?
所以细胞必定有某种办法来保护染色体末端的信息不丢失。这个巧妙的办法
就是今年诺贝尔奖获得者发现的:在染色体末端有一长串不带遗传信息的DNA,
叫做端粒。这样染色体每次复制时丢失的是一小段端粒,不会影响到染色体携带的
遗传信息的完整性。
但是染色体每复制一次端粒就短一截,复制几十次后端粒就没了,这时如果
继续复制下去,遗传信息就要开始丢失了,细胞就会病变、死亡。所以一般细胞只
能分裂几十次就衰老、死亡,不能无限分裂下去。有一个学说认为细胞分裂次数有
限就是衰老的原因,而这是由于端粒越来越短导致的。
如果有办法修复端粒,是不是就能永葆青春了呢?今年诺贝尔奖获得者的
另一个发现是,在细胞中有一种叫端粒酶的蛋白质,能修复端粒。但是在一般的细
胞中端粒酶的活性非常低,起不到什么作用。不过有一类细胞的端粒酶活性倒是非
常强,因此它们可以无限地分裂下去,长生不老,那就是——癌细胞!
所以如果我们想要长生不老而去增强端粒酶的活性,反而可能搞得到处长癌。
不过,我们可以根据癌细胞的这个特点,研制出针对端粒酶的疫苗,就有可能用来
预防、治疗癌症。现在就有一些这类药物在进行临床研究。这是当初意料不到的。
对端粒的研究,本来只是科学家们出于好奇,要解决遗传学的一个难题而已。
基因在DNA上,DNA在染色体上,染色体在细胞核上.染色体是细胞核内具有遗传作用的物体,易被碱性染料染成深色,所以叫染色体;每条染色体含有一个DNA分子,染色体是由DNA和蛋白质两种物质组成;基因是DNA上决定生物性状的小片段.因此染色体存在于细胞的细胞核中,遗传物质主要是DNA,其次还有RNA.它们的大小关系如下图:
染色体是细胞核中载有遗传信息(基因)的物质,在显微镜下呈圆柱状或杆状,主要由DNA和蛋白质组成,在细胞发生有丝分裂时期容易被碱性染料(例如龙胆紫和醋酸洋红)着色,因此而得名。
如下图所示:
染色体倒位(inversion)是由于同一条染色体上发生了两次断裂,产生的断片颠倒180度后重新连接造成的。如果倒位发生在染色体的一条臂上,称为臂内倒位(paracentric);如果倒位包含了着丝粒区,则称为臂间倒位(pericentric)。臂间倒位不改变两个臂的长度,要用染色体显带技术才能识别;臂内倒位则使两个臂的长度出现增减,即使未作染色体显带处理也可观察区分。
在减数分裂中,正常的染色体同倒位染色体之间发生交叉互换,会使配子染色体上某一区段缺失或重复,从而造成染色体异常,导致子代出现异常性状。这是因为倒位杂合子在减数分裂时,两条同源染色体不能以直线形式配对,一定要形成一个圆圈才能完成同源部分的配对,这个圆圈称为倒位环(inversion loop)。
一个倒位杂合体如果着丝粒在倒位环的外面,则在减数分裂后期会出现“断片和桥”的现象,即一条染色单体的两端都有一个着丝粒,成为跨越两端的“桥”,同时伴随一个没有着丝粒的断片。“桥”在染色体移向两极进入子细胞时被拉断,造成很大缺失;断片则不能进入子细胞的核内,所以由此形成的配子往往是死亡的。
一个倒位杂合体如果着丝粒在倒位环的里面,在环内发生交换后,虽然不会出现“桥”和断片,但也会使交换后的染色单体带有缺失或重复,形成不平衡的配子。这种配子一般也没有生活力
dna分子就是由很多的碱基对组成的链条(每条染色体有一条nda分子和蛋白质组成),dna分子数即这种链条的数量(与染色体数量相同)
dna是由脱氧核苷酸的单体聚合而成的聚合体。dna的单体称为脱氧核苷酸,每一种脱氧核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根,dna都是由c、h、o、n、p五种元素组成的。
DNA分子就是由很多的碱基对组成的链条(每条染色体有一条NDA分子和蛋白质组成),DNA分子数即这种链条的数量(与染色体数量相同)
例如:说某生物有4条DNA分子,四条DNA分子中碱基对的数目分别是4000,3000,2000,5000。
DNA总量是4000+3000+2000+5000=14000。DNA分子数就是4条