冲击钻进
冲击钻进是利用钢丝绳周期性的提动冲击钻具和钻头,以一定的质量和高度冲击孔底,使岩石破碎而获得进尺的一种钻进方法。在每次冲击之后,钻头在钢丝绳的带动下回转一定的角度,从而使钻孔得到规整的圆形断面。当破碎的岩屑和水混合成的岩浆达到一定浓度后,即停止冲击,利用掏砂筒将稠浆掏出,同时向孔内补充一定量液体。如此反复进行直至达到预定井深。
冲击钻进的设备、工具轻便,操作、管理简单,是水文水井和其他工程施工中,钻进大砾石、漂石以及脆性岩层的一种常用的钻进方法。但由于钻进是利用钻具自由下落而破碎岩石的,因而只能钻进垂直的钻孔,且钻孔效率较低,在使用上存在一定的局限性。
冲击钻进所使用的设备有CZ-20,CZ-22,CZ-30及冲击反循环钻机等。
(一)钻具
冲击钻进孔内钻具的连接方式如图4-19所示,它是破碎地层及取样钻进的重要工具。
图4-19 冲击钻具结构图
a:1—钢丝绳2,6,10—接口3—振击器4,5—拧卸方口7—钻头8—岩粉槽9—钻杆11—绳卡b:1—钢丝绳接头2—钻杆3—筒状钻头c:1—钢丝绳接头2—钻杆3—钻头
1.钻头
冲击钻头按其刃部形状可分为一字形、工字形、十字形、马蹄形和圆形,可根据岩石的性质进行选用。目前使用较为普遍的是十字形带副刃的钻头,如图4-20所示。十字形钻头底部带有各种刃角的切削刃,用以将冲击力传给岩石。
钻头中部称钻头体。为了减少孔底岩浆对钻头的运动阻力,钻头体上开有流通岩浆的沟槽。
冲击钻头的刃角大小,取决于所钻岩石的软硬程度,一般地层可取100°左右,软岩为65°~80°,中硬岩石可制成90°~110°,硬岩则取110°~120°。为了减少钻头与井壁的摩擦,在切削刃外端保留有4°~8°的间隙角。
冲击钻头上端有连接钻杆的锥形丝扣和打捞钻头用的环形槽。
为了提高钻头刃部的耐磨能力可以进行氰化处理或用合金焊条堆焊。带副刃十字形冲击钻头规格如表4-13所示。
图4-20 带副刃十字形冲击钻头
1—主刃2—副刃3—水槽4—锥形丝扣5—环形槽6—扳手卡槽
表4-13 带副刃十字形冲击钻头规格表
2.冲击钻杆
冲击钻杆是为加重钻头质量用实心圆钢制成。钻杆上端有锥形公扣和打捞的环形槽,下端有锥形母扣,用来连接钻头或捞砂筒。两端还备有拧紧钻具的卡槽。
钻杆间的连接方式有丝扣连接和法兰连接,井内钻杆不能过长,以防钻杆摆动和折断。钻杆的结构如图4-21所示钻杆规格见表4-14所示。
图4-21 冲击钻杆结构图
A—钻杆直径B—钻杆长度C—钻杆方头长度D—钻杆断面边长E—锥形公扣长度F—锥形公扣大头直径
钢丝绳接头又称绳卡。它的作用是连接钢丝绳和钻具,并使钻具在钢丝绳扭力作用下,能在钻头冲击一次后自动回转一定的角度。
钢丝绳接头的结构如图4-22所示。钢丝绳通过顶端伸到接头的中空活塞中,活套可以从接头中取出来,伸到活套内的钢丝绳端部,将钢丝回折成鸡心状后插入活套内,并用巴氏合金焊牢。
当提升钻具时,由于活套与整个钢丝绳接头连为一体,整个钻具受钢丝绳拉伸而扭转,从而使钻具转动一个角度。下放钻具时活套脱离垫片,钢丝绳不受力而恢复原来扭紧状态,连接钢丝绳的活套在垫片间隙内滑动,使钢丝绳实现扭紧而不带动钻头转回。即钻头在提升过程中转动一个角度,而下放过程不转动。因此在钻孔底面得到规整的圆形断面。为避免活套卡死,应经常检查、清洗钢丝绳接头。
表4-14 冲击钻杆规格表
3.掏砂筒
掏砂筒又叫抽筒,主要作用是捞取井内岩粉,也可直接用来钻进砂质、黏土质软地层。掏砂筒形状为一圆筒,上梁连接钢丝绳,下端有活门抽取岩粉。活门可根据地层特点做成球阀式、半球阀式或平板式。掏砂筒形状如图4-23所示,规格如表4-15所示。
图4-22 绳卡结构图
1—保护箍2—垫片3—绳卡体4—活套
图4-23 掏砂筒
A—掏砂筒直径B—进浆口直径C—提浆把高度D—焊接长度E—掏浆筒长度φ—提浆把直径
表4-15 掏砂筒规格表 单位:mm
4.钢丝绳
冲击钻进通常用6×19麻心左向交捻钢丝绳(6×19麻心钢丝绳如表4-16所示)。第一个数字表示有6股子绳,第二个数字表示每股子绳由19根钢丝捻成。钢丝绳规格应根据钻具的最大质量选用,一般取安全系数为10。
表4-16 6×19麻心钢丝绳
(二)冲击钻进规程
冲击钻进的规程参数包括钻具质量、冲击高度(即冲程或行程)、冲击次数和岩粉密度。
1.钻具的质量
冲击钻具的质量是指钻具静止时,钻头质量、钻杆和绳卡等能施加于岩石的钻具总质量,其大小应根据钻进岩石性质而定。采用钻头单位刃长(cm)上钻具相对重力来表示。
在软岩中取250~300N/cm在中硬岩中取350~400N/cm在硬岩中取500~600N/cm在坚硬岩中取650~800N/cm。
根据岩石性质选择钻具的质量是一个原则但同时也应考虑在冲击钻具上留有足够面积的泥浆“通槽”,以保证钻具能自由下降冲击孔底。同时,钻具过长,稳定性就差,消耗的冲击功率也大,导致冲击效果下降。所以在其他条件满足时,钻具长度应尽量减小。
2.冲击高度
冲击高度是指钻具在冲击过程中,钻具被提离孔底的高度,一般冲击钻机可改变的冲击高度为0.6~1.1m。对坚硬岩取小值,软岩取大值。
据试验表明,增加冲击高度较增加其他参数对提高钻进效率有效。但应考虑钻具本身强度的限制。
影响冲击高度的因素是钢丝绳的弹性伸长,所以采用留悬距的办法。悬距的控制是通过控制放绳量来实现的。放绳量要“少而勤”,以保证与井的延伸速度相吻合,而且每次放绳应是压轮到达最高位置的一瞬间。悬距值的大小,应根据岩石而定。钻进软岩时,每次冲击切入岩石的深度大,悬距可以少留甚至不留钻进硬岩时,每次冲击切入岩石的深度小,应适当多留。悬距还与井深有关,井越深,钢丝绳弹性伸长量越大,应适当多留。一般中硬以上岩石约留3~4cm悬距。
3.冲击次数
冲击次数是指钻具每分钟冲击孔底的次数。因为冲击钻进要保证钻具自由下落到井底,才能有效地破碎岩石,故要求钻机的冲击机构在一次循环中,要与钻具下落的时间相吻合。即冲击次数要与冲击高度相配合。配合好的冲击次数称为合理的冲击次数。当钻进中要增加冲击高度时,就应适当减少冲击次数,以避免造成钻具在孔内“打空”。
适用于目前冲击钻机的冲击高度与冲击次数的配合参数,可参考表4-17所示的规定。
表4-17 冲击高度与冲击次数关系表
4.岩粉密度
冲击钻进孔内应有一定密度的岩粉浆,起悬浮岩屑和保护井壁的作用。我们将单位体积的岩粉浆中所含岩粉的质量,称为岩粉密度,单位是kg/L。
井内岩粉密度值大小将直接影响钻进效率。当岩粉密度过小时,钻具下降的速度大,在钻具行程终了时将受到运动缓慢的压轮的限制,冲击功不能充分发挥碎岩作用,钻进效率降低当岩粉密度过大时,钻具下降的速度小,将形成钻具尚未到达孔底压轮已经回升,造成钻具不能有效地冲击孔底,甚至出现“打空”现象。同时,冲击钻进要利用岩粉浆悬浮被破碎的岩石颗粒,如果岩粉密度不适合,会在孔底形成一层岩粉垫,这将减弱钻头在孔底的冲击作用。这种岩粉垫严重时可使钻进效率为零。
实际操作中控制岩粉密度的办法,一是控制回次捞砂间隔,二是控制捞砂时的捞砂量,所以规程中有“勤掏少掏”的规定。经验证明,利用抽筒捞砂时,抽筒应在井底岩粉浆密度最高的“岩粉柱”范围内活动,抽筒提动距离有20~50mm即可,抽筒活动次数以3~4次为合适。
冲击钻进各技术参数的配合,主要根据地层条件,可参照表4-18选用。
(三)冲击钻进应用
冲击钻进方法虽然古老,但由于自身的特点,目前在大直径供水井、大口径的基桩孔的施工中仍有一定优势。因此,了解冲击钻进在某些岩层中的钻进方法是必要的。
1.大卵石、大漂石等地层钻进
这类地层胶结性差,比较松散,且卵石硬而表面光滑,井壁不稳定,易发生坍塌、井斜和漏失。采用冲击钻进可取得较好的效果。
表4-18 冲击钻进规程参数表
钻进这类地层应采用大冲击高度、低冲击次数,适当加大钻具质量。如果漏失不大,可采用泥浆护壁如果漏失严重,可投入黏土球挤入井壁,并配合稠泥浆护壁。当遇到大漂石时,可采用“高拉猛冲”以砸碎漂石并挤入井壁的钻进方法。当井身发生孔斜时,可将脆的块石填入孔内倾斜段,重新采用小规程进行钻进,待钻孔纠正后,再继续正常钻进。另外,在操作上应加强钻具的回转,采用大刃角防止钻头磨损过快,经常检查钻具,及时补修钻头,防止钻孔缩小而夹钻。
2.黏土层钻进
这类地层黏性大,透水性差,孔内造浆性较大。钻进中易发生缩径、糊钻,但井壁稳定。故进尺、护壁不是问题,重要的是防止事故。一般可采用小冲击高度,较轻钻具质量,适当减少冲击次数、勤换浆、少放绳和较短的回次进尺,并注意向孔内补充一定量稀泥浆。当遇到塑性较大并具有弹性的地层时,可向孔内投入砖块或软碎石,以增加碎岩的“切削具”。当遇到黏土质砂层时,可用掏砂筒钻进,以提高钻进效率。
3.砂层钻进
砂层钻进,主要是保护井壁,应采用优质泥浆护壁。较薄的流砂层,可投入黏土球以增加护壁能力,很厚的流砂层可选用跟管钻进。
4.石灰岩地层钻进
石灰岩的裂隙较为发育,钻进中易发生掉块而卡、夹钻具。如处理不当,会将钢丝绳拉断造成事故。
钻进灰岩地层,钻头的间隙角要大,使钻头与孔壁的间隙在30~50mm范围。钻头的刃角也要大,一般用带侧刃的十字形钻头。操作上应力求减小钻具的摆动,掌握好悬距。放绳要小而勤、冲击高度与冲击次数要配合适当。当地层特别破碎时,可投入黏土球,并挤压入裂隙,以增加井壁的稳定性。钻头要采用硬材料补焊,并准备2~3个钻头轮换使用。可采用优质泥浆悬浮岩屑,勤掏少掏。在有溶洞的地方应注意操作以防井斜。
电机怎么带钻钢丝绳上下转动?现有的钢丝绳传动装置,为了避免钢丝绳在钢丝轮上打滑,一般将钢丝绳绕在钢丝轮上,钢丝轮转动时,钢丝绳沿垂直于钢丝轮轴线方向运动的同时还沿轴线方向运动,钢丝绳的运动是复合运动,钢丝轮每转一转,钢丝绳便沿轴线方向移动一个螺距,钢丝轮转动圈数愈多,钢丝绳轴向移动的距离就愈大,钢丝绳被拉斜就愈严重,这样定位精度和重复定位精度就很低。如磨床的工作台的往复运动采用钢丝绳传动,因磨削时工作台的往复运动没有精度要求,所以该装置只传递运动而对运动精度要求不高。用于精密传动的钢丝绳传动装置如美国的Stratasys公司生产的FDM快速成形设备,电机驱动轮到执行机构之间有很多过渡轮,存在传动路线长,运动环节多,结构复杂,传递运动精度不高,制造成本高等缺点,直接影响快速成形的精度。
发明内容
本实用新型提供一种钢丝绳传动装置,针对上述现有技术存在的缺陷,克服钢丝轮转动时钢丝绳沿轴线方向的位移,提高定位精度,进一步拓宽钢丝绳传动装置的应用领域。
本实用新型的一种钢丝绳传动装置,其导轨位于机架上,电机和固定轮分别处于导轨两端,与电机轴连接的螺旋绕丝轮和固定轮之间绕有钢丝绳,其特征在于(1)所述电机固定于电机支架,后者与轴向导轨滑动连接,轴向导轨位于导轨一端,其方向与导轨垂直;(2)所述螺旋绕丝轮一端与电机轴连接、另一端与螺母螺旋连接,螺母固定在螺母支架上,后者固定于机架。
所述的钢丝绳传动装置,其进一步的特征在于所述螺旋绕丝轮和螺母的螺距相同。
所述的钢丝绳传动装置,所述钢丝绳一端可以固定于支座上,另一端穿越空心轴、由压板压紧在空心轴一端,空心轴另一端可以穿越支座,与调节螺母螺旋连接,空心轴和支座之间由弹簧张紧,支座与所述导轨滑动连接。
本实用新型结构简单,制造成本低,安装调试方便由于电机驱动钢丝绳运动时,电机可作相应随动,以消除因钢丝绳拉斜而带来的运动误差。在一定的移动速度下,提高定位精度,可用于精密传动,特别适合于快速成形技术以及其它要求定位精度高的传动和扫描设备。
图1本实用新型结构原理示意图;图2为图1的俯视图;图3为电机随动部分示意图;图4为钢丝绳一端与支座连接关系的示意图;
图5为本实用新型用于快速成形扫描装置示意图。
具体实施方式
如图1、图2所示,机架17上设有导轨16,电机1和固定轮7分置导轨两端,与电机轴连接的螺旋绕丝轮3和固定轮7之间绕有钢丝绳8。图3表示电机随动部分,电机1固定于电机支架2,后者通过滑块与轴向导轨6滑动连接,轴向导轨6位于导轨16一端,其方向与导轨16垂直;与电机轴连接的螺旋绕丝轮3另一端与螺母4螺旋连接,两者螺距相同,螺母4固定在螺母支架5上,后者固定在机架17上。图4进一步表示钢丝绳8与支座14的连接关系,钢丝绳8一端通过锁紧螺母9固定在支座14上,另一端穿越空心轴12,由压板11压紧在空心轴12一端,空心轴12另一端穿越支座14与调节螺母15螺旋连接,空心轴12和支座14之间由弹簧13张紧,支座14固定于托板10上,托板10通过滑块与导轨16滑动连接。这种连接关系在拉紧钢丝绳时,可以通过调节螺母15对张紧度微调,弹簧13又使待拉紧的钢丝绳有一定弹性。
当电机1驱动螺旋绕丝轮3转动,带动钢丝绳8沿垂直于钢丝轮轴线方向运动的同时还沿轴线方向运动,由于螺旋绕丝轮3在固定螺母4中转动,所以电机1驱动螺旋绕丝轮3转动的同时,螺母4带动电机1在轴向导轨6上跟随运动,又由于螺旋绕丝轮3的螺距和螺母4的螺距相同,所以钢丝绳8相对于机架17没有轴向运动,这就避免了因钢丝绳拉斜而带来的运动误差。
图5所示为本实用新型的装置用于快速成形扫描设备时,在X轴方向设置一套本实用新型的钢丝绳传动装置18,在Y轴方向设置一套本实用新型的钢丝绳传动装置19、固定于X轴方向钢丝绳传动装置18的托板10上,扫描头则固定于Y轴方向钢丝绳传动装置的托板上,实现X和Y方向两自由度的高精度扫描。
权利要求1.一种钢丝绳传动装置,其导轨位于机架上,电机和固定轮分别处于导轨两端,与电机轴连接的螺旋绕丝轮和固定轮之间绕有钢丝绳,其特征在于(1)所述电机固定于电机支架,后者与轴向导轨滑动连接,轴向导轨位于导轨一端,其方向与导轨垂直;(2)所述螺旋绕丝轮一端与电机轴连接、另一端与螺母螺旋连接,螺母固定在螺母支架上,后者固定于机架。
2.如权利要求1所述的钢丝绳传动装置,其特征在于所述螺旋绕丝轮和螺母的螺距相同。
3.如权利要求1或2所述的钢丝绳传动装置,其特征在于所述钢丝绳一端固定于支座上,另一端穿越空心轴、由压板压紧在空心轴一端,空心轴另一端穿越支座,与调节螺母螺旋连接,空心轴和支座之间由弹簧张紧,支座与所述导轨滑动连接。
专利摘要钢丝绳传动装置,属于传动装置,特别涉及快速成形技术的扫描装置,克服钢丝轮转动时钢丝绳沿轴线方面的位移,提高定位精度。本实用新型电机和固定轮分别处于导轨两端,电机固定于电机支架,后者与轴向导轨滑动连接,轴向导轨位于导轨一端,其方向与导轨垂直;与电机轴连接的螺旋绕丝轮和固定轮之间绕有钢丝绳,螺旋绕丝轮另一端与螺母螺旋连接,两者螺距相同,螺母固定于螺母支架、后者固定于机架。本实用新型结构简单、制造成本低、安装调试方便,由于电机驱动钢丝绳时可作相应随动以消除钢丝绳拉斜带来的运动误差,提高定位精度,适于快速成形技术以及其它要求定位精度高的传动和扫描设备。
文档编号G01D15/24GK2619239SQ0325422
公开日2004年6月2日 申请日期2003年5月30日 优先权日2003年5月30日
发明者禹世昌, 陶明元, 黄树槐 申请人:华中科技大学
你将钢丝绳固定的非转动中心点上,缠绕几圈钢丝绳,一拉就可以转动。
不过,不明白你要干啥,首先滑轮和钢丝绳都是理想的,不计重量,你没有给出受力条件。
转动又有什么意义?
第二、安装钢丝绳的方法不对,虽然钢丝绳的应力消除了,但如果安装钢丝绳是操作不合理,也会给钢丝绳加旋转,造成钢丝绳使用shir时打结。
第三钢丝绳在吊装重物时,会产生强烈旋转,卸载时速度要慢些,钢丝绳不要松弛,否则钢丝绳也会打结。
二种方安:把钢丝绳加长,在电机滚筒的前面1.5米至2米的地面上加一定滑轮, 这样就得到了钢丝绳的水平位移.再在钢丝绳取间隔一米的两点安装限位开关的触动点就可以了
1.1 曲柄滑块机构定义
在普通四杆机构中,四个构件之间都是通过转动副连接,这样可以实现曲线与曲线运动之间的转换。而曲柄滑块机构是保留曲柄杆、中间杆和固定杆(机架),将另一根杆退化为滑块,使滑块与中间连杆用转动副连接,滑块与固定杆用移动副连接,这样就可以实现曲柄端的回转运动与滑块端的直线运动相互转化。
1.2 曲柄滑块机构的特点及应用
1.2.1 优点
①低副连接,运动副单位面积受力小,便于润滑,磨损小
②对于长距离的控制也可以实现
③构件之间的运动靠几何封闭来维系,比力封闭的可靠。
1.2.2 缺点
①结构设计较复杂,且对制造安装的敏感性大
②高速时将引起很大的振动和动载荷。
1.2.3 应用
曲柄滑块机构在机械中的应用很广泛,例如,内燃机通过活塞往复运动将内能转换为曲柄转动的机械能压力机结构中通过曲柄的连续转动,经连杆带动滑块实现加压作用牛头刨床主运动机构中,导杆绕一点摆动,带动滑枕做往复运动,实现刨削抽水机结构中,摇动手柄时,在连杆的支承下,活塞杆在筒(固定滑块)内做上下运动,以达到抽水目的。另外,工程中的搓丝机、自动送料装置及自卸翻斗装置等机械中都用到曲柄滑块机构。
二、凸轮机构
2.1 凸轮机构的组成和特点
凸轮机构是由凸轮、从动件和机架三个部分组成,其中凸轮是主动件,从动件的运动规律由凸轮的轮廓决定。凸轮是具有曲线轮廓或沟槽的构件,若从动件是移动构件,那么这样的凸轮机构便能实现回转运动、直线运动的转换。
凸轮机构特点是:
①可以用于对从动件任意运动规律要求的场合
②可以高速启动,动作准确可靠,结构简单紧凑
③凸轮和从动件以点或线接触,单位面积上压力高,难以保持良好的润滑,易磨损
④凸轮形状复杂,加工维修较困难。
2.2 凸轮机构的分类及应用
凸轮机构根据各构件相对运动的位置,可分为平面凸轮机构和空间凸轮机构两大类,根据从动件的运动形式,凸轮机构可分为移动从动凸轮机构和摆动从动凸轮机构两大类,根据凸轮形状,凸轮机构可分为盘形凸轮机构、柱体凸轮机构、椎体凸轮机构和球体凸轮机构。凸轮机构主从动件接触形式有尖顶、滚子、平底三种,如果要改善主从动件受力形式可以采用偏置结构。
内燃机的配气机构就是凸轮机构应用的典型实例,当凸轮转动时,依靠凸轮的轮廓,可以迫使从动件气阀杆向下移动打开气门(借助弹簧作用力关闭),这样就可以按预定时间打开或关闭气门,以完成内燃机的配气动作。另外,车辆走行部的制动控制元件、纺织机械中大量使用凸轮机构,总之,在一个往复运动系统中,凸轮是最好的应用(在很多要求较高往复运动中,替代曲柄滑块机构,因为可以实现设计中需要的速度变化)。
三、齿轮齿条机构与滚珠丝杠机构
目前,机床制造中,齿轮齿条传动是使用较为广泛的一种传动形式,它能实现齿轮的回转运动与齿条的直线运动间的转化,这种形式的传动有很多优点,特别是在很多大型机床上,利用这种形式的传动,很方便的就得到高速直线运动,而且根据车床各方面的不同我们可以制作出各种材质的齿条,使得刚度和机械效率大大提高。但是在很多时候也存在着各种各样的缺点,因为这种传动形式的平稳性是依赖齿条和齿轮精度,如果精度不够高,机床在加工其他零件时,就会有一定的误差。所以如果想要消除这类零件的误差,或使其在机床中运转噪音减少,就要不断提高对齿条和齿轮的精度要求,并在材质上增加耐磨性和耐热性。所以,在一些精度要求比较高的场合,我们常常选用滚珠丝杠机构。
滚珠丝杠采用滚珠螺旋传动,是一种直线与曲线运动相互转换的理想机构,主要由滚珠、螺杆、螺母及滚珠循环装置组成,其工作原理是:在螺杆和螺母的螺纹滚道中装一定数量的滚珠,当螺杆与螺母作回转运动时,滚珠在螺纹滚到内滚动,并通过滚珠循环装置的通道构成封闭循环,从而实现螺杆与螺母间的滚动摩擦。滚珠丝杠传动摩擦阻力小、传动效率高、运动平稳、动作灵敏,但结构复杂,外形尺寸较大,对制造技术要求高,因此成本也高。目前主要应用于精密传动的数控机床以及自动控制装置、升降机构、精密测量仪器等。
丝杠传动具有速比大、行走慢、传动质量高、结构复杂等特点,而齿轮齿条传动速比小、行走快、传动质量差、结构简单。在长距离重负载直线运动上,丝杠有可能强度不够,就会导致机子出现震动、抖动等情况,严重的,会导致丝杠弯曲、变形、甚至断裂等而齿条就不会有这样的情况,齿条可以长距离无限接长并且高速运转而不影响齿条精度(当然这个跟装配、床身本身的精度都有关系),但在短距离直线运动中,丝杠的精度明显要比齿条高得多。